Files
data-lite-c/Sources/DataLiteC/libtomcrypt/encauth/siv/siv.c

753 lines
23 KiB
C

/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
#pragma clang diagnostic ignored "-Wshorten-64-to-32"
/**
@file siv.c
RFC 5297 SIV - Synthetic Initialization Vector, Steffen Jaeckel
*/
#ifdef LTC_SIV_MODE
/* RFC 5297 - Chapter 7 - Security Considerations
*
* [...] S2V must not be
* passed more than 127 components. Since SIV includes the plaintext as
* a component to S2V, that limits the number of components of
* associated data that can be safely passed to SIV to 126.
*/
static const unsigned long s_siv_max_aad_components = 126;
static LTC_INLINE void s_siv_dbl(unsigned char *inout)
{
int y, mask, msb, len;
/* setup the system */
mask = 0x87;
len = 16;
/* if msb(L * u^(x+1)) = 0 then just shift, otherwise shift and xor constant mask */
msb = inout[0] >> 7;
/* shift left */
for (y = 0; y < (len - 1); y++) {
inout[y] = ((inout[y] << 1) | (inout[y + 1] >> 7)) & 255;
}
inout[len - 1] = ((inout[len - 1] << 1) ^ (msb ? mask : 0)) & 255;
}
static LTC_INLINE int s_siv_S2V_one(int cipher,
const unsigned char *key, unsigned long keylen,
unsigned char *V, unsigned long *Vlen)
{
/* if n = 0 then
* return V = AES-CMAC(K, <one>)
*/
unsigned char zero_or_one[16] = {0};
zero_or_one[0] = 1;
return omac_memory(cipher, key, keylen, zero_or_one, sizeof(zero_or_one), V, Vlen);
}
typedef struct siv_omac_ctx_t {
omac_state omac;
int cipher;
} siv_omac_ctx_t;
static LTC_INLINE int s_siv_ctx_init(int cipher,
const unsigned char *key, unsigned long keylen,
siv_omac_ctx_t *ctx)
{
ctx->cipher = cipher;
return omac_init(&ctx->omac, cipher, key, keylen);
}
static LTC_INLINE int s_siv_omac_memory(siv_omac_ctx_t *ctx,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen)
{
int err;
omac_state omac = ctx->omac;
if ((err = omac_process(&omac, in, inlen)) != CRYPT_OK) {
return err;
}
err = omac_done(&omac, out, outlen);
zeromem(&omac, sizeof(omac));
return err;
}
static LTC_INLINE int s_siv_S2V_zero(siv_omac_ctx_t *ctx,
unsigned char *D, unsigned long *Dlen)
{
/* D = AES-CMAC(K, <zero>) */
const unsigned char zero_or_one[16] = {0};
return s_siv_omac_memory(ctx, zero_or_one, sizeof(zero_or_one), D, Dlen);
}
static LTC_INLINE int s_siv_S2V_dbl_xor_cmac(siv_omac_ctx_t *ctx,
const unsigned char *aad, unsigned long aadlen,
unsigned char *D, unsigned long Dlen)
{
/* for i = 1 to n-1 do
* D = dbl(D) xor AES-CMAC(K, Si)
* done
*/
int err;
unsigned char TMP[16];
unsigned long i, TMPlen = sizeof(TMP);
s_siv_dbl(D);
if ((err = s_siv_omac_memory(ctx, aad, aadlen, TMP, &TMPlen)) != CRYPT_OK) {
return err;
}
for (i = 0; i < Dlen; ++i) {
D[i] ^= TMP[i];
}
return err;
}
static LTC_INLINE int s_siv_omac_memory_multi(siv_omac_ctx_t *ctx,
unsigned char *out, unsigned long *outlen,
const unsigned char *in, unsigned long inlen,
...)
{
int err;
va_list args;
omac_state omac = ctx->omac;
va_start(args, inlen);
if ((err = omac_vprocess(&omac, in, inlen, args)) != CRYPT_OK) {
return err;
}
err = omac_done(&omac, out, outlen);
zeromem(&omac, sizeof(omac));
return err;
}
static LTC_INLINE int s_siv_S2V_T(siv_omac_ctx_t *ctx,
const unsigned char *in, unsigned long inlen,
unsigned char *D,
unsigned char *V, unsigned long *Vlen)
{
int err;
unsigned long i;
unsigned char T[16];
/* if len(Sn) >= 128 then
* T = Sn xorend D
* else
* T = dbl(D) xor pad(Sn)
* fi
*/
if (inlen >= 16) {
XMEMCPY(T, &in[inlen - 16], 16);
for(i = 0; i < 16; ++i) {
T[i] ^= D[i];
}
err = s_siv_omac_memory_multi(ctx, V, Vlen, in, inlen - 16, T, 16uL, NULL);
} else {
s_siv_dbl(D);
XMEMCPY(T, in, inlen);
T[inlen] = 0x80;
for (i = inlen + 1; i < 16; ++i) {
T[i] = 0x0;
}
for(i = 0; i < 16; ++i) {
T[i] ^= D[i];
}
err = s_siv_omac_memory(ctx, T, 16, V, Vlen);
}
return err;
}
static int s_siv_S2V(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char **ad, unsigned long *adlen,
const unsigned char *in, unsigned long inlen,
unsigned char *V, unsigned long *Vlen)
{
int err;
unsigned char D[16];
unsigned long Dlen = sizeof(D), n = 0;
siv_omac_ctx_t ctx;
if(ad == NULL || adlen == NULL || ad[0] == NULL || adlen[0] == 0) {
err = s_siv_S2V_one(cipher, key, keylen, V, Vlen);
} else {
if ((err = s_siv_ctx_init(cipher, key, keylen, &ctx)) != CRYPT_OK) {
return err;
}
Dlen = sizeof(D);
if ((err = s_siv_S2V_zero(&ctx, D, &Dlen)) != CRYPT_OK) {
return err;
}
while(ad[n] != NULL && adlen[n] != 0) {
if (n >= s_siv_max_aad_components) {
return CRYPT_INPUT_TOO_LONG;
}
if ((err = s_siv_S2V_dbl_xor_cmac(&ctx, ad[n], adlen[n], D, Dlen)) != CRYPT_OK) {
return err;
}
n++;
}
err = s_siv_S2V_T(&ctx, in, inlen, D, V, Vlen);
}
return err;
}
static LTC_INLINE void s_siv_bitand(const unsigned char* V, unsigned char* Q)
{
int n;
XMEMSET(Q, 0xff, 16);
Q[8] = Q[12] = 0x7f;
for (n = 0; n < 16; ++n) {
Q[n] &= V[n];
}
}
static LTC_INLINE int s_ctr_crypt_memory(int cipher,
const unsigned char *IV,
const unsigned char *key, int keylen,
const unsigned char *in,
unsigned char *out, unsigned long len)
{
int err;
symmetric_CTR ctr;
if ((err = ctr_start(cipher, IV, key, keylen, 0, CTR_COUNTER_BIG_ENDIAN | 16, &ctr)) != CRYPT_OK) {
goto out;
}
if ((err = ctr_encrypt(in, out, len, &ctr)) != CRYPT_OK) {
goto out;
}
if ((err = ctr_done(&ctr)) != CRYPT_OK) {
goto out;
}
out:
zeromem(&ctr, sizeof(ctr));
return err;
}
typedef struct {
unsigned char Q[16], V[16];
} siv_state;
/**
SIV encrypt
@param cipher The index of the cipher desired
@param key The secret key to use
@param keylen The length of the secret key (octets)
@param ad An array of Associated Data pointers (must be NULL terminated)
@param adlen An array with the lengths of the Associated Data
@param pt The plaintext
@param ptlen The length of the plaintext
@param ct The ciphertext
@param ctlen [in/out] The length of the ciphertext
@return CRYPT_OK if successful
*/
int siv_encrypt_memory( int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *ad[], unsigned long adlen[],
const unsigned char *pt, unsigned long ptlen,
unsigned char *ct, unsigned long *ctlen)
{
int err;
const unsigned char *K1, *K2;
unsigned long Vlen;
siv_state siv;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(ad != NULL);
LTC_ARGCHK(adlen != NULL);
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(ctlen != NULL);
if (ptlen + 16 < ptlen) {
return CRYPT_OVERFLOW;
}
if (*ctlen < ptlen + 16) {
*ctlen = ptlen + 16;
return CRYPT_BUFFER_OVERFLOW;
}
if ((err = cipher_is_valid(cipher)) != CRYPT_OK) {
return err;
}
K1 = key;
K2 = &key[keylen/2];
Vlen = sizeof(siv.V);
err = s_siv_S2V(cipher, K1, keylen/2, ad, adlen, pt, ptlen, siv.V, &Vlen);
#ifdef LTC_CLEAN_STACK
burn_stack(3 * 16 + 7 * sizeof(unsigned long) + 1 * sizeof(void*));
#endif
if (err != CRYPT_OK) {
return err;
}
s_siv_bitand(siv.V, siv.Q);
XMEMCPY(ct, siv.V, 16);
ct += 16;
if ((err = s_ctr_crypt_memory(cipher, siv.Q, K2, keylen/2, pt, ct, ptlen)) != CRYPT_OK) {
zeromem(ct, ptlen + 16);
goto out;
}
*ctlen = ptlen + 16;
out:
#ifdef LTC_CLEAN_STACK
zeromem(&siv, sizeof(siv));
#endif
return err;
}
/**
SIV decrypt
@param cipher The index of the cipher desired
@param key The secret key to use
@param keylen The length of the secret key (octets)
@param ad An array of Associated Data pointers (must be NULL terminated)
@param adlen An array with the lengths of the Associated Data
@param ct The ciphertext
@param ctlen The length of the ciphertext
@param pt The plaintext
@param ptlen [in/out] The length of the plaintext
@return CRYPT_OK if successful
*/
int siv_decrypt_memory( int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *ad[], unsigned long adlen[],
const unsigned char *ct, unsigned long ctlen,
unsigned char *pt, unsigned long *ptlen)
{
int err;
unsigned char *pt_work;
const unsigned char *K1, *K2, *ct_work;
unsigned long Vlen;
siv_state siv;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(ad != NULL);
LTC_ARGCHK(adlen != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ptlen != NULL);
if (ctlen < 16) {
return CRYPT_INVALID_ARG;
}
if (*ptlen < (ctlen - 16)) {
*ptlen = ctlen - 16;
return CRYPT_BUFFER_OVERFLOW;
}
if ((err = cipher_is_valid(cipher)) != CRYPT_OK) {
return err;
}
*ptlen = ctlen - 16;
pt_work = XMALLOC(*ptlen);
if (pt_work == NULL) {
return CRYPT_MEM;
}
K1 = key;
K2 = &key[keylen/2];
ct_work = ct;
s_siv_bitand(ct_work, siv.Q);
ct_work += 16;
if ((err = s_ctr_crypt_memory(cipher, siv.Q, K2, keylen/2, ct_work, pt_work, *ptlen)) != CRYPT_OK) {
goto out;
}
Vlen = sizeof(siv.V);
if ((err = s_siv_S2V(cipher, K1, keylen/2, ad, adlen, pt_work, *ptlen, siv.V, &Vlen)) != CRYPT_OK) {
goto out;
}
err = XMEM_NEQ(siv.V, ct, Vlen);
copy_or_zeromem(pt_work, pt, *ptlen, err);
out:
#ifdef LTC_CLEAN_STACK
zeromem(&siv, sizeof(siv));
#endif
zeromem(pt_work, *ptlen);
XFREE(pt_work);
return err;
}
/**
Process an entire SIV packet in one call.
@param cipher The index of the cipher desired
@param direction Encrypt or Decrypt mode (LTC_ENCRYPT or LTC_DECRYPT)
@param key The secret key to use
@param keylen The length of the secret key (octets)
@param in The input
@param inlen The length of the input
@param out The output
@param outlen [in/out] The max size and resulting size of the output
@remark <...> is of the form <pointer, length> (void*, unsigned long) and contains the Associated Data
@return CRYPT_OK on success
*/
int siv_memory( int cipher, int direction,
const unsigned char *key, unsigned long keylen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
...)
{
int err;
va_list args;
siv_state siv;
unsigned char D[16], *in_buf = NULL, *out_work;
const unsigned char *aad, *K1, *K2, *in_work;
unsigned long n = 0, aadlen, Dlen = sizeof(D), Vlen = sizeof(siv.V), in_work_len;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
if ((err = cipher_is_valid(cipher)) != CRYPT_OK) {
return err;
}
if (direction == LTC_ENCRYPT && *outlen < inlen + 16) {
*outlen = inlen + 16;
return CRYPT_BUFFER_OVERFLOW;
} else if (direction == LTC_DECRYPT && (inlen < 16 || *outlen < inlen - 16)) {
*outlen = inlen - 16;
return CRYPT_BUFFER_OVERFLOW;
}
K1 = key;
K2 = &key[keylen/2];
in_work = in;
in_work_len = inlen;
out_work = out;
if (direction == LTC_DECRYPT) {
in_work_len -= 16;
in_buf = XMALLOC(in_work_len);
if (in_buf == NULL)
return CRYPT_MEM;
s_siv_bitand(in_work, siv.Q);
in_work += 16;
if ((err = s_ctr_crypt_memory(cipher, siv.Q, K2, keylen/2, in_work, in_buf, in_work_len)) != CRYPT_OK) {
goto err_out;
}
in_work = in_buf;
}
va_start(args, outlen);
aad = va_arg(args, const unsigned char*);
aadlen = aad ? va_arg(args, unsigned long) : 0;
if (aad == NULL || aadlen == 0) {
if ((err = s_siv_S2V_one(cipher, K1, keylen/2, siv.V, &Vlen)) != CRYPT_OK) {
goto err_out;
}
} else {
siv_omac_ctx_t ctx;
if ((err = s_siv_ctx_init(cipher, K1, keylen/2, &ctx)) != CRYPT_OK) {
goto err_out;
}
if ((err = s_siv_S2V_zero(&ctx, D, &Dlen)) != CRYPT_OK) {
goto err_out;
}
do {
if (n >= s_siv_max_aad_components) {
err = CRYPT_INPUT_TOO_LONG;
goto err_out;
}
if ((err = s_siv_S2V_dbl_xor_cmac(&ctx, aad, aadlen, D, Dlen)) != CRYPT_OK) {
goto err_out;
}
aad = va_arg(args, const unsigned char*);
if (aad == NULL)
break;
aadlen = va_arg(args, unsigned long);
n++;
} while (aadlen);
if ((err = s_siv_S2V_T(&ctx, in_work, in_work_len, D, siv.V, &Vlen)) != CRYPT_OK) {
goto err_out;
}
}
if (direction == LTC_DECRYPT) {
err = XMEM_NEQ(siv.V, in, Vlen);
copy_or_zeromem(in_work, out, in_work_len, err);
*outlen = in_work_len;
} else {
s_siv_bitand(siv.V, siv.Q);
XMEMCPY(out_work, siv.V, 16);
out_work += 16;
if ((err = s_ctr_crypt_memory(cipher, siv.Q, K2, keylen/2, in, out_work, inlen)) != CRYPT_OK) {
zeromem(out, inlen + 16);
goto err_out;
}
*outlen = inlen + 16;
}
err_out:
if (in_buf) {
zeromem(in_buf, in_work_len);
XFREE(in_buf);
}
va_end(args);
#ifdef LTC_CLEAN_STACK
zeromem(D, sizeof(D));
zeromem(&siv, sizeof(siv));
#endif
return err;
}
int siv_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
/*
* RFC5297 - A.1. Deterministic Authenticated Encryption Example
*/
const unsigned char Key_A1[] =
{ 0xff, 0xfe, 0xfd, 0xfc, 0xfb, 0xfa, 0xf9, 0xf8,
0xf7, 0xf6, 0xf5, 0xf4, 0xf3, 0xf2, 0xf1, 0xf0,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff };
const unsigned char AD_A1[] =
{ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27 };
const unsigned char Plaintext_A1[] =
{ 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88,
0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee };
const unsigned char output_A1[] =
{ 0x85, 0x63, 0x2d, 0x07, 0xc6, 0xe8, 0xf3, 0x7f,
0x95, 0x0a, 0xcd, 0x32, 0x0a, 0x2e, 0xcc, 0x93,
0x40, 0xc0, 0x2b, 0x96, 0x90, 0xc4, 0xdc, 0x04,
0xda, 0xef, 0x7f, 0x6a, 0xfe, 0x5c };
const unsigned char *ad_A1[] =
{ AD_A1, NULL };
unsigned long adlen_A1[] =
{ sizeof(AD_A1), 0 };
const unsigned char Key_A2[] =
{ 0x7f, 0x7e, 0x7d, 0x7c, 0x7b, 0x7a, 0x79, 0x78,
0x77, 0x76, 0x75, 0x74, 0x73, 0x72, 0x71, 0x70,
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f };
const unsigned char AD1_A2[] =
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff,
0xde, 0xad, 0xda, 0xda, 0xde, 0xad, 0xda, 0xda,
0xff, 0xee, 0xdd, 0xcc, 0xbb, 0xaa, 0x99, 0x88,
0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11, 0x00 };
const unsigned char AD2_A2[] =
{ 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70, 0x80,
0x90, 0xa0 };
const unsigned char AD3_A2[] =
{ 0x09, 0xf9, 0x11, 0x02, 0x9d, 0x74, 0xe3, 0x5b,
0xd8, 0x41, 0x56, 0xc5, 0x63, 0x56, 0x88, 0xc0 };
const unsigned char Plaintext_A2[] =
{ 0x74, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20,
0x73, 0x6f, 0x6d, 0x65, 0x20, 0x70, 0x6c, 0x61,
0x69, 0x6e, 0x74, 0x65, 0x78, 0x74, 0x20, 0x74,
0x6f, 0x20, 0x65, 0x6e, 0x63, 0x72, 0x79, 0x70,
0x74, 0x20, 0x75, 0x73, 0x69, 0x6e, 0x67, 0x20,
0x53, 0x49, 0x56, 0x2d, 0x41, 0x45, 0x53 };
const unsigned char output_A2[] =
{ 0x7b, 0xdb, 0x6e, 0x3b, 0x43, 0x26, 0x67, 0xeb,
0x06, 0xf4, 0xd1, 0x4b, 0xff, 0x2f, 0xbd, 0x0f,
0xcb, 0x90, 0x0f, 0x2f, 0xdd, 0xbe, 0x40, 0x43,
0x26, 0x60, 0x19, 0x65, 0xc8, 0x89, 0xbf, 0x17,
0xdb, 0xa7, 0x7c, 0xeb, 0x09, 0x4f, 0xa6, 0x63,
0xb7, 0xa3, 0xf7, 0x48, 0xba, 0x8a, 0xf8, 0x29,
0xea, 0x64, 0xad, 0x54, 0x4a, 0x27, 0x2e, 0x9c,
0x48, 0x5b, 0x62, 0xa3, 0xfd, 0x5c, 0x0d };
const unsigned char *ad_A2[] =
{ AD1_A2, AD2_A2, AD3_A2, NULL };
unsigned long adlen_A2[] =
{ sizeof(AD1_A2), sizeof(AD2_A2), sizeof(AD3_A2), 0 };
#define PL_PAIR(n) n, sizeof(n)
struct {
const unsigned char* Key;
unsigned long Keylen;
const unsigned char* Plaintext;
unsigned long Plaintextlen;
const void* ADs;
void* ADlens;
const unsigned char* output;
unsigned long outputlen;
const char* name;
} siv_tests[] = {
{ PL_PAIR(Key_A1), PL_PAIR(Plaintext_A1), &ad_A1, &adlen_A1, PL_PAIR(output_A1), "RFC5297 - A.1. Deterministic Authenticated Encryption Example" },
{ PL_PAIR(Key_A2), PL_PAIR(Plaintext_A2), &ad_A2, &adlen_A2, PL_PAIR(output_A2), "RFC5297 - A.2. Nonce-Based Authenticated Encryption Example" }
};
#undef PL_PAIR
int err, cipher;
unsigned n;
unsigned long buflen, tmplen;
unsigned char buf[MAX(sizeof(output_A1), sizeof(output_A2))];
const unsigned long niter = 1000;
unsigned char *tmpe, *tmpd;
const unsigned long tmpmax = 16 + niter * 16;
cipher = find_cipher("aes");
for (n = 0; n < sizeof(siv_tests)/sizeof(siv_tests[0]); ++n) {
buflen = sizeof(buf);
if ((err = siv_encrypt_memory(cipher,
siv_tests[n].Key, siv_tests[n].Keylen,
(const unsigned char **)siv_tests[n].ADs, siv_tests[n].ADlens,
siv_tests[n].Plaintext, siv_tests[n].Plaintextlen,
buf, &buflen)) != CRYPT_OK) {
return err;
}
if (compare_testvector(buf, buflen, siv_tests[n].output, siv_tests[n].outputlen, siv_tests[n].name, n) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
buflen = sizeof(buf);
if ((err = siv_decrypt_memory(cipher,
siv_tests[n].Key, siv_tests[n].Keylen,
(const unsigned char **)siv_tests[n].ADs, siv_tests[n].ADlens,
siv_tests[n].output, siv_tests[n].outputlen,
buf, &buflen)) != CRYPT_OK) {
return err;
}
if (compare_testvector(buf, buflen, siv_tests[n].Plaintext, siv_tests[n].Plaintextlen, siv_tests[n].name, n + 0x1000) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
}
/* Testcase 0x2 */
buflen = sizeof(buf);
if ((err = siv_memory(cipher, LTC_ENCRYPT,
siv_tests[0].Key, siv_tests[0].Keylen,
siv_tests[0].Plaintext, siv_tests[0].Plaintextlen,
buf, &buflen,
AD_A1, sizeof(AD_A1),
NULL)) != CRYPT_OK) {
return err;
}
if (compare_testvector(buf, buflen, siv_tests[0].output, siv_tests[0].outputlen, siv_tests[0].name, n) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
/* Testcase 0x1002 */
buflen = sizeof(buf);
if ((err = siv_memory(cipher, LTC_DECRYPT,
siv_tests[0].Key, siv_tests[0].Keylen,
siv_tests[0].output, siv_tests[0].outputlen,
buf, &buflen,
AD_A1, sizeof(AD_A1),
NULL)) != CRYPT_OK) {
return err;
}
if (compare_testvector(buf, buflen, siv_tests[0].Plaintext, siv_tests[0].Plaintextlen, siv_tests[0].name, n + 0x1000) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
n++;
/* Testcase 0x3 */
buflen = sizeof(buf);
if ((err = siv_memory(cipher, LTC_ENCRYPT,
siv_tests[1].Key, siv_tests[1].Keylen,
siv_tests[1].Plaintext, siv_tests[1].Plaintextlen,
buf, &buflen,
ad_A2[0], adlen_A2[0],
ad_A2[1], adlen_A2[1],
ad_A2[2], adlen_A2[2],
NULL)) != CRYPT_OK) {
return err;
}
if (compare_testvector(buf, buflen, siv_tests[1].output, siv_tests[1].outputlen, siv_tests[1].name, n) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
/* Testcase 0x1003 */
buflen = sizeof(buf);
if ((err = siv_memory(cipher, LTC_DECRYPT,
siv_tests[1].Key, siv_tests[1].Keylen,
siv_tests[1].output, siv_tests[1].outputlen,
buf, &buflen,
ad_A2[0], adlen_A2[0],
ad_A2[1], adlen_A2[1],
ad_A2[2], adlen_A2[2],
NULL)) != CRYPT_OK) {
return err;
}
if (compare_testvector(buf, buflen, siv_tests[1].Plaintext, siv_tests[1].Plaintextlen, siv_tests[1].name, n + 0x1000) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
tmpe = XCALLOC(1, tmpmax);
if (tmpe == NULL) {
return CRYPT_MEM;
}
tmpd = XCALLOC(1, tmpmax);
if (tmpd == NULL) {
err = CRYPT_MEM;
goto out_tmpd;
}
tmplen = 16;
for (n = 0; n < niter; ++n) {
buflen = tmpmax;
if ((err = siv_memory(cipher, LTC_ENCRYPT,
siv_tests[0].Key, siv_tests[0].Keylen,
tmpe, tmplen,
tmpe, &buflen,
NULL)) != CRYPT_OK) {
goto out;
}
tmplen = buflen;
}
if (compare_testvector(&buflen, sizeof(buflen), &tmpmax, sizeof(tmpmax), "Multiple encrypt length", -(int)niter)) {
err = CRYPT_FAIL_TESTVECTOR;
goto out;
}
XMEMCPY(tmpd, tmpe, buflen);
for (n = 0; n < niter; ++n) {
buflen = tmpmax;
if ((err = siv_memory(cipher, LTC_DECRYPT,
siv_tests[0].Key, siv_tests[0].Keylen,
tmpd, tmplen,
tmpd, &buflen,
NULL)) != CRYPT_OK) {
goto out;
}
tmplen = buflen;
}
if (compare_testvector(tmpd, tmplen, tmpe, tmplen, "Multi decrypt", niter + 0x2000)) {
err = CRYPT_FAIL_TESTVECTOR;
}
out:
XFREE(tmpd);
out_tmpd:
XFREE(tmpe);
return err;
#endif
}
#endif
#pragma clang diagnostic pop