10 Commits
1.0.0 ... 2.0.1

Author SHA1 Message Date
8d03223dbc Merge branch 'develop' 2025-07-16 20:59:39 +03:00
d770dd8df3 Merge branch 'feature/disable-unused-algorithms' into develop 2025-07-16 20:59:10 +03:00
d7d269bca1 Disable unused algorithms 2025-07-16 20:58:55 +03:00
Oleksii Zghurskyi
bbc1bf97b9 Merge branch 'develop' 2025-06-07 19:38:07 +03:00
Oleksii Zghurskyi
3ba0c50619 Merge branch 'feature/package-file' into develop 2025-06-07 19:37:51 +03:00
Oleksii Zghurskyi
3a2b63e1ef Update Package.swift 2025-06-07 19:37:44 +03:00
Oleksii Zghurskyi
0877de04e5 Merge branch 'feature/readme' into develop 2025-06-07 19:02:06 +03:00
Oleksii Zghurskyi
b01981475f Update readme 2025-06-07 19:01:42 +03:00
Oleksii Zghurskyi
4240a3b739 Merge branch 'feature/sqlcipher' into develop 2025-06-07 18:11:44 +03:00
Oleksii Zghurskyi
177d74700f Replaced system SQLite with SQLCipher to support encrypted database 2025-06-07 18:11:17 +03:00
535 changed files with 362863 additions and 59 deletions

View File

@@ -3,12 +3,6 @@
import PackageDescription
#if os(Linux)
let sqlitePkg = "sqlite3"
#else
let sqlitePkg: String? = nil
#endif
let package = Package(
name: "DataLiteC",
platforms: [
@@ -19,9 +13,58 @@ let package = Package(
.library(name: "DataLiteC", targets: ["DataLiteC"])
],
targets: [
.systemLibrary(name: "DataLiteC", pkgConfig: sqlitePkg, providers: [
.apt(["sqlite3", "libsqlite3-dev"]),
.brew(["sqlite"])
])
.target(
name: "DataLiteC",
sources: ["libtomcrypt", "sqlcipher"],
publicHeadersPath: "sqlcipher",
cSettings: [
.headerSearchPath("libtomcrypt/headers"),
.define("MIN(x,y)", to: "(((x)<(y))?(x):(y))"),
.define("MAX(x,y)", to: "(((x)>(y))?(x):(y))"),
.define("SQLCIPHER_CRYPTO_LIBTOMCRYPT"),
.define("SQLITE_HOMEGROWN_RECURSIVE_MUTEX"),
.define("SQLITE_HAS_CODEC"),
.define("SQLITE_EXTRA_INIT", to: "sqlcipher_extra_init"),
.define("SQLITE_EXTRA_SHUTDOWN", to: "sqlcipher_extra_shutdown"),
.define("SQLITE_THREADSAFE", to: "1"),
.define("SQLITE_TEMP_STORE", to: "2"),
.define("SQLITE_SECURE_DELETE"),
.define("SQLITE_ENABLE_COLUMN_METADATA"),
.define("SQLITE_ENABLE_DBSTAT_VTAB", .when(configuration: .debug)),
.define("SQLITE_ENABLE_STMTVTAB", .when(configuration: .debug)),
.define("SQLITE_ENABLE_API_ARMOR", .when(configuration: .debug)),
.define("SQLITE_DQS", to: "0"),
.define("SQLITE_ENABLE_PREUPDATE_HOOK"),
.define("SQLITE_LIKE_DOESNT_MATCH_BLOBS"),
.define("SQLITE_OMIT_DEPRECATED"),
.define("SQLITE_OMIT_SHARED_CACHE"),
.define("SQLITE_USE_URI"),
.define("HAVE_GETHOSTUUID", to: "0"),
.define("HAVE_STDINT_H"),
.define("LTC_NO_TEST"),
.define("LTC_NO_FILE"),
.define("LTC_NO_HASHES"),
.define("LTC_NO_PKCS"),
.define("LTC_NO_MISC"),
.define("LTC_NO_PK"),
.define("LTC_NO_MACS"),
.define("LTC_MINIMAL"),
.define("LTC_SHA512"),
.define("LTC_SHA1"),
.define("LTC_HMAC"),
.define("LTC_PKCS_5"),
.define("LTC_HASH_HELPERS")
],
linkerSettings: [
.linkedLibrary("log", .when(platforms: [.android]))
]
),
.testTarget(
name: "DataLiteCTests",
dependencies: ["DataLiteC"],
cSettings: [
.define("SQLITE_HAS_CODEC")
]
)
]
)

127
README.md
View File

@@ -1,16 +1,18 @@
# DataLiteC Package
# DataLiteC
**DataLiteC** is a Swift package that provides a system interface to the SQLite C library. It supports **macOS**, **iOS**, and **Linux** platforms, using the system SQLite library via `pkg-config`.
**DataLiteC** is a Swift package that provides low-level access to an embedded, fully-encrypted SQLite engine. It includes [SQLCipher](https://github.com/sqlcipher/sqlcipher) and [LibTomCrypt](https://github.com/libtom/libtomcrypt) as source dependencies, with no external installation required.
## Overview
DataLiteC is a Swift system library wrapper that links directly to the SQLite C API. It does not add any abstractions and enables direct usage of SQLite's C functions within Swift code.
**DataLiteC** provides direct access to the C API of SQLCipher, a fully encrypted drop-in replacement for SQLite. It is designed for Swift projects that require precise, low-level control over encrypted database operations without relying on system-installed libraries.
The package statically includes both SQLCipher and LibTomCrypt as source code, making it fully self-contained and portable across **macOS**, **iOS**, and **Linux** platforms.
DataLiteC does not introduce any abstractions or Swift-specific layers — it simply exposes the raw C interface, allowing complete control and maximum compatibility with the underlying engine.
## Installation
### Adding DataLiteC to Your Project
To use DataLiteC in your Swift project, add it to the dependencies section of your `Package.swift` file:
To add **DataLiteC** to your project, include it in the `dependencies` section of your `Package.swift` file:
```swift
// swift-tools-version: 5.10
@@ -20,38 +22,21 @@ import PackageDescription
let package = Package(
name: "YourProject",
dependencies: [
.package(url: "https://github.com/angd-dev/data-lite-c.git", from: "1.0.0")
.package(url: "https://github.com/angd-dev/data-lite-c.git", from: "2.0.0")
],
targets: [
.target(
name: "YourTarget",
dependencies: [
.product(name: "DataLiteC", package: "data-lite-c")
]
)
.target(name: "YourTarget", dependencies: [
.product(name: "DataLiteC", package: "data-lite-c")
])
]
)
```
### System Requirements
DataLiteC requires SQLite to be installed on your system:
- **Linux**: Install `sqlite3` and development headers:
```bash
sudo apt-get install sqlite3 libsqlite3-dev
```
- **macOS**: Install SQLite using Homebrew:
```bash
brew install sqlite
```
No additional setup or system packages are required — all dependencies are bundled and built automatically.
## Usage
Once the package is added, you can import it and use SQLite's C API directly:
Once the package is added, you can import `DataLiteC` and use the raw SQLCipher C API directly in Swift:
```swift
import DataLiteC
@@ -65,20 +50,86 @@ if sqlite3_open(":memory:", &db) == SQLITE_OK {
}
```
## Troubleshooting
To use encryption with SQLCipher, set the encryption key immediately after opening the database:
If you encounter build errors such as missing `sqlite3.h`, ensure that `pkg-config` can locate SQLite:
```swift
if sqlite3_open("secure.db", &db) == SQLITE_OK {
let key = "your-secret-passphrase"
sqlite3_key(db, key, Int32(key.utf8.count))
```bash
pkg-config --cflags sqlite3
```
// It's good practice to verify key correctness
if sqlite3_exec(db, "SELECT count(*) FROM sqlite_master;", nil, nil, nil) == SQLITE_OK {
print("Successfully opened encrypted database.")
} else {
print("Invalid encryption key or corrupted database.")
}
If the command returns nothing, manually set the `PKG_CONFIG_PATH`:
```bash
export PKG_CONFIG_PATH="/usr/local/lib/pkgconfig:$PKG_CONFIG_PATH"
sqlite3_close(db)
}
```
## License
### DataLiteC
This project is licensed under the MIT License. See the `LICENSE` file for details.
### SQLCipher
```
Copyright (c) 2025, ZETETIC LLC
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the ZETETIC LLC nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
```
### LibTomCrypt
```
The LibTom license
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.
In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment in perpetuity of all present and future rights to this
software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
For more information, please refer to <http://unlicense.org/>
```

View File

@@ -0,0 +1,738 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* AES implementation by Tom St Denis
*
* Derived from the Public Domain source code by
---
* rijndael-alg-fst.c
*
* @version 3.0 (December 2000)
*
* Optimised ANSI C code for the Rijndael cipher (now AES)
*
* @author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be>
* @author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be>
* @author Paulo Barreto <paulo.barreto@terra.com.br>
---
*/
/**
@file aes.c
Implementation of AES
*/
#include "tomcrypt_private.h"
#ifdef LTC_RIJNDAEL
#ifndef ENCRYPT_ONLY
#define SETUP rijndael_setup
#define ECB_ENC rijndael_ecb_encrypt
#define ECB_DEC rijndael_ecb_decrypt
#define ECB_DONE rijndael_done
#define ECB_TEST rijndael_test
#define ECB_KS rijndael_keysize
const struct ltc_cipher_descriptor rijndael_desc =
{
"rijndael",
6,
16, 32, 16, 10,
SETUP, ECB_ENC, ECB_DEC, ECB_TEST, ECB_DONE, ECB_KS,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
#else
#define SETUP rijndael_enc_setup
#define ECB_ENC rijndael_enc_ecb_encrypt
#define ECB_KS rijndael_enc_keysize
#define ECB_DONE rijndael_enc_done
const struct ltc_cipher_descriptor rijndael_enc_desc =
{
"rijndael",
6,
16, 32, 16, 10,
SETUP, ECB_ENC, NULL, NULL, ECB_DONE, ECB_KS,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
#endif
#ifndef LTC_AES_TAB_C
#define LTC_AES_TAB_C
#include "aes_tab.c"
#endif
static ulong32 setup_mix(ulong32 temp)
{
return (Te4_3[LTC_BYTE(temp, 2)]) ^
(Te4_2[LTC_BYTE(temp, 1)]) ^
(Te4_1[LTC_BYTE(temp, 0)]) ^
(Te4_0[LTC_BYTE(temp, 3)]);
}
#ifndef ENCRYPT_ONLY
#ifdef LTC_SMALL_CODE
static ulong32 setup_mix2(ulong32 temp)
{
return Td0(255 & Te4[LTC_BYTE(temp, 3)]) ^
Td1(255 & Te4[LTC_BYTE(temp, 2)]) ^
Td2(255 & Te4[LTC_BYTE(temp, 1)]) ^
Td3(255 & Te4[LTC_BYTE(temp, 0)]);
}
#endif
#endif
/**
Initialize the AES (Rijndael) block cipher
@param key The symmetric key you wish to pass
@param keylen The key length in bytes
@param num_rounds The number of rounds desired (0 for default)
@param skey The key in as scheduled by this function.
@return CRYPT_OK if successful
*/
int SETUP(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
int i;
ulong32 temp, *rk, *K;
#ifndef ENCRYPT_ONLY
ulong32 *rrk;
#endif
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
if (keylen != 16 && keylen != 24 && keylen != 32) {
return CRYPT_INVALID_KEYSIZE;
}
if (num_rounds != 0 && num_rounds != (10 + ((keylen/8)-2)*2)) {
return CRYPT_INVALID_ROUNDS;
}
skey->rijndael.Nr = 10 + ((keylen/8)-2)*2;
K = LTC_ALIGN_BUF(skey->rijndael.K, 16);
skey->rijndael.eK = K;
K += 60;
skey->rijndael.dK = K;
/* setup the forward key */
i = 0;
rk = skey->rijndael.eK;
LOAD32H(rk[0], key );
LOAD32H(rk[1], key + 4);
LOAD32H(rk[2], key + 8);
LOAD32H(rk[3], key + 12);
if (keylen == 16) {
for (;;) {
temp = rk[3];
rk[4] = rk[0] ^ setup_mix(temp) ^ rcon[i];
rk[5] = rk[1] ^ rk[4];
rk[6] = rk[2] ^ rk[5];
rk[7] = rk[3] ^ rk[6];
if (++i == 10) {
break;
}
rk += 4;
}
} else if (keylen == 24) {
LOAD32H(rk[4], key + 16);
LOAD32H(rk[5], key + 20);
for (;;) {
#ifdef _MSC_VER
temp = skey->rijndael.eK[rk - skey->rijndael.eK + 5];
#else
temp = rk[5];
#endif
rk[ 6] = rk[ 0] ^ setup_mix(temp) ^ rcon[i];
rk[ 7] = rk[ 1] ^ rk[ 6];
rk[ 8] = rk[ 2] ^ rk[ 7];
rk[ 9] = rk[ 3] ^ rk[ 8];
if (++i == 8) {
break;
}
rk[10] = rk[ 4] ^ rk[ 9];
rk[11] = rk[ 5] ^ rk[10];
rk += 6;
}
} else if (keylen == 32) {
LOAD32H(rk[4], key + 16);
LOAD32H(rk[5], key + 20);
LOAD32H(rk[6], key + 24);
LOAD32H(rk[7], key + 28);
for (;;) {
#ifdef _MSC_VER
temp = skey->rijndael.eK[rk - skey->rijndael.eK + 7];
#else
temp = rk[7];
#endif
rk[ 8] = rk[ 0] ^ setup_mix(temp) ^ rcon[i];
rk[ 9] = rk[ 1] ^ rk[ 8];
rk[10] = rk[ 2] ^ rk[ 9];
rk[11] = rk[ 3] ^ rk[10];
if (++i == 7) {
break;
}
temp = rk[11];
rk[12] = rk[ 4] ^ setup_mix(RORc(temp, 8));
rk[13] = rk[ 5] ^ rk[12];
rk[14] = rk[ 6] ^ rk[13];
rk[15] = rk[ 7] ^ rk[14];
rk += 8;
}
} else {
/* this can't happen */
/* coverity[dead_error_line] */
return CRYPT_ERROR;
}
#ifndef ENCRYPT_ONLY
/* setup the inverse key now */
rk = skey->rijndael.dK;
rrk = skey->rijndael.eK + (28 + keylen) - 4;
/* apply the inverse MixColumn transform to all round keys but the first and the last: */
/* copy first */
*rk++ = *rrk++;
*rk++ = *rrk++;
*rk++ = *rrk++;
*rk = *rrk;
rk -= 3; rrk -= 3;
for (i = 1; i < skey->rijndael.Nr; i++) {
rrk -= 4;
rk += 4;
#ifdef LTC_SMALL_CODE
temp = rrk[0];
rk[0] = setup_mix2(temp);
temp = rrk[1];
rk[1] = setup_mix2(temp);
temp = rrk[2];
rk[2] = setup_mix2(temp);
temp = rrk[3];
rk[3] = setup_mix2(temp);
#else
temp = rrk[0];
rk[0] =
Tks0[LTC_BYTE(temp, 3)] ^
Tks1[LTC_BYTE(temp, 2)] ^
Tks2[LTC_BYTE(temp, 1)] ^
Tks3[LTC_BYTE(temp, 0)];
temp = rrk[1];
rk[1] =
Tks0[LTC_BYTE(temp, 3)] ^
Tks1[LTC_BYTE(temp, 2)] ^
Tks2[LTC_BYTE(temp, 1)] ^
Tks3[LTC_BYTE(temp, 0)];
temp = rrk[2];
rk[2] =
Tks0[LTC_BYTE(temp, 3)] ^
Tks1[LTC_BYTE(temp, 2)] ^
Tks2[LTC_BYTE(temp, 1)] ^
Tks3[LTC_BYTE(temp, 0)];
temp = rrk[3];
rk[3] =
Tks0[LTC_BYTE(temp, 3)] ^
Tks1[LTC_BYTE(temp, 2)] ^
Tks2[LTC_BYTE(temp, 1)] ^
Tks3[LTC_BYTE(temp, 0)];
#endif
}
/* copy last */
rrk -= 4;
rk += 4;
*rk++ = *rrk++;
*rk++ = *rrk++;
*rk++ = *rrk++;
*rk = *rrk;
#endif /* ENCRYPT_ONLY */
return CRYPT_OK;
}
/**
Encrypts a block of text with AES
@param pt The input plaintext (16 bytes)
@param ct The output ciphertext (16 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_rijndael_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#else
int ECB_ENC(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#endif
{
ulong32 s0, s1, s2, s3, t0, t1, t2, t3;
const ulong32 *rk;
int Nr, r;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
Nr = skey->rijndael.Nr;
if (Nr < 2 || Nr > 16)
return CRYPT_INVALID_ROUNDS;
rk = skey->rijndael.eK;
/*
* map byte array block to cipher state
* and add initial round key:
*/
LOAD32H(s0, pt ); s0 ^= rk[0];
LOAD32H(s1, pt + 4); s1 ^= rk[1];
LOAD32H(s2, pt + 8); s2 ^= rk[2];
LOAD32H(s3, pt + 12); s3 ^= rk[3];
#ifdef LTC_SMALL_CODE
for (r = 0; ; r++) {
rk += 4;
t0 =
Te0(LTC_BYTE(s0, 3)) ^
Te1(LTC_BYTE(s1, 2)) ^
Te2(LTC_BYTE(s2, 1)) ^
Te3(LTC_BYTE(s3, 0)) ^
rk[0];
t1 =
Te0(LTC_BYTE(s1, 3)) ^
Te1(LTC_BYTE(s2, 2)) ^
Te2(LTC_BYTE(s3, 1)) ^
Te3(LTC_BYTE(s0, 0)) ^
rk[1];
t2 =
Te0(LTC_BYTE(s2, 3)) ^
Te1(LTC_BYTE(s3, 2)) ^
Te2(LTC_BYTE(s0, 1)) ^
Te3(LTC_BYTE(s1, 0)) ^
rk[2];
t3 =
Te0(LTC_BYTE(s3, 3)) ^
Te1(LTC_BYTE(s0, 2)) ^
Te2(LTC_BYTE(s1, 1)) ^
Te3(LTC_BYTE(s2, 0)) ^
rk[3];
if (r == Nr-2) {
break;
}
s0 = t0; s1 = t1; s2 = t2; s3 = t3;
}
rk += 4;
#else
/*
* Nr - 1 full rounds:
*/
r = Nr >> 1;
for (;;) {
t0 =
Te0(LTC_BYTE(s0, 3)) ^
Te1(LTC_BYTE(s1, 2)) ^
Te2(LTC_BYTE(s2, 1)) ^
Te3(LTC_BYTE(s3, 0)) ^
rk[4];
t1 =
Te0(LTC_BYTE(s1, 3)) ^
Te1(LTC_BYTE(s2, 2)) ^
Te2(LTC_BYTE(s3, 1)) ^
Te3(LTC_BYTE(s0, 0)) ^
rk[5];
t2 =
Te0(LTC_BYTE(s2, 3)) ^
Te1(LTC_BYTE(s3, 2)) ^
Te2(LTC_BYTE(s0, 1)) ^
Te3(LTC_BYTE(s1, 0)) ^
rk[6];
t3 =
Te0(LTC_BYTE(s3, 3)) ^
Te1(LTC_BYTE(s0, 2)) ^
Te2(LTC_BYTE(s1, 1)) ^
Te3(LTC_BYTE(s2, 0)) ^
rk[7];
rk += 8;
if (--r == 0) {
break;
}
s0 =
Te0(LTC_BYTE(t0, 3)) ^
Te1(LTC_BYTE(t1, 2)) ^
Te2(LTC_BYTE(t2, 1)) ^
Te3(LTC_BYTE(t3, 0)) ^
rk[0];
s1 =
Te0(LTC_BYTE(t1, 3)) ^
Te1(LTC_BYTE(t2, 2)) ^
Te2(LTC_BYTE(t3, 1)) ^
Te3(LTC_BYTE(t0, 0)) ^
rk[1];
s2 =
Te0(LTC_BYTE(t2, 3)) ^
Te1(LTC_BYTE(t3, 2)) ^
Te2(LTC_BYTE(t0, 1)) ^
Te3(LTC_BYTE(t1, 0)) ^
rk[2];
s3 =
Te0(LTC_BYTE(t3, 3)) ^
Te1(LTC_BYTE(t0, 2)) ^
Te2(LTC_BYTE(t1, 1)) ^
Te3(LTC_BYTE(t2, 0)) ^
rk[3];
}
#endif
/*
* apply last round and
* map cipher state to byte array block:
*/
s0 =
(Te4_3[LTC_BYTE(t0, 3)]) ^
(Te4_2[LTC_BYTE(t1, 2)]) ^
(Te4_1[LTC_BYTE(t2, 1)]) ^
(Te4_0[LTC_BYTE(t3, 0)]) ^
rk[0];
STORE32H(s0, ct);
s1 =
(Te4_3[LTC_BYTE(t1, 3)]) ^
(Te4_2[LTC_BYTE(t2, 2)]) ^
(Te4_1[LTC_BYTE(t3, 1)]) ^
(Te4_0[LTC_BYTE(t0, 0)]) ^
rk[1];
STORE32H(s1, ct+4);
s2 =
(Te4_3[LTC_BYTE(t2, 3)]) ^
(Te4_2[LTC_BYTE(t3, 2)]) ^
(Te4_1[LTC_BYTE(t0, 1)]) ^
(Te4_0[LTC_BYTE(t1, 0)]) ^
rk[2];
STORE32H(s2, ct+8);
s3 =
(Te4_3[LTC_BYTE(t3, 3)]) ^
(Te4_2[LTC_BYTE(t0, 2)]) ^
(Te4_1[LTC_BYTE(t1, 1)]) ^
(Te4_0[LTC_BYTE(t2, 0)]) ^
rk[3];
STORE32H(s3, ct+12);
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int ECB_ENC(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
{
int err = s_rijndael_ecb_encrypt(pt, ct, skey);
burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2);
return err;
}
#endif
#ifndef ENCRYPT_ONLY
/**
Decrypts a block of text with AES
@param ct The input ciphertext (16 bytes)
@param pt The output plaintext (16 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_rijndael_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#else
int ECB_DEC(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#endif
{
ulong32 s0, s1, s2, s3, t0, t1, t2, t3;
const ulong32 *rk;
int Nr, r;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
Nr = skey->rijndael.Nr;
if (Nr < 2 || Nr > 16)
return CRYPT_INVALID_ROUNDS;
rk = skey->rijndael.dK;
/*
* map byte array block to cipher state
* and add initial round key:
*/
LOAD32H(s0, ct ); s0 ^= rk[0];
LOAD32H(s1, ct + 4); s1 ^= rk[1];
LOAD32H(s2, ct + 8); s2 ^= rk[2];
LOAD32H(s3, ct + 12); s3 ^= rk[3];
#ifdef LTC_SMALL_CODE
for (r = 0; ; r++) {
rk += 4;
t0 =
Td0(LTC_BYTE(s0, 3)) ^
Td1(LTC_BYTE(s3, 2)) ^
Td2(LTC_BYTE(s2, 1)) ^
Td3(LTC_BYTE(s1, 0)) ^
rk[0];
t1 =
Td0(LTC_BYTE(s1, 3)) ^
Td1(LTC_BYTE(s0, 2)) ^
Td2(LTC_BYTE(s3, 1)) ^
Td3(LTC_BYTE(s2, 0)) ^
rk[1];
t2 =
Td0(LTC_BYTE(s2, 3)) ^
Td1(LTC_BYTE(s1, 2)) ^
Td2(LTC_BYTE(s0, 1)) ^
Td3(LTC_BYTE(s3, 0)) ^
rk[2];
t3 =
Td0(LTC_BYTE(s3, 3)) ^
Td1(LTC_BYTE(s2, 2)) ^
Td2(LTC_BYTE(s1, 1)) ^
Td3(LTC_BYTE(s0, 0)) ^
rk[3];
if (r == Nr-2) {
break;
}
s0 = t0; s1 = t1; s2 = t2; s3 = t3;
}
rk += 4;
#else
/*
* Nr - 1 full rounds:
*/
r = Nr >> 1;
for (;;) {
t0 =
Td0(LTC_BYTE(s0, 3)) ^
Td1(LTC_BYTE(s3, 2)) ^
Td2(LTC_BYTE(s2, 1)) ^
Td3(LTC_BYTE(s1, 0)) ^
rk[4];
t1 =
Td0(LTC_BYTE(s1, 3)) ^
Td1(LTC_BYTE(s0, 2)) ^
Td2(LTC_BYTE(s3, 1)) ^
Td3(LTC_BYTE(s2, 0)) ^
rk[5];
t2 =
Td0(LTC_BYTE(s2, 3)) ^
Td1(LTC_BYTE(s1, 2)) ^
Td2(LTC_BYTE(s0, 1)) ^
Td3(LTC_BYTE(s3, 0)) ^
rk[6];
t3 =
Td0(LTC_BYTE(s3, 3)) ^
Td1(LTC_BYTE(s2, 2)) ^
Td2(LTC_BYTE(s1, 1)) ^
Td3(LTC_BYTE(s0, 0)) ^
rk[7];
rk += 8;
if (--r == 0) {
break;
}
s0 =
Td0(LTC_BYTE(t0, 3)) ^
Td1(LTC_BYTE(t3, 2)) ^
Td2(LTC_BYTE(t2, 1)) ^
Td3(LTC_BYTE(t1, 0)) ^
rk[0];
s1 =
Td0(LTC_BYTE(t1, 3)) ^
Td1(LTC_BYTE(t0, 2)) ^
Td2(LTC_BYTE(t3, 1)) ^
Td3(LTC_BYTE(t2, 0)) ^
rk[1];
s2 =
Td0(LTC_BYTE(t2, 3)) ^
Td1(LTC_BYTE(t1, 2)) ^
Td2(LTC_BYTE(t0, 1)) ^
Td3(LTC_BYTE(t3, 0)) ^
rk[2];
s3 =
Td0(LTC_BYTE(t3, 3)) ^
Td1(LTC_BYTE(t2, 2)) ^
Td2(LTC_BYTE(t1, 1)) ^
Td3(LTC_BYTE(t0, 0)) ^
rk[3];
}
#endif
/*
* apply last round and
* map cipher state to byte array block:
*/
s0 =
(Td4[LTC_BYTE(t0, 3)] & 0xff000000) ^
(Td4[LTC_BYTE(t3, 2)] & 0x00ff0000) ^
(Td4[LTC_BYTE(t2, 1)] & 0x0000ff00) ^
(Td4[LTC_BYTE(t1, 0)] & 0x000000ff) ^
rk[0];
STORE32H(s0, pt);
s1 =
(Td4[LTC_BYTE(t1, 3)] & 0xff000000) ^
(Td4[LTC_BYTE(t0, 2)] & 0x00ff0000) ^
(Td4[LTC_BYTE(t3, 1)] & 0x0000ff00) ^
(Td4[LTC_BYTE(t2, 0)] & 0x000000ff) ^
rk[1];
STORE32H(s1, pt+4);
s2 =
(Td4[LTC_BYTE(t2, 3)] & 0xff000000) ^
(Td4[LTC_BYTE(t1, 2)] & 0x00ff0000) ^
(Td4[LTC_BYTE(t0, 1)] & 0x0000ff00) ^
(Td4[LTC_BYTE(t3, 0)] & 0x000000ff) ^
rk[2];
STORE32H(s2, pt+8);
s3 =
(Td4[LTC_BYTE(t3, 3)] & 0xff000000) ^
(Td4[LTC_BYTE(t2, 2)] & 0x00ff0000) ^
(Td4[LTC_BYTE(t1, 1)] & 0x0000ff00) ^
(Td4[LTC_BYTE(t0, 0)] & 0x000000ff) ^
rk[3];
STORE32H(s3, pt+12);
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int ECB_DEC(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
{
int err = s_rijndael_ecb_decrypt(ct, pt, skey);
burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2);
return err;
}
#endif
/**
Performs a self-test of the AES block cipher
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int ECB_TEST(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
int err;
static const struct {
int keylen;
unsigned char key[32], pt[16], ct[16];
} tests[] = {
{ 16,
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
{ 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30,
0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a }
}, {
24,
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 },
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
{ 0xdd, 0xa9, 0x7c, 0xa4, 0x86, 0x4c, 0xdf, 0xe0,
0x6e, 0xaf, 0x70, 0xa0, 0xec, 0x0d, 0x71, 0x91 }
}, {
32,
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f },
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
{ 0x8e, 0xa2, 0xb7, 0xca, 0x51, 0x67, 0x45, 0xbf,
0xea, 0xfc, 0x49, 0x90, 0x4b, 0x49, 0x60, 0x89 }
}
};
symmetric_key key;
unsigned char tmp[2][16];
int i, y;
for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
zeromem(&key, sizeof(key));
if ((err = rijndael_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
return err;
}
rijndael_ecb_encrypt(tests[i].pt, tmp[0], &key);
rijndael_ecb_decrypt(tmp[0], tmp[1], &key);
if (compare_testvector(tmp[0], 16, tests[i].ct, 16, "AES Encrypt", i) ||
compare_testvector(tmp[1], 16, tests[i].pt, 16, "AES Decrypt", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
for (y = 0; y < 16; y++) tmp[0][y] = 0;
for (y = 0; y < 1000; y++) rijndael_ecb_encrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 1000; y++) rijndael_ecb_decrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
}
return CRYPT_OK;
#endif
}
#endif /* ENCRYPT_ONLY */
/** Terminate the context
@param skey The scheduled key
*/
void ECB_DONE(symmetric_key *skey)
{
LTC_UNUSED_PARAM(skey);
}
/**
Gets suitable key size
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
@return CRYPT_OK if the input key size is acceptable.
*/
int ECB_KS(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize < 16) {
return CRYPT_INVALID_KEYSIZE;
}
if (*keysize < 24) {
*keysize = 16;
return CRYPT_OK;
}
if (*keysize < 32) {
*keysize = 24;
return CRYPT_OK;
}
*keysize = 32;
return CRYPT_OK;
}
#undef SETUP
#undef ECB_ENC
#undef ECB_DEC
#undef ECB_DONE
#undef ECB_TEST
#undef ECB_KS
#endif

View File

@@ -0,0 +1,254 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* Auto-detection of AES implementation by Steffen Jaeckel */
/**
@file aes_desc.c
Run-time detection of correct AES implementation
*/
#include "tomcrypt_private.h"
#if defined(LTC_RIJNDAEL)
#ifndef ENCRYPT_ONLY
#define AES_SETUP aes_setup
#define AES_ENC aes_ecb_encrypt
#define AES_DEC aes_ecb_decrypt
#define AES_DONE aes_done
#define AES_TEST aes_test
#define AES_KS aes_keysize
const struct ltc_cipher_descriptor aes_desc =
{
"aes",
6,
16, 32, 16, 10,
AES_SETUP, AES_ENC, AES_DEC, AES_TEST, AES_DONE, AES_KS,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
#else
#define AES_SETUP aes_enc_setup
#define AES_ENC aes_enc_ecb_encrypt
#define AES_DONE aes_enc_done
#define AES_TEST aes_enc_test
#define AES_KS aes_enc_keysize
const struct ltc_cipher_descriptor aes_enc_desc =
{
"aes",
6,
16, 32, 16, 10,
AES_SETUP, AES_ENC, NULL, NULL, AES_DONE, AES_KS,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
#endif
/* Code partially borrowed from https://software.intel.com/content/www/us/en/develop/articles/intel-sha-extensions.html */
#if defined(LTC_AES_NI)
static LTC_INLINE int s_aesni_is_supported(void)
{
static int initialized = 0, is_supported = 0;
if (initialized == 0) {
int a, b, c, d;
/* Look for CPUID.1.0.ECX[19] (SSE4.1) and CPUID.1.0.ECX[25] (AES-NI)
* EAX = 1, ECX = 0
*/
a = 1;
c = 0;
__asm__ volatile ("cpuid"
:"=a"(a), "=b"(b), "=c"(c), "=d"(d)
:"a"(a), "c"(c)
);
is_supported = ((c >> 19) & 1) && ((c >> 25) & 1);
initialized = 1;
}
return is_supported;
}
#ifndef ENCRYPT_ONLY
int aesni_is_supported(void)
{
return s_aesni_is_supported();
}
#endif
#endif
/**
Initialize the AES (Rijndael) block cipher
@param key The symmetric key you wish to pass
@param keylen The key length in bytes
@param num_rounds The number of rounds desired (0 for default)
@param skey The key in as scheduled by this function.
@return CRYPT_OK if successful
*/
int AES_SETUP(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
#ifdef LTC_AES_NI
if (s_aesni_is_supported()) {
return aesni_setup(key, keylen, num_rounds, skey);
}
#endif
/* Last resort, software AES */
return rijndael_setup(key, keylen, num_rounds, skey);
}
/**
Encrypts a block of text with AES
@param pt The input plaintext (16 bytes)
@param ct The output ciphertext (16 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
int AES_ENC(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
{
#ifdef LTC_AES_NI
if (s_aesni_is_supported()) {
return aesni_ecb_encrypt(pt, ct, skey);
}
#endif
return rijndael_ecb_encrypt(pt, ct, skey);
}
#ifndef ENCRYPT_ONLY
/**
Decrypts a block of text with AES
@param ct The input ciphertext (16 bytes)
@param pt The output plaintext (16 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
int AES_DEC(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
{
#ifdef LTC_AES_NI
if (s_aesni_is_supported()) {
return aesni_ecb_decrypt(ct, pt, skey);
}
#endif
return rijndael_ecb_decrypt(ct, pt, skey);
}
#endif /* ENCRYPT_ONLY */
/**
Performs a self-test of the AES block cipher
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int AES_TEST(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
int err;
static const struct {
int keylen;
unsigned char key[32], pt[16], ct[16];
} tests[] = {
{ 16,
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
{ 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30,
0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a }
}, {
24,
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 },
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
{ 0xdd, 0xa9, 0x7c, 0xa4, 0x86, 0x4c, 0xdf, 0xe0,
0x6e, 0xaf, 0x70, 0xa0, 0xec, 0x0d, 0x71, 0x91 }
}, {
32,
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f },
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
{ 0x8e, 0xa2, 0xb7, 0xca, 0x51, 0x67, 0x45, 0xbf,
0xea, 0xfc, 0x49, 0x90, 0x4b, 0x49, 0x60, 0x89 }
}
};
symmetric_key key;
unsigned char tmp[2][16];
int i;
#ifndef ENCRYPT_ONLY
int y;
#endif
for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
zeromem(&key, sizeof(key));
if ((err = AES_SETUP(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
return err;
}
AES_ENC(tests[i].pt, tmp[0], &key);
if (compare_testvector(tmp[0], 16, tests[i].ct, 16, "AES Encrypt", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
#ifndef ENCRYPT_ONLY
AES_DEC(tmp[0], tmp[1], &key);
if (compare_testvector(tmp[1], 16, tests[i].pt, 16, "AES Decrypt", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
for (y = 0; y < 16; y++) tmp[0][y] = 0;
for (y = 0; y < 1000; y++) AES_ENC(tmp[0], tmp[0], &key);
for (y = 0; y < 1000; y++) AES_DEC(tmp[0], tmp[0], &key);
for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
#endif
}
return CRYPT_OK;
#endif
}
/** Terminate the context
@param skey The scheduled key
*/
void AES_DONE(symmetric_key *skey)
{
LTC_UNUSED_PARAM(skey);
}
/**
Gets suitable key size
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
@return CRYPT_OK if the input key size is acceptable.
*/
int AES_KS(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize < 16) {
return CRYPT_INVALID_KEYSIZE;
}
if (*keysize < 24) {
*keysize = 16;
return CRYPT_OK;
}
if (*keysize < 32) {
*keysize = 24;
return CRYPT_OK;
}
*keysize = 32;
return CRYPT_OK;
}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,374 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* AES-NI implementation by Steffen Jaeckel */
/**
@file aesni.c
Implementation of AES via the AES-NI instruction on x86_64
*/
#include "tomcrypt_private.h"
#if defined(LTC_AES_NI)
const struct ltc_cipher_descriptor aesni_desc =
{
"aes",
6,
16, 32, 16, 10,
aesni_setup, aesni_ecb_encrypt, aesni_ecb_decrypt, aesni_test, aesni_done, aesni_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
#include <emmintrin.h>
#include <smmintrin.h>
#include <wmmintrin.h>
#define setup_mix(t, c) _mm_extract_epi32(_mm_aeskeygenassist_si128(t, 0), c)
#define temp_load(k) _mm_loadu_si128((__m128i*)(k))
#define temp_update(t, k) _mm_insert_epi32(t, k, 3)
#define temp_invert(k) _mm_aesimc_si128(*((__m128i*)(k)))
static const ulong32 rcon[] = {
0x01UL, 0x02UL, 0x04UL, 0x08UL, 0x10UL, 0x20UL, 0x40UL, 0x80UL, 0x1BUL, 0x36UL
};
/**
Initialize the AES (Rijndael) block cipher
@param key The symmetric key you wish to pass
@param keylen The key length in bytes
@param num_rounds The number of rounds desired (0 for default)
@param skey The key in as scheduled by this function.
@return CRYPT_OK if successful
*/
LTC_ATTRIBUTE((__target__("aes,sse4.1")))
int aesni_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
int i;
__m128i temp;
ulong32 *rk, *K;
ulong32 *rrk;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
if (keylen != 16 && keylen != 24 && keylen != 32) {
return CRYPT_INVALID_KEYSIZE;
}
if (num_rounds != 0 && num_rounds != (keylen / 4 + 6)) {
return CRYPT_INVALID_ROUNDS;
}
skey->rijndael.Nr = keylen / 4 + 6;
K = LTC_ALIGN_BUF(skey->rijndael.K, 16);
skey->rijndael.eK = K;
K += 60;
skey->rijndael.dK = K;
/* setup the forward key */
i = 0;
rk = skey->rijndael.eK;
LOAD32L(rk[0], key);
LOAD32L(rk[1], key + 4);
LOAD32L(rk[2], key + 8);
LOAD32L(rk[3], key + 12);
if (keylen == 16) {
temp = temp_load(key);
for (;;) {
rk[4] = rk[0] ^ setup_mix(temp, 3) ^ rcon[i];
rk[5] = rk[1] ^ rk[4];
rk[6] = rk[2] ^ rk[5];
rk[7] = rk[3] ^ rk[6];
if (++i == 10) {
break;
}
temp = temp_update(temp, rk[7]);
rk += 4;
}
} else if (keylen == 24) {
LOAD32L(rk[4], key + 16);
LOAD32L(rk[5], key + 20);
temp = temp_load(key + 8);
for (;;) {
rk[6] = rk[0] ^ setup_mix(temp, 3) ^ rcon[i];
rk[7] = rk[1] ^ rk[6];
rk[8] = rk[2] ^ rk[7];
rk[9] = rk[3] ^ rk[8];
if (++i == 8) {
break;
}
rk[10] = rk[4] ^ rk[9];
rk[11] = rk[5] ^ rk[10];
temp = temp_update(temp, rk[11]);
rk += 6;
}
} else if (keylen == 32) {
LOAD32L(rk[4], key + 16);
LOAD32L(rk[5], key + 20);
LOAD32L(rk[6], key + 24);
LOAD32L(rk[7], key + 28);
temp = temp_load(key + 16);
for (;;) {
rk[8] = rk[0] ^ setup_mix(temp, 3) ^ rcon[i];
rk[9] = rk[1] ^ rk[8];
rk[10] = rk[2] ^ rk[9];
rk[11] = rk[3] ^ rk[10];
if (++i == 7) {
break;
}
temp = temp_update(temp, rk[11]);
rk[12] = rk[4] ^ setup_mix(temp, 2);
rk[13] = rk[5] ^ rk[12];
rk[14] = rk[6] ^ rk[13];
rk[15] = rk[7] ^ rk[14];
temp = temp_update(temp, rk[15]);
rk += 8;
}
} else {
/* this can't happen */
/* coverity[dead_error_line] */
return CRYPT_ERROR;
}
/* setup the inverse key now */
rk = skey->rijndael.dK;
rrk = skey->rijndael.eK + skey->rijndael.Nr * 4;
/* apply the inverse MixColumn transform to all round keys but the first and the last: */
/* copy first */
*rk++ = *rrk++;
*rk++ = *rrk++;
*rk++ = *rrk++;
*rk = *rrk;
rk -= 3;
rrk -= 3;
for (i = 1; i < skey->rijndael.Nr; i++) {
rrk -= 4;
rk += 4;
temp = temp_invert(rk);
*((__m128i*) rk) = temp_invert(rrk);
}
/* copy last */
rrk -= 4;
rk += 4;
*rk++ = *rrk++;
*rk++ = *rrk++;
*rk++ = *rrk++;
*rk = *rrk;
return CRYPT_OK;
}
/**
Encrypts a block of text with AES
@param pt The input plaintext (16 bytes)
@param ct The output ciphertext (16 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
LTC_ATTRIBUTE((__target__("aes")))
#ifdef LTC_CLEAN_STACK
static int s_aesni_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#else
int aesni_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#endif
{
int Nr, r;
const __m128i *skeys;
__m128i block;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
Nr = skey->rijndael.Nr;
if (Nr < 2 || Nr > 16) return CRYPT_INVALID_ROUNDS;
skeys = (__m128i*) skey->rijndael.eK;
block = _mm_loadu_si128((const __m128i*) (pt));
block = _mm_xor_si128(block, skeys[0]);
for (r = 1; r < Nr - 1; r += 2) {
block = _mm_aesenc_si128(block, skeys[r]);
block = _mm_aesenc_si128(block, skeys[r + 1]);
}
block = _mm_aesenc_si128(block, skeys[Nr - 1]);
block = _mm_aesenclast_si128(block, skeys[Nr]);
_mm_storeu_si128((__m128i*) ct, block);
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int aesni_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
{
int err = s_aesni_ecb_encrypt(pt, ct, skey);
burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2);
return err;
}
#endif
/**
Decrypts a block of text with AES
@param ct The input ciphertext (16 bytes)
@param pt The output plaintext (16 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
LTC_ATTRIBUTE((__target__("aes")))
#ifdef LTC_CLEAN_STACK
static int s_aesni_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#else
int aesni_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#endif
{
int Nr, r;
const __m128i *skeys;
__m128i block;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
Nr = skey->rijndael.Nr;
if (Nr < 2 || Nr > 16) return CRYPT_INVALID_ROUNDS;
skeys = (__m128i*) skey->rijndael.dK;
block = _mm_loadu_si128((const __m128i*) (ct));
block = _mm_xor_si128(block, skeys[0]);
for (r = 1; r < Nr - 1; r += 2) {
block = _mm_aesdec_si128(block, skeys[r]);
block = _mm_aesdec_si128(block, skeys[r + 1]);
}
block = _mm_aesdec_si128(block, skeys[Nr - 1]);
block = _mm_aesdeclast_si128(block, skeys[Nr]);
_mm_storeu_si128((__m128i*) pt, block);
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int aesni_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
{
int err = s_aesni_ecb_decrypt(ct, pt, skey);
burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2);
return err;
}
#endif
/**
Performs a self-test of the AES block cipher
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int aesni_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
int err;
static const struct {
int keylen;
unsigned char key[32], pt[16], ct[16];
} tests[] = {
{ 16,
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
{ 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30,
0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a }
}, {
24,
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 },
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
{ 0xdd, 0xa9, 0x7c, 0xa4, 0x86, 0x4c, 0xdf, 0xe0,
0x6e, 0xaf, 0x70, 0xa0, 0xec, 0x0d, 0x71, 0x91 }
}, {
32,
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f },
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
{ 0x8e, 0xa2, 0xb7, 0xca, 0x51, 0x67, 0x45, 0xbf,
0xea, 0xfc, 0x49, 0x90, 0x4b, 0x49, 0x60, 0x89 }
}
};
symmetric_key key;
unsigned char tmp[2][16];
int i, y;
for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
zeromem(&key, sizeof(key));
if ((err = aesni_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
return err;
}
aesni_ecb_encrypt(tests[i].pt, tmp[0], &key);
aesni_ecb_decrypt(tmp[0], tmp[1], &key);
if (compare_testvector(tmp[0], 16, tests[i].ct, 16, "AES-NI Encrypt", i) ||
compare_testvector(tmp[1], 16, tests[i].pt, 16, "AES-NI Decrypt", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
for (y = 0; y < 16; y++) tmp[0][y] = 0;
for (y = 0; y < 1000; y++) aesni_ecb_encrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 1000; y++) aesni_ecb_decrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
}
return CRYPT_OK;
#endif
}
/** Terminate the context
@param skey The scheduled key
*/
void aesni_done(symmetric_key *skey)
{
LTC_UNUSED_PARAM(skey);
}
/**
Gets suitable key size
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
@return CRYPT_OK if the input key size is acceptable.
*/
int aesni_keysize(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize < 16) {
return CRYPT_INVALID_KEYSIZE;
}
if (*keysize < 24) {
*keysize = 16;
return CRYPT_OK;
}
if (*keysize < 32) {
*keysize = 24;
return CRYPT_OK;
}
*keysize = 32;
return CRYPT_OK;
}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,660 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file blowfish.c
Implementation of the Blowfish block cipher, Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_BLOWFISH
const struct ltc_cipher_descriptor blowfish_desc =
{
"blowfish",
0,
8, 72, 8, 16,
&blowfish_setup,
&blowfish_ecb_encrypt,
&blowfish_ecb_decrypt,
&blowfish_test,
&blowfish_done,
&blowfish_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
static const ulong32 ORIG_P[16 + 2] = {
0x243F6A88UL, 0x85A308D3UL, 0x13198A2EUL, 0x03707344UL,
0xA4093822UL, 0x299F31D0UL, 0x082EFA98UL, 0xEC4E6C89UL,
0x452821E6UL, 0x38D01377UL, 0xBE5466CFUL, 0x34E90C6CUL,
0xC0AC29B7UL, 0xC97C50DDUL, 0x3F84D5B5UL, 0xB5470917UL,
0x9216D5D9UL, 0x8979FB1BUL
};
static const ulong32 ORIG_S[4][256] = {
{ 0xD1310BA6UL, 0x98DFB5ACUL, 0x2FFD72DBUL, 0xD01ADFB7UL,
0xB8E1AFEDUL, 0x6A267E96UL, 0xBA7C9045UL, 0xF12C7F99UL,
0x24A19947UL, 0xB3916CF7UL, 0x0801F2E2UL, 0x858EFC16UL,
0x636920D8UL, 0x71574E69UL, 0xA458FEA3UL, 0xF4933D7EUL,
0x0D95748FUL, 0x728EB658UL, 0x718BCD58UL, 0x82154AEEUL,
0x7B54A41DUL, 0xC25A59B5UL, 0x9C30D539UL, 0x2AF26013UL,
0xC5D1B023UL, 0x286085F0UL, 0xCA417918UL, 0xB8DB38EFUL,
0x8E79DCB0UL, 0x603A180EUL, 0x6C9E0E8BUL, 0xB01E8A3EUL,
0xD71577C1UL, 0xBD314B27UL, 0x78AF2FDAUL, 0x55605C60UL,
0xE65525F3UL, 0xAA55AB94UL, 0x57489862UL, 0x63E81440UL,
0x55CA396AUL, 0x2AAB10B6UL, 0xB4CC5C34UL, 0x1141E8CEUL,
0xA15486AFUL, 0x7C72E993UL, 0xB3EE1411UL, 0x636FBC2AUL,
0x2BA9C55DUL, 0x741831F6UL, 0xCE5C3E16UL, 0x9B87931EUL,
0xAFD6BA33UL, 0x6C24CF5CUL, 0x7A325381UL, 0x28958677UL,
0x3B8F4898UL, 0x6B4BB9AFUL, 0xC4BFE81BUL, 0x66282193UL,
0x61D809CCUL, 0xFB21A991UL, 0x487CAC60UL, 0x5DEC8032UL,
0xEF845D5DUL, 0xE98575B1UL, 0xDC262302UL, 0xEB651B88UL,
0x23893E81UL, 0xD396ACC5UL, 0x0F6D6FF3UL, 0x83F44239UL,
0x2E0B4482UL, 0xA4842004UL, 0x69C8F04AUL, 0x9E1F9B5EUL,
0x21C66842UL, 0xF6E96C9AUL, 0x670C9C61UL, 0xABD388F0UL,
0x6A51A0D2UL, 0xD8542F68UL, 0x960FA728UL, 0xAB5133A3UL,
0x6EEF0B6CUL, 0x137A3BE4UL, 0xBA3BF050UL, 0x7EFB2A98UL,
0xA1F1651DUL, 0x39AF0176UL, 0x66CA593EUL, 0x82430E88UL,
0x8CEE8619UL, 0x456F9FB4UL, 0x7D84A5C3UL, 0x3B8B5EBEUL,
0xE06F75D8UL, 0x85C12073UL, 0x401A449FUL, 0x56C16AA6UL,
0x4ED3AA62UL, 0x363F7706UL, 0x1BFEDF72UL, 0x429B023DUL,
0x37D0D724UL, 0xD00A1248UL, 0xDB0FEAD3UL, 0x49F1C09BUL,
0x075372C9UL, 0x80991B7BUL, 0x25D479D8UL, 0xF6E8DEF7UL,
0xE3FE501AUL, 0xB6794C3BUL, 0x976CE0BDUL, 0x04C006BAUL,
0xC1A94FB6UL, 0x409F60C4UL, 0x5E5C9EC2UL, 0x196A2463UL,
0x68FB6FAFUL, 0x3E6C53B5UL, 0x1339B2EBUL, 0x3B52EC6FUL,
0x6DFC511FUL, 0x9B30952CUL, 0xCC814544UL, 0xAF5EBD09UL,
0xBEE3D004UL, 0xDE334AFDUL, 0x660F2807UL, 0x192E4BB3UL,
0xC0CBA857UL, 0x45C8740FUL, 0xD20B5F39UL, 0xB9D3FBDBUL,
0x5579C0BDUL, 0x1A60320AUL, 0xD6A100C6UL, 0x402C7279UL,
0x679F25FEUL, 0xFB1FA3CCUL, 0x8EA5E9F8UL, 0xDB3222F8UL,
0x3C7516DFUL, 0xFD616B15UL, 0x2F501EC8UL, 0xAD0552ABUL,
0x323DB5FAUL, 0xFD238760UL, 0x53317B48UL, 0x3E00DF82UL,
0x9E5C57BBUL, 0xCA6F8CA0UL, 0x1A87562EUL, 0xDF1769DBUL,
0xD542A8F6UL, 0x287EFFC3UL, 0xAC6732C6UL, 0x8C4F5573UL,
0x695B27B0UL, 0xBBCA58C8UL, 0xE1FFA35DUL, 0xB8F011A0UL,
0x10FA3D98UL, 0xFD2183B8UL, 0x4AFCB56CUL, 0x2DD1D35BUL,
0x9A53E479UL, 0xB6F84565UL, 0xD28E49BCUL, 0x4BFB9790UL,
0xE1DDF2DAUL, 0xA4CB7E33UL, 0x62FB1341UL, 0xCEE4C6E8UL,
0xEF20CADAUL, 0x36774C01UL, 0xD07E9EFEUL, 0x2BF11FB4UL,
0x95DBDA4DUL, 0xAE909198UL, 0xEAAD8E71UL, 0x6B93D5A0UL,
0xD08ED1D0UL, 0xAFC725E0UL, 0x8E3C5B2FUL, 0x8E7594B7UL,
0x8FF6E2FBUL, 0xF2122B64UL, 0x8888B812UL, 0x900DF01CUL,
0x4FAD5EA0UL, 0x688FC31CUL, 0xD1CFF191UL, 0xB3A8C1ADUL,
0x2F2F2218UL, 0xBE0E1777UL, 0xEA752DFEUL, 0x8B021FA1UL,
0xE5A0CC0FUL, 0xB56F74E8UL, 0x18ACF3D6UL, 0xCE89E299UL,
0xB4A84FE0UL, 0xFD13E0B7UL, 0x7CC43B81UL, 0xD2ADA8D9UL,
0x165FA266UL, 0x80957705UL, 0x93CC7314UL, 0x211A1477UL,
0xE6AD2065UL, 0x77B5FA86UL, 0xC75442F5UL, 0xFB9D35CFUL,
0xEBCDAF0CUL, 0x7B3E89A0UL, 0xD6411BD3UL, 0xAE1E7E49UL,
0x00250E2DUL, 0x2071B35EUL, 0x226800BBUL, 0x57B8E0AFUL,
0x2464369BUL, 0xF009B91EUL, 0x5563911DUL, 0x59DFA6AAUL,
0x78C14389UL, 0xD95A537FUL, 0x207D5BA2UL, 0x02E5B9C5UL,
0x83260376UL, 0x6295CFA9UL, 0x11C81968UL, 0x4E734A41UL,
0xB3472DCAUL, 0x7B14A94AUL, 0x1B510052UL, 0x9A532915UL,
0xD60F573FUL, 0xBC9BC6E4UL, 0x2B60A476UL, 0x81E67400UL,
0x08BA6FB5UL, 0x571BE91FUL, 0xF296EC6BUL, 0x2A0DD915UL,
0xB6636521UL, 0xE7B9F9B6UL, 0xFF34052EUL, 0xC5855664UL,
0x53B02D5DUL, 0xA99F8FA1UL, 0x08BA4799UL, 0x6E85076AUL },
{ 0x4B7A70E9UL, 0xB5B32944UL, 0xDB75092EUL, 0xC4192623UL,
0xAD6EA6B0UL, 0x49A7DF7DUL, 0x9CEE60B8UL, 0x8FEDB266UL,
0xECAA8C71UL, 0x699A17FFUL, 0x5664526CUL, 0xC2B19EE1UL,
0x193602A5UL, 0x75094C29UL, 0xA0591340UL, 0xE4183A3EUL,
0x3F54989AUL, 0x5B429D65UL, 0x6B8FE4D6UL, 0x99F73FD6UL,
0xA1D29C07UL, 0xEFE830F5UL, 0x4D2D38E6UL, 0xF0255DC1UL,
0x4CDD2086UL, 0x8470EB26UL, 0x6382E9C6UL, 0x021ECC5EUL,
0x09686B3FUL, 0x3EBAEFC9UL, 0x3C971814UL, 0x6B6A70A1UL,
0x687F3584UL, 0x52A0E286UL, 0xB79C5305UL, 0xAA500737UL,
0x3E07841CUL, 0x7FDEAE5CUL, 0x8E7D44ECUL, 0x5716F2B8UL,
0xB03ADA37UL, 0xF0500C0DUL, 0xF01C1F04UL, 0x0200B3FFUL,
0xAE0CF51AUL, 0x3CB574B2UL, 0x25837A58UL, 0xDC0921BDUL,
0xD19113F9UL, 0x7CA92FF6UL, 0x94324773UL, 0x22F54701UL,
0x3AE5E581UL, 0x37C2DADCUL, 0xC8B57634UL, 0x9AF3DDA7UL,
0xA9446146UL, 0x0FD0030EUL, 0xECC8C73EUL, 0xA4751E41UL,
0xE238CD99UL, 0x3BEA0E2FUL, 0x3280BBA1UL, 0x183EB331UL,
0x4E548B38UL, 0x4F6DB908UL, 0x6F420D03UL, 0xF60A04BFUL,
0x2CB81290UL, 0x24977C79UL, 0x5679B072UL, 0xBCAF89AFUL,
0xDE9A771FUL, 0xD9930810UL, 0xB38BAE12UL, 0xDCCF3F2EUL,
0x5512721FUL, 0x2E6B7124UL, 0x501ADDE6UL, 0x9F84CD87UL,
0x7A584718UL, 0x7408DA17UL, 0xBC9F9ABCUL, 0xE94B7D8CUL,
0xEC7AEC3AUL, 0xDB851DFAUL, 0x63094366UL, 0xC464C3D2UL,
0xEF1C1847UL, 0x3215D908UL, 0xDD433B37UL, 0x24C2BA16UL,
0x12A14D43UL, 0x2A65C451UL, 0x50940002UL, 0x133AE4DDUL,
0x71DFF89EUL, 0x10314E55UL, 0x81AC77D6UL, 0x5F11199BUL,
0x043556F1UL, 0xD7A3C76BUL, 0x3C11183BUL, 0x5924A509UL,
0xF28FE6EDUL, 0x97F1FBFAUL, 0x9EBABF2CUL, 0x1E153C6EUL,
0x86E34570UL, 0xEAE96FB1UL, 0x860E5E0AUL, 0x5A3E2AB3UL,
0x771FE71CUL, 0x4E3D06FAUL, 0x2965DCB9UL, 0x99E71D0FUL,
0x803E89D6UL, 0x5266C825UL, 0x2E4CC978UL, 0x9C10B36AUL,
0xC6150EBAUL, 0x94E2EA78UL, 0xA5FC3C53UL, 0x1E0A2DF4UL,
0xF2F74EA7UL, 0x361D2B3DUL, 0x1939260FUL, 0x19C27960UL,
0x5223A708UL, 0xF71312B6UL, 0xEBADFE6EUL, 0xEAC31F66UL,
0xE3BC4595UL, 0xA67BC883UL, 0xB17F37D1UL, 0x018CFF28UL,
0xC332DDEFUL, 0xBE6C5AA5UL, 0x65582185UL, 0x68AB9802UL,
0xEECEA50FUL, 0xDB2F953BUL, 0x2AEF7DADUL, 0x5B6E2F84UL,
0x1521B628UL, 0x29076170UL, 0xECDD4775UL, 0x619F1510UL,
0x13CCA830UL, 0xEB61BD96UL, 0x0334FE1EUL, 0xAA0363CFUL,
0xB5735C90UL, 0x4C70A239UL, 0xD59E9E0BUL, 0xCBAADE14UL,
0xEECC86BCUL, 0x60622CA7UL, 0x9CAB5CABUL, 0xB2F3846EUL,
0x648B1EAFUL, 0x19BDF0CAUL, 0xA02369B9UL, 0x655ABB50UL,
0x40685A32UL, 0x3C2AB4B3UL, 0x319EE9D5UL, 0xC021B8F7UL,
0x9B540B19UL, 0x875FA099UL, 0x95F7997EUL, 0x623D7DA8UL,
0xF837889AUL, 0x97E32D77UL, 0x11ED935FUL, 0x16681281UL,
0x0E358829UL, 0xC7E61FD6UL, 0x96DEDFA1UL, 0x7858BA99UL,
0x57F584A5UL, 0x1B227263UL, 0x9B83C3FFUL, 0x1AC24696UL,
0xCDB30AEBUL, 0x532E3054UL, 0x8FD948E4UL, 0x6DBC3128UL,
0x58EBF2EFUL, 0x34C6FFEAUL, 0xFE28ED61UL, 0xEE7C3C73UL,
0x5D4A14D9UL, 0xE864B7E3UL, 0x42105D14UL, 0x203E13E0UL,
0x45EEE2B6UL, 0xA3AAABEAUL, 0xDB6C4F15UL, 0xFACB4FD0UL,
0xC742F442UL, 0xEF6ABBB5UL, 0x654F3B1DUL, 0x41CD2105UL,
0xD81E799EUL, 0x86854DC7UL, 0xE44B476AUL, 0x3D816250UL,
0xCF62A1F2UL, 0x5B8D2646UL, 0xFC8883A0UL, 0xC1C7B6A3UL,
0x7F1524C3UL, 0x69CB7492UL, 0x47848A0BUL, 0x5692B285UL,
0x095BBF00UL, 0xAD19489DUL, 0x1462B174UL, 0x23820E00UL,
0x58428D2AUL, 0x0C55F5EAUL, 0x1DADF43EUL, 0x233F7061UL,
0x3372F092UL, 0x8D937E41UL, 0xD65FECF1UL, 0x6C223BDBUL,
0x7CDE3759UL, 0xCBEE7460UL, 0x4085F2A7UL, 0xCE77326EUL,
0xA6078084UL, 0x19F8509EUL, 0xE8EFD855UL, 0x61D99735UL,
0xA969A7AAUL, 0xC50C06C2UL, 0x5A04ABFCUL, 0x800BCADCUL,
0x9E447A2EUL, 0xC3453484UL, 0xFDD56705UL, 0x0E1E9EC9UL,
0xDB73DBD3UL, 0x105588CDUL, 0x675FDA79UL, 0xE3674340UL,
0xC5C43465UL, 0x713E38D8UL, 0x3D28F89EUL, 0xF16DFF20UL,
0x153E21E7UL, 0x8FB03D4AUL, 0xE6E39F2BUL, 0xDB83ADF7UL },
{ 0xE93D5A68UL, 0x948140F7UL, 0xF64C261CUL, 0x94692934UL,
0x411520F7UL, 0x7602D4F7UL, 0xBCF46B2EUL, 0xD4A20068UL,
0xD4082471UL, 0x3320F46AUL, 0x43B7D4B7UL, 0x500061AFUL,
0x1E39F62EUL, 0x97244546UL, 0x14214F74UL, 0xBF8B8840UL,
0x4D95FC1DUL, 0x96B591AFUL, 0x70F4DDD3UL, 0x66A02F45UL,
0xBFBC09ECUL, 0x03BD9785UL, 0x7FAC6DD0UL, 0x31CB8504UL,
0x96EB27B3UL, 0x55FD3941UL, 0xDA2547E6UL, 0xABCA0A9AUL,
0x28507825UL, 0x530429F4UL, 0x0A2C86DAUL, 0xE9B66DFBUL,
0x68DC1462UL, 0xD7486900UL, 0x680EC0A4UL, 0x27A18DEEUL,
0x4F3FFEA2UL, 0xE887AD8CUL, 0xB58CE006UL, 0x7AF4D6B6UL,
0xAACE1E7CUL, 0xD3375FECUL, 0xCE78A399UL, 0x406B2A42UL,
0x20FE9E35UL, 0xD9F385B9UL, 0xEE39D7ABUL, 0x3B124E8BUL,
0x1DC9FAF7UL, 0x4B6D1856UL, 0x26A36631UL, 0xEAE397B2UL,
0x3A6EFA74UL, 0xDD5B4332UL, 0x6841E7F7UL, 0xCA7820FBUL,
0xFB0AF54EUL, 0xD8FEB397UL, 0x454056ACUL, 0xBA489527UL,
0x55533A3AUL, 0x20838D87UL, 0xFE6BA9B7UL, 0xD096954BUL,
0x55A867BCUL, 0xA1159A58UL, 0xCCA92963UL, 0x99E1DB33UL,
0xA62A4A56UL, 0x3F3125F9UL, 0x5EF47E1CUL, 0x9029317CUL,
0xFDF8E802UL, 0x04272F70UL, 0x80BB155CUL, 0x05282CE3UL,
0x95C11548UL, 0xE4C66D22UL, 0x48C1133FUL, 0xC70F86DCUL,
0x07F9C9EEUL, 0x41041F0FUL, 0x404779A4UL, 0x5D886E17UL,
0x325F51EBUL, 0xD59BC0D1UL, 0xF2BCC18FUL, 0x41113564UL,
0x257B7834UL, 0x602A9C60UL, 0xDFF8E8A3UL, 0x1F636C1BUL,
0x0E12B4C2UL, 0x02E1329EUL, 0xAF664FD1UL, 0xCAD18115UL,
0x6B2395E0UL, 0x333E92E1UL, 0x3B240B62UL, 0xEEBEB922UL,
0x85B2A20EUL, 0xE6BA0D99UL, 0xDE720C8CUL, 0x2DA2F728UL,
0xD0127845UL, 0x95B794FDUL, 0x647D0862UL, 0xE7CCF5F0UL,
0x5449A36FUL, 0x877D48FAUL, 0xC39DFD27UL, 0xF33E8D1EUL,
0x0A476341UL, 0x992EFF74UL, 0x3A6F6EABUL, 0xF4F8FD37UL,
0xA812DC60UL, 0xA1EBDDF8UL, 0x991BE14CUL, 0xDB6E6B0DUL,
0xC67B5510UL, 0x6D672C37UL, 0x2765D43BUL, 0xDCD0E804UL,
0xF1290DC7UL, 0xCC00FFA3UL, 0xB5390F92UL, 0x690FED0BUL,
0x667B9FFBUL, 0xCEDB7D9CUL, 0xA091CF0BUL, 0xD9155EA3UL,
0xBB132F88UL, 0x515BAD24UL, 0x7B9479BFUL, 0x763BD6EBUL,
0x37392EB3UL, 0xCC115979UL, 0x8026E297UL, 0xF42E312DUL,
0x6842ADA7UL, 0xC66A2B3BUL, 0x12754CCCUL, 0x782EF11CUL,
0x6A124237UL, 0xB79251E7UL, 0x06A1BBE6UL, 0x4BFB6350UL,
0x1A6B1018UL, 0x11CAEDFAUL, 0x3D25BDD8UL, 0xE2E1C3C9UL,
0x44421659UL, 0x0A121386UL, 0xD90CEC6EUL, 0xD5ABEA2AUL,
0x64AF674EUL, 0xDA86A85FUL, 0xBEBFE988UL, 0x64E4C3FEUL,
0x9DBC8057UL, 0xF0F7C086UL, 0x60787BF8UL, 0x6003604DUL,
0xD1FD8346UL, 0xF6381FB0UL, 0x7745AE04UL, 0xD736FCCCUL,
0x83426B33UL, 0xF01EAB71UL, 0xB0804187UL, 0x3C005E5FUL,
0x77A057BEUL, 0xBDE8AE24UL, 0x55464299UL, 0xBF582E61UL,
0x4E58F48FUL, 0xF2DDFDA2UL, 0xF474EF38UL, 0x8789BDC2UL,
0x5366F9C3UL, 0xC8B38E74UL, 0xB475F255UL, 0x46FCD9B9UL,
0x7AEB2661UL, 0x8B1DDF84UL, 0x846A0E79UL, 0x915F95E2UL,
0x466E598EUL, 0x20B45770UL, 0x8CD55591UL, 0xC902DE4CUL,
0xB90BACE1UL, 0xBB8205D0UL, 0x11A86248UL, 0x7574A99EUL,
0xB77F19B6UL, 0xE0A9DC09UL, 0x662D09A1UL, 0xC4324633UL,
0xE85A1F02UL, 0x09F0BE8CUL, 0x4A99A025UL, 0x1D6EFE10UL,
0x1AB93D1DUL, 0x0BA5A4DFUL, 0xA186F20FUL, 0x2868F169UL,
0xDCB7DA83UL, 0x573906FEUL, 0xA1E2CE9BUL, 0x4FCD7F52UL,
0x50115E01UL, 0xA70683FAUL, 0xA002B5C4UL, 0x0DE6D027UL,
0x9AF88C27UL, 0x773F8641UL, 0xC3604C06UL, 0x61A806B5UL,
0xF0177A28UL, 0xC0F586E0UL, 0x006058AAUL, 0x30DC7D62UL,
0x11E69ED7UL, 0x2338EA63UL, 0x53C2DD94UL, 0xC2C21634UL,
0xBBCBEE56UL, 0x90BCB6DEUL, 0xEBFC7DA1UL, 0xCE591D76UL,
0x6F05E409UL, 0x4B7C0188UL, 0x39720A3DUL, 0x7C927C24UL,
0x86E3725FUL, 0x724D9DB9UL, 0x1AC15BB4UL, 0xD39EB8FCUL,
0xED545578UL, 0x08FCA5B5UL, 0xD83D7CD3UL, 0x4DAD0FC4UL,
0x1E50EF5EUL, 0xB161E6F8UL, 0xA28514D9UL, 0x6C51133CUL,
0x6FD5C7E7UL, 0x56E14EC4UL, 0x362ABFCEUL, 0xDDC6C837UL,
0xD79A3234UL, 0x92638212UL, 0x670EFA8EUL, 0x406000E0UL },
{ 0x3A39CE37UL, 0xD3FAF5CFUL, 0xABC27737UL, 0x5AC52D1BUL,
0x5CB0679EUL, 0x4FA33742UL, 0xD3822740UL, 0x99BC9BBEUL,
0xD5118E9DUL, 0xBF0F7315UL, 0xD62D1C7EUL, 0xC700C47BUL,
0xB78C1B6BUL, 0x21A19045UL, 0xB26EB1BEUL, 0x6A366EB4UL,
0x5748AB2FUL, 0xBC946E79UL, 0xC6A376D2UL, 0x6549C2C8UL,
0x530FF8EEUL, 0x468DDE7DUL, 0xD5730A1DUL, 0x4CD04DC6UL,
0x2939BBDBUL, 0xA9BA4650UL, 0xAC9526E8UL, 0xBE5EE304UL,
0xA1FAD5F0UL, 0x6A2D519AUL, 0x63EF8CE2UL, 0x9A86EE22UL,
0xC089C2B8UL, 0x43242EF6UL, 0xA51E03AAUL, 0x9CF2D0A4UL,
0x83C061BAUL, 0x9BE96A4DUL, 0x8FE51550UL, 0xBA645BD6UL,
0x2826A2F9UL, 0xA73A3AE1UL, 0x4BA99586UL, 0xEF5562E9UL,
0xC72FEFD3UL, 0xF752F7DAUL, 0x3F046F69UL, 0x77FA0A59UL,
0x80E4A915UL, 0x87B08601UL, 0x9B09E6ADUL, 0x3B3EE593UL,
0xE990FD5AUL, 0x9E34D797UL, 0x2CF0B7D9UL, 0x022B8B51UL,
0x96D5AC3AUL, 0x017DA67DUL, 0xD1CF3ED6UL, 0x7C7D2D28UL,
0x1F9F25CFUL, 0xADF2B89BUL, 0x5AD6B472UL, 0x5A88F54CUL,
0xE029AC71UL, 0xE019A5E6UL, 0x47B0ACFDUL, 0xED93FA9BUL,
0xE8D3C48DUL, 0x283B57CCUL, 0xF8D56629UL, 0x79132E28UL,
0x785F0191UL, 0xED756055UL, 0xF7960E44UL, 0xE3D35E8CUL,
0x15056DD4UL, 0x88F46DBAUL, 0x03A16125UL, 0x0564F0BDUL,
0xC3EB9E15UL, 0x3C9057A2UL, 0x97271AECUL, 0xA93A072AUL,
0x1B3F6D9BUL, 0x1E6321F5UL, 0xF59C66FBUL, 0x26DCF319UL,
0x7533D928UL, 0xB155FDF5UL, 0x03563482UL, 0x8ABA3CBBUL,
0x28517711UL, 0xC20AD9F8UL, 0xABCC5167UL, 0xCCAD925FUL,
0x4DE81751UL, 0x3830DC8EUL, 0x379D5862UL, 0x9320F991UL,
0xEA7A90C2UL, 0xFB3E7BCEUL, 0x5121CE64UL, 0x774FBE32UL,
0xA8B6E37EUL, 0xC3293D46UL, 0x48DE5369UL, 0x6413E680UL,
0xA2AE0810UL, 0xDD6DB224UL, 0x69852DFDUL, 0x09072166UL,
0xB39A460AUL, 0x6445C0DDUL, 0x586CDECFUL, 0x1C20C8AEUL,
0x5BBEF7DDUL, 0x1B588D40UL, 0xCCD2017FUL, 0x6BB4E3BBUL,
0xDDA26A7EUL, 0x3A59FF45UL, 0x3E350A44UL, 0xBCB4CDD5UL,
0x72EACEA8UL, 0xFA6484BBUL, 0x8D6612AEUL, 0xBF3C6F47UL,
0xD29BE463UL, 0x542F5D9EUL, 0xAEC2771BUL, 0xF64E6370UL,
0x740E0D8DUL, 0xE75B1357UL, 0xF8721671UL, 0xAF537D5DUL,
0x4040CB08UL, 0x4EB4E2CCUL, 0x34D2466AUL, 0x0115AF84UL,
0xE1B00428UL, 0x95983A1DUL, 0x06B89FB4UL, 0xCE6EA048UL,
0x6F3F3B82UL, 0x3520AB82UL, 0x011A1D4BUL, 0x277227F8UL,
0x611560B1UL, 0xE7933FDCUL, 0xBB3A792BUL, 0x344525BDUL,
0xA08839E1UL, 0x51CE794BUL, 0x2F32C9B7UL, 0xA01FBAC9UL,
0xE01CC87EUL, 0xBCC7D1F6UL, 0xCF0111C3UL, 0xA1E8AAC7UL,
0x1A908749UL, 0xD44FBD9AUL, 0xD0DADECBUL, 0xD50ADA38UL,
0x0339C32AUL, 0xC6913667UL, 0x8DF9317CUL, 0xE0B12B4FUL,
0xF79E59B7UL, 0x43F5BB3AUL, 0xF2D519FFUL, 0x27D9459CUL,
0xBF97222CUL, 0x15E6FC2AUL, 0x0F91FC71UL, 0x9B941525UL,
0xFAE59361UL, 0xCEB69CEBUL, 0xC2A86459UL, 0x12BAA8D1UL,
0xB6C1075EUL, 0xE3056A0CUL, 0x10D25065UL, 0xCB03A442UL,
0xE0EC6E0EUL, 0x1698DB3BUL, 0x4C98A0BEUL, 0x3278E964UL,
0x9F1F9532UL, 0xE0D392DFUL, 0xD3A0342BUL, 0x8971F21EUL,
0x1B0A7441UL, 0x4BA3348CUL, 0xC5BE7120UL, 0xC37632D8UL,
0xDF359F8DUL, 0x9B992F2EUL, 0xE60B6F47UL, 0x0FE3F11DUL,
0xE54CDA54UL, 0x1EDAD891UL, 0xCE6279CFUL, 0xCD3E7E6FUL,
0x1618B166UL, 0xFD2C1D05UL, 0x848FD2C5UL, 0xF6FB2299UL,
0xF523F357UL, 0xA6327623UL, 0x93A83531UL, 0x56CCCD02UL,
0xACF08162UL, 0x5A75EBB5UL, 0x6E163697UL, 0x88D273CCUL,
0xDE966292UL, 0x81B949D0UL, 0x4C50901BUL, 0x71C65614UL,
0xE6C6C7BDUL, 0x327A140AUL, 0x45E1D006UL, 0xC3F27B9AUL,
0xC9AA53FDUL, 0x62A80F00UL, 0xBB25BFE2UL, 0x35BDD2F6UL,
0x71126905UL, 0xB2040222UL, 0xB6CBCF7CUL, 0xCD769C2BUL,
0x53113EC0UL, 0x1640E3D3UL, 0x38ABBD60UL, 0x2547ADF0UL,
0xBA38209CUL, 0xF746CE76UL, 0x77AFA1C5UL, 0x20756060UL,
0x85CBFE4EUL, 0x8AE88DD8UL, 0x7AAAF9B0UL, 0x4CF9AA7EUL,
0x1948C25CUL, 0x02FB8A8CUL, 0x01C36AE4UL, 0xD6EBE1F9UL,
0x90D4F869UL, 0xA65CDEA0UL, 0x3F09252DUL, 0xC208E69FUL,
0xB74E6132UL, 0xCE77E25BUL, 0x578FDFE3UL, 0x3AC372E6UL }
};
#ifndef __GNUC__
#define F(x) ((S1[LTC_BYTE(x,3)] + S2[LTC_BYTE(x,2)]) ^ S3[LTC_BYTE(x,1)]) + S4[LTC_BYTE(x,0)]
#else
#define F(x) ((skey->blowfish.S[0][LTC_BYTE(x,3)] + skey->blowfish.S[1][LTC_BYTE(x,2)]) ^ skey->blowfish.S[2][LTC_BYTE(x,1)]) + skey->blowfish.S[3][LTC_BYTE(x,0)]
#endif
static void s_blowfish_encipher(ulong32 *L, ulong32 *R, const symmetric_key *skey)
{
int rounds;
ulong32 l, r;
#ifndef __GNUC__
const ulong32 *S1, *S2, *S3, *S4;
S1 = skey->blowfish.S[0];
S2 = skey->blowfish.S[1];
S3 = skey->blowfish.S[2];
S4 = skey->blowfish.S[3];
#endif
l = *L;
r = *R;
/* do 16 rounds */
for (rounds = 0; rounds < 16; ) {
l ^= skey->blowfish.K[rounds++]; r ^= F(l);
r ^= skey->blowfish.K[rounds++]; l ^= F(r);
l ^= skey->blowfish.K[rounds++]; r ^= F(l);
r ^= skey->blowfish.K[rounds++]; l ^= F(r);
}
/* last keying */
l ^= skey->blowfish.K[16];
r ^= skey->blowfish.K[17];
*L = r;
*R = l;
}
void blowfish_enc(ulong32 *data, unsigned long blocks, const symmetric_key *skey)
{
unsigned long i;
ulong32 *d = data;
for (i = 0; i < blocks; ++i) {
s_blowfish_encipher(d, d + 1, skey);
d += 2;
}
}
static ulong32 s_blowfish_stream2word(const unsigned char *d, int dlen, int *cur)
{
unsigned int z;
int y = *cur;
ulong32 ret = 0;
for (z = 0; z < 4; z++) {
ret = (ret << 8) | ((ulong32)d[y++] & 255);
if (y == dlen) {
y = 0;
}
}
*cur = y;
return ret;
}
/**
Expand the Blowfish internal state
@param key The symmetric key you wish to pass
@param keylen The key length in bytes
@param data The additional data you wish to pass (can be NULL)
@param datalen The additional data length in bytes
@param num_rounds The number of rounds desired (0 for default)
@param skey The key in as scheduled by this function.
@return CRYPT_OK if successful
*/
int blowfish_expand(const unsigned char *key, int keylen,
const unsigned char *data, int datalen,
symmetric_key *skey)
{
ulong32 x, y, A, B[2];
int i;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
/* load in key bytes (Supplied by David Hopwood) */
i = 0;
for (x = 0; x < 18; x++) {
A = s_blowfish_stream2word(key, keylen, &i);
skey->blowfish.K[x] ^= A;
}
i = 0;
B[0] = 0;
B[1] = 0;
for (x = 0; x < 18; x += 2) {
if (data != NULL) {
B[0] ^= s_blowfish_stream2word(data, datalen, &i);
B[1] ^= s_blowfish_stream2word(data, datalen, &i);
}
/* encrypt it */
s_blowfish_encipher(&B[0], &B[1], skey);
/* copy it */
skey->blowfish.K[x] = B[0];
skey->blowfish.K[x+1] = B[1];
}
/* encrypt S array */
for (x = 0; x < 4; x++) {
for (y = 0; y < 256; y += 2) {
if (data != NULL) {
B[0] ^= s_blowfish_stream2word(data, datalen, &i);
B[1] ^= s_blowfish_stream2word(data, datalen, &i);
}
/* encrypt it */
s_blowfish_encipher(&B[0], &B[1], skey);
/* copy it */
skey->blowfish.S[x][y] = B[0];
skey->blowfish.S[x][y+1] = B[1];
}
}
#ifdef LTC_CLEAN_STACK
zeromem(B, sizeof(B));
#endif
return CRYPT_OK;
}
/**
Initialize the Blowfish block cipher
@param key The symmetric key you wish to pass
@param keylen The key length in bytes
@param num_rounds The number of rounds desired (0 for default)
@param skey The key in as scheduled by this function.
@return CRYPT_OK if successful
*/
int blowfish_setup(const unsigned char *key, int keylen, int num_rounds,
symmetric_key *skey)
{
/* check key length */
if (keylen < 8 || keylen > 72) {
return CRYPT_INVALID_KEYSIZE;
}
/* check rounds */
if (num_rounds != 0 && num_rounds != 16) {
return CRYPT_INVALID_ROUNDS;
}
return blowfish_setup_with_data(key, keylen, NULL, 0, skey);
}
/**
Alternative initialize of the Blowfish block cipher
@param key The symmetric key you wish to pass
@param keylen The key length in bytes
@param data The additional data you wish to pass (can be NULL)
@param datalen The additional data length in bytes
@param num_rounds The number of rounds desired (0 for default)
@param skey The key in as scheduled by this function.
@return CRYPT_OK if successful
*/
int blowfish_setup_with_data(const unsigned char *key, int keylen,
const unsigned char *data, int datalen,
symmetric_key *skey)
{
XMEMCPY(skey->blowfish.K, ORIG_P, sizeof(ORIG_P));
XMEMCPY(skey->blowfish.S, ORIG_S, sizeof(ORIG_S));
return blowfish_expand(key, keylen, data, datalen, skey);
}
/**
Encrypts a block of text with Blowfish
@param pt The input plaintext (8 bytes)
@param ct The output ciphertext (8 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_blowfish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#else
int blowfish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#endif
{
ulong32 L, R;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
/* load it */
LOAD32H(L, &pt[0]);
LOAD32H(R, &pt[4]);
s_blowfish_encipher(&L, &R, skey);
/* store */
STORE32H(L, &ct[0]);
STORE32H(R, &ct[4]);
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int blowfish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
{
int err = s_blowfish_ecb_encrypt(pt, ct, skey);
burn_stack(sizeof(ulong32) * 2 + sizeof(int));
return err;
}
#endif
/**
Decrypts a block of text with Blowfish
@param ct The input ciphertext (8 bytes)
@param pt The output plaintext (8 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_blowfish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#else
int blowfish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#endif
{
ulong32 L, R;
int r;
#ifndef __GNUC__
const ulong32 *S1, *S2, *S3, *S4;
#endif
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
#ifndef __GNUC__
S1 = skey->blowfish.S[0];
S2 = skey->blowfish.S[1];
S3 = skey->blowfish.S[2];
S4 = skey->blowfish.S[3];
#endif
/* load it */
LOAD32H(R, &ct[0]);
LOAD32H(L, &ct[4]);
/* undo last keying */
R ^= skey->blowfish.K[17];
L ^= skey->blowfish.K[16];
/* do 16 rounds */
for (r = 15; r > 0; ) {
L ^= F(R); R ^= skey->blowfish.K[r--];
R ^= F(L); L ^= skey->blowfish.K[r--];
L ^= F(R); R ^= skey->blowfish.K[r--];
R ^= F(L); L ^= skey->blowfish.K[r--];
}
/* store */
STORE32H(L, &pt[0]);
STORE32H(R, &pt[4]);
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int blowfish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
{
int err = s_blowfish_ecb_decrypt(ct, pt, skey);
burn_stack(sizeof(ulong32) * 2 + sizeof(int));
return err;
}
#endif
/**
Performs a self-test of the Blowfish block cipher
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int blowfish_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
int err;
symmetric_key key;
static const struct {
unsigned char key[8], pt[8], ct[8];
} tests[] = {
{
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{ 0x4E, 0xF9, 0x97, 0x45, 0x61, 0x98, 0xDD, 0x78}
},
{
{ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
{ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
{ 0x51, 0x86, 0x6F, 0xD5, 0xB8, 0x5E, 0xCB, 0x8A}
},
{
{ 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{ 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
{ 0x7D, 0x85, 0x6F, 0x9A, 0x61, 0x30, 0x63, 0xF2}
}
};
unsigned char tmp[2][8];
int x, y;
for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
/* setup key */
if ((err = blowfish_setup(tests[x].key, 8, 16, &key)) != CRYPT_OK) {
return err;
}
/* encrypt and decrypt */
blowfish_ecb_encrypt(tests[x].pt, tmp[0], &key);
blowfish_ecb_decrypt(tmp[0], tmp[1], &key);
/* compare */
if ((compare_testvector(tmp[0], 8, tests[x].ct, 8, "Blowfish Encrypt", x) != 0) ||
(compare_testvector(tmp[1], 8, tests[x].pt, 8, "Blowfish Decrypt", x) != 0)) {
return CRYPT_FAIL_TESTVECTOR;
}
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
for (y = 0; y < 8; y++) tmp[0][y] = 0;
for (y = 0; y < 1000; y++) blowfish_ecb_encrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 1000; y++) blowfish_ecb_decrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
}
return CRYPT_OK;
#endif
}
/** Terminate the context
@param skey The scheduled key
*/
void blowfish_done(symmetric_key *skey)
{
LTC_UNUSED_PARAM(skey);
}
/**
Gets suitable key size
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
@return CRYPT_OK if the input key size is acceptable.
*/
int blowfish_keysize(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize < 8) {
return CRYPT_INVALID_KEYSIZE;
}
if (*keysize > 72) {
*keysize = 72;
}
return CRYPT_OK;
}
#undef F
#endif

View File

@@ -0,0 +1,722 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file camellia.c
Implementation by Tom St Denis of Elliptic Semiconductor
*/
#include "tomcrypt_private.h"
#ifdef LTC_CAMELLIA
const struct ltc_cipher_descriptor camellia_desc = {
"camellia",
23,
16, 32, 16, 18,
&camellia_setup,
&camellia_ecb_encrypt,
&camellia_ecb_decrypt,
&camellia_test,
&camellia_done,
&camellia_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
static const ulong32 SP1110[] = {
0x70707000, 0x82828200, 0x2c2c2c00, 0xececec00, 0xb3b3b300, 0x27272700, 0xc0c0c000, 0xe5e5e500,
0xe4e4e400, 0x85858500, 0x57575700, 0x35353500, 0xeaeaea00, 0x0c0c0c00, 0xaeaeae00, 0x41414100,
0x23232300, 0xefefef00, 0x6b6b6b00, 0x93939300, 0x45454500, 0x19191900, 0xa5a5a500, 0x21212100,
0xededed00, 0x0e0e0e00, 0x4f4f4f00, 0x4e4e4e00, 0x1d1d1d00, 0x65656500, 0x92929200, 0xbdbdbd00,
0x86868600, 0xb8b8b800, 0xafafaf00, 0x8f8f8f00, 0x7c7c7c00, 0xebebeb00, 0x1f1f1f00, 0xcecece00,
0x3e3e3e00, 0x30303000, 0xdcdcdc00, 0x5f5f5f00, 0x5e5e5e00, 0xc5c5c500, 0x0b0b0b00, 0x1a1a1a00,
0xa6a6a600, 0xe1e1e100, 0x39393900, 0xcacaca00, 0xd5d5d500, 0x47474700, 0x5d5d5d00, 0x3d3d3d00,
0xd9d9d900, 0x01010100, 0x5a5a5a00, 0xd6d6d600, 0x51515100, 0x56565600, 0x6c6c6c00, 0x4d4d4d00,
0x8b8b8b00, 0x0d0d0d00, 0x9a9a9a00, 0x66666600, 0xfbfbfb00, 0xcccccc00, 0xb0b0b000, 0x2d2d2d00,
0x74747400, 0x12121200, 0x2b2b2b00, 0x20202000, 0xf0f0f000, 0xb1b1b100, 0x84848400, 0x99999900,
0xdfdfdf00, 0x4c4c4c00, 0xcbcbcb00, 0xc2c2c200, 0x34343400, 0x7e7e7e00, 0x76767600, 0x05050500,
0x6d6d6d00, 0xb7b7b700, 0xa9a9a900, 0x31313100, 0xd1d1d100, 0x17171700, 0x04040400, 0xd7d7d700,
0x14141400, 0x58585800, 0x3a3a3a00, 0x61616100, 0xdedede00, 0x1b1b1b00, 0x11111100, 0x1c1c1c00,
0x32323200, 0x0f0f0f00, 0x9c9c9c00, 0x16161600, 0x53535300, 0x18181800, 0xf2f2f200, 0x22222200,
0xfefefe00, 0x44444400, 0xcfcfcf00, 0xb2b2b200, 0xc3c3c300, 0xb5b5b500, 0x7a7a7a00, 0x91919100,
0x24242400, 0x08080800, 0xe8e8e800, 0xa8a8a800, 0x60606000, 0xfcfcfc00, 0x69696900, 0x50505000,
0xaaaaaa00, 0xd0d0d000, 0xa0a0a000, 0x7d7d7d00, 0xa1a1a100, 0x89898900, 0x62626200, 0x97979700,
0x54545400, 0x5b5b5b00, 0x1e1e1e00, 0x95959500, 0xe0e0e000, 0xffffff00, 0x64646400, 0xd2d2d200,
0x10101000, 0xc4c4c400, 0x00000000, 0x48484800, 0xa3a3a300, 0xf7f7f700, 0x75757500, 0xdbdbdb00,
0x8a8a8a00, 0x03030300, 0xe6e6e600, 0xdadada00, 0x09090900, 0x3f3f3f00, 0xdddddd00, 0x94949400,
0x87878700, 0x5c5c5c00, 0x83838300, 0x02020200, 0xcdcdcd00, 0x4a4a4a00, 0x90909000, 0x33333300,
0x73737300, 0x67676700, 0xf6f6f600, 0xf3f3f300, 0x9d9d9d00, 0x7f7f7f00, 0xbfbfbf00, 0xe2e2e200,
0x52525200, 0x9b9b9b00, 0xd8d8d800, 0x26262600, 0xc8c8c800, 0x37373700, 0xc6c6c600, 0x3b3b3b00,
0x81818100, 0x96969600, 0x6f6f6f00, 0x4b4b4b00, 0x13131300, 0xbebebe00, 0x63636300, 0x2e2e2e00,
0xe9e9e900, 0x79797900, 0xa7a7a700, 0x8c8c8c00, 0x9f9f9f00, 0x6e6e6e00, 0xbcbcbc00, 0x8e8e8e00,
0x29292900, 0xf5f5f500, 0xf9f9f900, 0xb6b6b600, 0x2f2f2f00, 0xfdfdfd00, 0xb4b4b400, 0x59595900,
0x78787800, 0x98989800, 0x06060600, 0x6a6a6a00, 0xe7e7e700, 0x46464600, 0x71717100, 0xbababa00,
0xd4d4d400, 0x25252500, 0xababab00, 0x42424200, 0x88888800, 0xa2a2a200, 0x8d8d8d00, 0xfafafa00,
0x72727200, 0x07070700, 0xb9b9b900, 0x55555500, 0xf8f8f800, 0xeeeeee00, 0xacacac00, 0x0a0a0a00,
0x36363600, 0x49494900, 0x2a2a2a00, 0x68686800, 0x3c3c3c00, 0x38383800, 0xf1f1f100, 0xa4a4a400,
0x40404000, 0x28282800, 0xd3d3d300, 0x7b7b7b00, 0xbbbbbb00, 0xc9c9c900, 0x43434300, 0xc1c1c100,
0x15151500, 0xe3e3e300, 0xadadad00, 0xf4f4f400, 0x77777700, 0xc7c7c700, 0x80808000, 0x9e9e9e00,
};
static const ulong32 SP0222[] = {
0x00e0e0e0, 0x00050505, 0x00585858, 0x00d9d9d9, 0x00676767, 0x004e4e4e, 0x00818181, 0x00cbcbcb,
0x00c9c9c9, 0x000b0b0b, 0x00aeaeae, 0x006a6a6a, 0x00d5d5d5, 0x00181818, 0x005d5d5d, 0x00828282,
0x00464646, 0x00dfdfdf, 0x00d6d6d6, 0x00272727, 0x008a8a8a, 0x00323232, 0x004b4b4b, 0x00424242,
0x00dbdbdb, 0x001c1c1c, 0x009e9e9e, 0x009c9c9c, 0x003a3a3a, 0x00cacaca, 0x00252525, 0x007b7b7b,
0x000d0d0d, 0x00717171, 0x005f5f5f, 0x001f1f1f, 0x00f8f8f8, 0x00d7d7d7, 0x003e3e3e, 0x009d9d9d,
0x007c7c7c, 0x00606060, 0x00b9b9b9, 0x00bebebe, 0x00bcbcbc, 0x008b8b8b, 0x00161616, 0x00343434,
0x004d4d4d, 0x00c3c3c3, 0x00727272, 0x00959595, 0x00ababab, 0x008e8e8e, 0x00bababa, 0x007a7a7a,
0x00b3b3b3, 0x00020202, 0x00b4b4b4, 0x00adadad, 0x00a2a2a2, 0x00acacac, 0x00d8d8d8, 0x009a9a9a,
0x00171717, 0x001a1a1a, 0x00353535, 0x00cccccc, 0x00f7f7f7, 0x00999999, 0x00616161, 0x005a5a5a,
0x00e8e8e8, 0x00242424, 0x00565656, 0x00404040, 0x00e1e1e1, 0x00636363, 0x00090909, 0x00333333,
0x00bfbfbf, 0x00989898, 0x00979797, 0x00858585, 0x00686868, 0x00fcfcfc, 0x00ececec, 0x000a0a0a,
0x00dadada, 0x006f6f6f, 0x00535353, 0x00626262, 0x00a3a3a3, 0x002e2e2e, 0x00080808, 0x00afafaf,
0x00282828, 0x00b0b0b0, 0x00747474, 0x00c2c2c2, 0x00bdbdbd, 0x00363636, 0x00222222, 0x00383838,
0x00646464, 0x001e1e1e, 0x00393939, 0x002c2c2c, 0x00a6a6a6, 0x00303030, 0x00e5e5e5, 0x00444444,
0x00fdfdfd, 0x00888888, 0x009f9f9f, 0x00656565, 0x00878787, 0x006b6b6b, 0x00f4f4f4, 0x00232323,
0x00484848, 0x00101010, 0x00d1d1d1, 0x00515151, 0x00c0c0c0, 0x00f9f9f9, 0x00d2d2d2, 0x00a0a0a0,
0x00555555, 0x00a1a1a1, 0x00414141, 0x00fafafa, 0x00434343, 0x00131313, 0x00c4c4c4, 0x002f2f2f,
0x00a8a8a8, 0x00b6b6b6, 0x003c3c3c, 0x002b2b2b, 0x00c1c1c1, 0x00ffffff, 0x00c8c8c8, 0x00a5a5a5,
0x00202020, 0x00898989, 0x00000000, 0x00909090, 0x00474747, 0x00efefef, 0x00eaeaea, 0x00b7b7b7,
0x00151515, 0x00060606, 0x00cdcdcd, 0x00b5b5b5, 0x00121212, 0x007e7e7e, 0x00bbbbbb, 0x00292929,
0x000f0f0f, 0x00b8b8b8, 0x00070707, 0x00040404, 0x009b9b9b, 0x00949494, 0x00212121, 0x00666666,
0x00e6e6e6, 0x00cecece, 0x00ededed, 0x00e7e7e7, 0x003b3b3b, 0x00fefefe, 0x007f7f7f, 0x00c5c5c5,
0x00a4a4a4, 0x00373737, 0x00b1b1b1, 0x004c4c4c, 0x00919191, 0x006e6e6e, 0x008d8d8d, 0x00767676,
0x00030303, 0x002d2d2d, 0x00dedede, 0x00969696, 0x00262626, 0x007d7d7d, 0x00c6c6c6, 0x005c5c5c,
0x00d3d3d3, 0x00f2f2f2, 0x004f4f4f, 0x00191919, 0x003f3f3f, 0x00dcdcdc, 0x00797979, 0x001d1d1d,
0x00525252, 0x00ebebeb, 0x00f3f3f3, 0x006d6d6d, 0x005e5e5e, 0x00fbfbfb, 0x00696969, 0x00b2b2b2,
0x00f0f0f0, 0x00313131, 0x000c0c0c, 0x00d4d4d4, 0x00cfcfcf, 0x008c8c8c, 0x00e2e2e2, 0x00757575,
0x00a9a9a9, 0x004a4a4a, 0x00575757, 0x00848484, 0x00111111, 0x00454545, 0x001b1b1b, 0x00f5f5f5,
0x00e4e4e4, 0x000e0e0e, 0x00737373, 0x00aaaaaa, 0x00f1f1f1, 0x00dddddd, 0x00595959, 0x00141414,
0x006c6c6c, 0x00929292, 0x00545454, 0x00d0d0d0, 0x00787878, 0x00707070, 0x00e3e3e3, 0x00494949,
0x00808080, 0x00505050, 0x00a7a7a7, 0x00f6f6f6, 0x00777777, 0x00939393, 0x00868686, 0x00838383,
0x002a2a2a, 0x00c7c7c7, 0x005b5b5b, 0x00e9e9e9, 0x00eeeeee, 0x008f8f8f, 0x00010101, 0x003d3d3d,
};
static const ulong32 SP3033[] = {
0x38003838, 0x41004141, 0x16001616, 0x76007676, 0xd900d9d9, 0x93009393, 0x60006060, 0xf200f2f2,
0x72007272, 0xc200c2c2, 0xab00abab, 0x9a009a9a, 0x75007575, 0x06000606, 0x57005757, 0xa000a0a0,
0x91009191, 0xf700f7f7, 0xb500b5b5, 0xc900c9c9, 0xa200a2a2, 0x8c008c8c, 0xd200d2d2, 0x90009090,
0xf600f6f6, 0x07000707, 0xa700a7a7, 0x27002727, 0x8e008e8e, 0xb200b2b2, 0x49004949, 0xde00dede,
0x43004343, 0x5c005c5c, 0xd700d7d7, 0xc700c7c7, 0x3e003e3e, 0xf500f5f5, 0x8f008f8f, 0x67006767,
0x1f001f1f, 0x18001818, 0x6e006e6e, 0xaf00afaf, 0x2f002f2f, 0xe200e2e2, 0x85008585, 0x0d000d0d,
0x53005353, 0xf000f0f0, 0x9c009c9c, 0x65006565, 0xea00eaea, 0xa300a3a3, 0xae00aeae, 0x9e009e9e,
0xec00ecec, 0x80008080, 0x2d002d2d, 0x6b006b6b, 0xa800a8a8, 0x2b002b2b, 0x36003636, 0xa600a6a6,
0xc500c5c5, 0x86008686, 0x4d004d4d, 0x33003333, 0xfd00fdfd, 0x66006666, 0x58005858, 0x96009696,
0x3a003a3a, 0x09000909, 0x95009595, 0x10001010, 0x78007878, 0xd800d8d8, 0x42004242, 0xcc00cccc,
0xef00efef, 0x26002626, 0xe500e5e5, 0x61006161, 0x1a001a1a, 0x3f003f3f, 0x3b003b3b, 0x82008282,
0xb600b6b6, 0xdb00dbdb, 0xd400d4d4, 0x98009898, 0xe800e8e8, 0x8b008b8b, 0x02000202, 0xeb00ebeb,
0x0a000a0a, 0x2c002c2c, 0x1d001d1d, 0xb000b0b0, 0x6f006f6f, 0x8d008d8d, 0x88008888, 0x0e000e0e,
0x19001919, 0x87008787, 0x4e004e4e, 0x0b000b0b, 0xa900a9a9, 0x0c000c0c, 0x79007979, 0x11001111,
0x7f007f7f, 0x22002222, 0xe700e7e7, 0x59005959, 0xe100e1e1, 0xda00dada, 0x3d003d3d, 0xc800c8c8,
0x12001212, 0x04000404, 0x74007474, 0x54005454, 0x30003030, 0x7e007e7e, 0xb400b4b4, 0x28002828,
0x55005555, 0x68006868, 0x50005050, 0xbe00bebe, 0xd000d0d0, 0xc400c4c4, 0x31003131, 0xcb00cbcb,
0x2a002a2a, 0xad00adad, 0x0f000f0f, 0xca00caca, 0x70007070, 0xff00ffff, 0x32003232, 0x69006969,
0x08000808, 0x62006262, 0x00000000, 0x24002424, 0xd100d1d1, 0xfb00fbfb, 0xba00baba, 0xed00eded,
0x45004545, 0x81008181, 0x73007373, 0x6d006d6d, 0x84008484, 0x9f009f9f, 0xee00eeee, 0x4a004a4a,
0xc300c3c3, 0x2e002e2e, 0xc100c1c1, 0x01000101, 0xe600e6e6, 0x25002525, 0x48004848, 0x99009999,
0xb900b9b9, 0xb300b3b3, 0x7b007b7b, 0xf900f9f9, 0xce00cece, 0xbf00bfbf, 0xdf00dfdf, 0x71007171,
0x29002929, 0xcd00cdcd, 0x6c006c6c, 0x13001313, 0x64006464, 0x9b009b9b, 0x63006363, 0x9d009d9d,
0xc000c0c0, 0x4b004b4b, 0xb700b7b7, 0xa500a5a5, 0x89008989, 0x5f005f5f, 0xb100b1b1, 0x17001717,
0xf400f4f4, 0xbc00bcbc, 0xd300d3d3, 0x46004646, 0xcf00cfcf, 0x37003737, 0x5e005e5e, 0x47004747,
0x94009494, 0xfa00fafa, 0xfc00fcfc, 0x5b005b5b, 0x97009797, 0xfe00fefe, 0x5a005a5a, 0xac00acac,
0x3c003c3c, 0x4c004c4c, 0x03000303, 0x35003535, 0xf300f3f3, 0x23002323, 0xb800b8b8, 0x5d005d5d,
0x6a006a6a, 0x92009292, 0xd500d5d5, 0x21002121, 0x44004444, 0x51005151, 0xc600c6c6, 0x7d007d7d,
0x39003939, 0x83008383, 0xdc00dcdc, 0xaa00aaaa, 0x7c007c7c, 0x77007777, 0x56005656, 0x05000505,
0x1b001b1b, 0xa400a4a4, 0x15001515, 0x34003434, 0x1e001e1e, 0x1c001c1c, 0xf800f8f8, 0x52005252,
0x20002020, 0x14001414, 0xe900e9e9, 0xbd00bdbd, 0xdd00dddd, 0xe400e4e4, 0xa100a1a1, 0xe000e0e0,
0x8a008a8a, 0xf100f1f1, 0xd600d6d6, 0x7a007a7a, 0xbb00bbbb, 0xe300e3e3, 0x40004040, 0x4f004f4f,
};
static const ulong32 SP4404[] = {
0x70700070, 0x2c2c002c, 0xb3b300b3, 0xc0c000c0, 0xe4e400e4, 0x57570057, 0xeaea00ea, 0xaeae00ae,
0x23230023, 0x6b6b006b, 0x45450045, 0xa5a500a5, 0xeded00ed, 0x4f4f004f, 0x1d1d001d, 0x92920092,
0x86860086, 0xafaf00af, 0x7c7c007c, 0x1f1f001f, 0x3e3e003e, 0xdcdc00dc, 0x5e5e005e, 0x0b0b000b,
0xa6a600a6, 0x39390039, 0xd5d500d5, 0x5d5d005d, 0xd9d900d9, 0x5a5a005a, 0x51510051, 0x6c6c006c,
0x8b8b008b, 0x9a9a009a, 0xfbfb00fb, 0xb0b000b0, 0x74740074, 0x2b2b002b, 0xf0f000f0, 0x84840084,
0xdfdf00df, 0xcbcb00cb, 0x34340034, 0x76760076, 0x6d6d006d, 0xa9a900a9, 0xd1d100d1, 0x04040004,
0x14140014, 0x3a3a003a, 0xdede00de, 0x11110011, 0x32320032, 0x9c9c009c, 0x53530053, 0xf2f200f2,
0xfefe00fe, 0xcfcf00cf, 0xc3c300c3, 0x7a7a007a, 0x24240024, 0xe8e800e8, 0x60600060, 0x69690069,
0xaaaa00aa, 0xa0a000a0, 0xa1a100a1, 0x62620062, 0x54540054, 0x1e1e001e, 0xe0e000e0, 0x64640064,
0x10100010, 0x00000000, 0xa3a300a3, 0x75750075, 0x8a8a008a, 0xe6e600e6, 0x09090009, 0xdddd00dd,
0x87870087, 0x83830083, 0xcdcd00cd, 0x90900090, 0x73730073, 0xf6f600f6, 0x9d9d009d, 0xbfbf00bf,
0x52520052, 0xd8d800d8, 0xc8c800c8, 0xc6c600c6, 0x81810081, 0x6f6f006f, 0x13130013, 0x63630063,
0xe9e900e9, 0xa7a700a7, 0x9f9f009f, 0xbcbc00bc, 0x29290029, 0xf9f900f9, 0x2f2f002f, 0xb4b400b4,
0x78780078, 0x06060006, 0xe7e700e7, 0x71710071, 0xd4d400d4, 0xabab00ab, 0x88880088, 0x8d8d008d,
0x72720072, 0xb9b900b9, 0xf8f800f8, 0xacac00ac, 0x36360036, 0x2a2a002a, 0x3c3c003c, 0xf1f100f1,
0x40400040, 0xd3d300d3, 0xbbbb00bb, 0x43430043, 0x15150015, 0xadad00ad, 0x77770077, 0x80800080,
0x82820082, 0xecec00ec, 0x27270027, 0xe5e500e5, 0x85850085, 0x35350035, 0x0c0c000c, 0x41410041,
0xefef00ef, 0x93930093, 0x19190019, 0x21210021, 0x0e0e000e, 0x4e4e004e, 0x65650065, 0xbdbd00bd,
0xb8b800b8, 0x8f8f008f, 0xebeb00eb, 0xcece00ce, 0x30300030, 0x5f5f005f, 0xc5c500c5, 0x1a1a001a,
0xe1e100e1, 0xcaca00ca, 0x47470047, 0x3d3d003d, 0x01010001, 0xd6d600d6, 0x56560056, 0x4d4d004d,
0x0d0d000d, 0x66660066, 0xcccc00cc, 0x2d2d002d, 0x12120012, 0x20200020, 0xb1b100b1, 0x99990099,
0x4c4c004c, 0xc2c200c2, 0x7e7e007e, 0x05050005, 0xb7b700b7, 0x31310031, 0x17170017, 0xd7d700d7,
0x58580058, 0x61610061, 0x1b1b001b, 0x1c1c001c, 0x0f0f000f, 0x16160016, 0x18180018, 0x22220022,
0x44440044, 0xb2b200b2, 0xb5b500b5, 0x91910091, 0x08080008, 0xa8a800a8, 0xfcfc00fc, 0x50500050,
0xd0d000d0, 0x7d7d007d, 0x89890089, 0x97970097, 0x5b5b005b, 0x95950095, 0xffff00ff, 0xd2d200d2,
0xc4c400c4, 0x48480048, 0xf7f700f7, 0xdbdb00db, 0x03030003, 0xdada00da, 0x3f3f003f, 0x94940094,
0x5c5c005c, 0x02020002, 0x4a4a004a, 0x33330033, 0x67670067, 0xf3f300f3, 0x7f7f007f, 0xe2e200e2,
0x9b9b009b, 0x26260026, 0x37370037, 0x3b3b003b, 0x96960096, 0x4b4b004b, 0xbebe00be, 0x2e2e002e,
0x79790079, 0x8c8c008c, 0x6e6e006e, 0x8e8e008e, 0xf5f500f5, 0xb6b600b6, 0xfdfd00fd, 0x59590059,
0x98980098, 0x6a6a006a, 0x46460046, 0xbaba00ba, 0x25250025, 0x42420042, 0xa2a200a2, 0xfafa00fa,
0x07070007, 0x55550055, 0xeeee00ee, 0x0a0a000a, 0x49490049, 0x68680068, 0x38380038, 0xa4a400a4,
0x28280028, 0x7b7b007b, 0xc9c900c9, 0xc1c100c1, 0xe3e300e3, 0xf4f400f4, 0xc7c700c7, 0x9e9e009e,
};
static const ulong64 key_sigma[] = {
CONST64(0xA09E667F3BCC908B),
CONST64(0xB67AE8584CAA73B2),
CONST64(0xC6EF372FE94F82BE),
CONST64(0x54FF53A5F1D36F1C),
CONST64(0x10E527FADE682D1D),
CONST64(0xB05688C2B3E6C1FD)
};
static ulong64 F(ulong64 x)
{
ulong32 D, U;
#define loc(i) ((8-i)*8)
D = SP1110[(x >> loc(8)) & 0xFF] ^ SP0222[(x >> loc(5)) & 0xFF] ^ SP3033[(x >> loc(6)) & 0xFF] ^ SP4404[(x >> loc(7)) & 0xFF];
U = SP1110[(x >> loc(1)) & 0xFF] ^ SP0222[(x >> loc(2)) & 0xFF] ^ SP3033[(x >> loc(3)) & 0xFF] ^ SP4404[(x >> loc(4)) & 0xFF];
D ^= U;
U = D ^ RORc(U, 8);
return ((ulong64)U) | (((ulong64)D) << CONST64(32));
}
static void rot_128(const unsigned char *in, unsigned count, unsigned char *out)
{
unsigned x, w, b;
w = count >> 3;
b = count & 7;
for (x = 0; x < 16; x++) {
out[x] = (in[(x+w)&15] << b) | (in[(x+w+1)&15] >> (8 - b));
}
}
int camellia_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
unsigned char T[48], kA[16], kB[16], kR[16], kL[16];
int x;
ulong64 A, B;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
/* Valid sizes (in bytes) are 16, 24, 32 */
if (keylen != 16 && keylen != 24 && keylen != 32) {
return CRYPT_INVALID_KEYSIZE;
}
/* number of rounds */
skey->camellia.R = (keylen == 16) ? 18 : 24;
if (num_rounds != 0 && num_rounds != skey->camellia.R) {
return CRYPT_INVALID_ROUNDS;
}
/* expand key */
if (keylen == 16) {
for (x = 0; x < 16; x++) {
T[x] = key[x];
T[x + 16] = 0;
}
} else if (keylen == 24) {
for (x = 0; x < 24; x++) {
T[x] = key[x];
}
for (x = 24; x < 32; x++) {
T[x] = key[x-8] ^ 0xFF;
}
} else {
for (x = 0; x < 32; x++) {
T[x] = key[x];
}
}
for (x = 0; x < 16; x++) {
kL[x] = T[x];
kR[x] = T[x + 16];
}
for (x = 32; x < 48; x++) {
T[x] = T[x - 32] ^ T[x - 16];
}
/* first two rounds */
LOAD64H(A, T+32); LOAD64H(B, T+40);
B ^= F(A ^ key_sigma[0]);
A ^= F(B ^ key_sigma[1]);
STORE64H(A, T+32); STORE64H(B, T+40);
/* xor kL in */
for (x = 0; x < 16; x++) { T[x+32] ^= kL[x]; }
/* next two rounds */
LOAD64H(A, T+32); LOAD64H(B, T+40);
B ^= F(A ^ key_sigma[2]);
A ^= F(B ^ key_sigma[3]);
STORE64H(A, T+32); STORE64H(B, T+40);
/* grab KA */
for (x = 0; x < 16; x++) { kA[x] = T[x+32]; }
/* xor kR in */
for (x = 0; x < 16; x++) { T[x+32] ^= kR[x]; }
if (keylen == 16) {
/* grab whitening keys kw1 and kw2 */
LOAD64H(skey->camellia.kw[0], kL);
LOAD64H(skey->camellia.kw[1], kL+8);
/* k1-k2 */
LOAD64H(skey->camellia.k[0], kA);
LOAD64H(skey->camellia.k[1], kA+8);
/* rotate kL by 15, k3/k4 */
rot_128(kL, 15, T+32);
LOAD64H(skey->camellia.k[2], T+32);
LOAD64H(skey->camellia.k[3], T+40);
/* rotate kA by 15, k5/k6 */
rot_128(kA, 15, T+32);
LOAD64H(skey->camellia.k[4], T+32);
LOAD64H(skey->camellia.k[5], T+40);
/* rotate kA by 30, kl1, kl2 */
rot_128(kA, 30, T+32);
LOAD64H(skey->camellia.kl[0], T+32);
LOAD64H(skey->camellia.kl[1], T+40);
/* rotate kL by 45, k7/k8 */
rot_128(kL, 45, T+32);
LOAD64H(skey->camellia.k[6], T+32);
LOAD64H(skey->camellia.k[7], T+40);
/* rotate kA by 45, k9/k10 */
rot_128(kA, 45, T+32);
LOAD64H(skey->camellia.k[8], T+32);
rot_128(kL, 60, T+32);
LOAD64H(skey->camellia.k[9], T+40);
/* rotate kA by 60, k11/k12 */
rot_128(kA, 60, T+32);
LOAD64H(skey->camellia.k[10], T+32);
LOAD64H(skey->camellia.k[11], T+40);
/* rotate kL by 77, kl3, kl4 */
rot_128(kL, 77, T+32);
LOAD64H(skey->camellia.kl[2], T+32);
LOAD64H(skey->camellia.kl[3], T+40);
/* rotate kL by 94, k13/k14 */
rot_128(kL, 94, T+32);
LOAD64H(skey->camellia.k[12], T+32);
LOAD64H(skey->camellia.k[13], T+40);
/* rotate kA by 94, k15/k16 */
rot_128(kA, 94, T+32);
LOAD64H(skey->camellia.k[14], T+32);
LOAD64H(skey->camellia.k[15], T+40);
/* rotate kL by 111, k17/k18 */
rot_128(kL, 111, T+32);
LOAD64H(skey->camellia.k[16], T+32);
LOAD64H(skey->camellia.k[17], T+40);
/* rotate kA by 111, kw3/kw4 */
rot_128(kA, 111, T+32);
LOAD64H(skey->camellia.kw[2], T+32);
LOAD64H(skey->camellia.kw[3], T+40);
} else {
/* last two rounds */
LOAD64H(A, T+32); LOAD64H(B, T+40);
B ^= F(A ^ key_sigma[4]);
A ^= F(B ^ key_sigma[5]);
STORE64H(A, T+32); STORE64H(B, T+40);
/* grab kB */
for (x = 0; x < 16; x++) { kB[x] = T[x+32]; }
/* kw1/2 from kL*/
LOAD64H(skey->camellia.kw[0], kL);
LOAD64H(skey->camellia.kw[1], kL+8);
/* k1/k2 = kB */
LOAD64H(skey->camellia.k[0], kB);
LOAD64H(skey->camellia.k[1], kB+8);
/* k3/k4 = kR by 15 */
rot_128(kR, 15, T+32);
LOAD64H(skey->camellia.k[2], T+32);
LOAD64H(skey->camellia.k[3], T+40);
/* k5/k7 = kA by 15 */
rot_128(kA, 15, T+32);
LOAD64H(skey->camellia.k[4], T+32);
LOAD64H(skey->camellia.k[5], T+40);
/* kl1/2 = kR by 30 */
rot_128(kR, 30, T+32);
LOAD64H(skey->camellia.kl[0], T+32);
LOAD64H(skey->camellia.kl[1], T+40);
/* k7/k8 = kB by 30 */
rot_128(kB, 30, T+32);
LOAD64H(skey->camellia.k[6], T+32);
LOAD64H(skey->camellia.k[7], T+40);
/* k9/k10 = kL by 45 */
rot_128(kL, 45, T+32);
LOAD64H(skey->camellia.k[8], T+32);
LOAD64H(skey->camellia.k[9], T+40);
/* k11/k12 = kA by 45 */
rot_128(kA, 45, T+32);
LOAD64H(skey->camellia.k[10], T+32);
LOAD64H(skey->camellia.k[11], T+40);
/* kl3/4 = kL by 60 */
rot_128(kL, 60, T+32);
LOAD64H(skey->camellia.kl[2], T+32);
LOAD64H(skey->camellia.kl[3], T+40);
/* k13/k14 = kR by 60 */
rot_128(kR, 60, T+32);
LOAD64H(skey->camellia.k[12], T+32);
LOAD64H(skey->camellia.k[13], T+40);
/* k15/k16 = kB by 15 */
rot_128(kB, 60, T+32);
LOAD64H(skey->camellia.k[14], T+32);
LOAD64H(skey->camellia.k[15], T+40);
/* k17/k18 = kL by 77 */
rot_128(kL, 77, T+32);
LOAD64H(skey->camellia.k[16], T+32);
LOAD64H(skey->camellia.k[17], T+40);
/* kl5/6 = kA by 77 */
rot_128(kA, 77, T+32);
LOAD64H(skey->camellia.kl[4], T+32);
LOAD64H(skey->camellia.kl[5], T+40);
/* k19/k20 = kR by 94 */
rot_128(kR, 94, T+32);
LOAD64H(skey->camellia.k[18], T+32);
LOAD64H(skey->camellia.k[19], T+40);
/* k21/k22 = kA by 94 */
rot_128(kA, 94, T+32);
LOAD64H(skey->camellia.k[20], T+32);
LOAD64H(skey->camellia.k[21], T+40);
/* k23/k24 = kL by 111 */
rot_128(kL, 111, T+32);
LOAD64H(skey->camellia.k[22], T+32);
LOAD64H(skey->camellia.k[23], T+40);
/* kw2/kw3 = kB by 111 */
rot_128(kB, 111, T+32);
LOAD64H(skey->camellia.kw[2], T+32);
LOAD64H(skey->camellia.kw[3], T+40);
}
return CRYPT_OK;
}
int camellia_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
{
ulong64 L, R;
ulong32 a, b;
LOAD64H(L, pt+0); LOAD64H(R, pt+8);
L ^= skey->camellia.kw[0];
R ^= skey->camellia.kw[1];
/* first 6 rounds */
R ^= F(L ^ skey->camellia.k[0]);
L ^= F(R ^ skey->camellia.k[1]);
R ^= F(L ^ skey->camellia.k[2]);
L ^= F(R ^ skey->camellia.k[3]);
R ^= F(L ^ skey->camellia.k[4]);
L ^= F(R ^ skey->camellia.k[5]);
/* FL */
a = (ulong32)(L >> 32);
b = (ulong32)(L & 0xFFFFFFFFUL);
b ^= ROL((a & (ulong32)(skey->camellia.kl[0] >> 32)), 1);
a ^= b | (skey->camellia.kl[0] & 0xFFFFFFFFU);
L = (((ulong64)a) << 32) | b;
/* FL^-1 */
a = (ulong32)(R >> 32);
b = (ulong32)(R & 0xFFFFFFFFUL);
a ^= b | (skey->camellia.kl[1] & 0xFFFFFFFFU);
b ^= ROL((a & (ulong32)(skey->camellia.kl[1] >> 32)), 1);
R = (((ulong64)a) << 32) | b;
/* second 6 rounds */
R ^= F(L ^ skey->camellia.k[6]);
L ^= F(R ^ skey->camellia.k[7]);
R ^= F(L ^ skey->camellia.k[8]);
L ^= F(R ^ skey->camellia.k[9]);
R ^= F(L ^ skey->camellia.k[10]);
L ^= F(R ^ skey->camellia.k[11]);
/* FL */
a = (ulong32)(L >> 32);
b = (ulong32)(L & 0xFFFFFFFFUL);
b ^= ROL((a & (ulong32)(skey->camellia.kl[2] >> 32)), 1);
a ^= b | (skey->camellia.kl[2] & 0xFFFFFFFFU);
L = (((ulong64)a) << 32) | b;
/* FL^-1 */
a = (ulong32)(R >> 32);
b = (ulong32)(R & 0xFFFFFFFFUL);
a ^= b | (skey->camellia.kl[3] & 0xFFFFFFFFU);
b ^= ROL((a & (ulong32)(skey->camellia.kl[3] >> 32)), 1);
R = (((ulong64)a) << 32) | b;
/* third 6 rounds */
R ^= F(L ^ skey->camellia.k[12]);
L ^= F(R ^ skey->camellia.k[13]);
R ^= F(L ^ skey->camellia.k[14]);
L ^= F(R ^ skey->camellia.k[15]);
R ^= F(L ^ skey->camellia.k[16]);
L ^= F(R ^ skey->camellia.k[17]);
/* next FL */
if (skey->camellia.R == 24) {
/* FL */
a = (ulong32)(L >> 32);
b = (ulong32)(L & 0xFFFFFFFFUL);
b ^= ROL((a & (ulong32)(skey->camellia.kl[4] >> 32)), 1);
a ^= b | (skey->camellia.kl[4] & 0xFFFFFFFFU);
L = (((ulong64)a) << 32) | b;
/* FL^-1 */
a = (ulong32)(R >> 32);
b = (ulong32)(R & 0xFFFFFFFFUL);
a ^= b | (skey->camellia.kl[5] & 0xFFFFFFFFU);
b ^= ROL((a & (ulong32)(skey->camellia.kl[5] >> 32)), 1);
R = (((ulong64)a) << 32) | b;
/* fourth 6 rounds */
R ^= F(L ^ skey->camellia.k[18]);
L ^= F(R ^ skey->camellia.k[19]);
R ^= F(L ^ skey->camellia.k[20]);
L ^= F(R ^ skey->camellia.k[21]);
R ^= F(L ^ skey->camellia.k[22]);
L ^= F(R ^ skey->camellia.k[23]);
}
L ^= skey->camellia.kw[3];
R ^= skey->camellia.kw[2];
STORE64H(R, ct+0); STORE64H(L, ct+8);
return CRYPT_OK;
}
int camellia_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
{
ulong64 L, R;
ulong32 a, b;
LOAD64H(R, ct+0); LOAD64H(L, ct+8);
L ^= skey->camellia.kw[3];
R ^= skey->camellia.kw[2];
/* next FL */
if (skey->camellia.R == 24) {
/* fourth 6 rounds */
L ^= F(R ^ skey->camellia.k[23]);
R ^= F(L ^ skey->camellia.k[22]);
L ^= F(R ^ skey->camellia.k[21]);
R ^= F(L ^ skey->camellia.k[20]);
L ^= F(R ^ skey->camellia.k[19]);
R ^= F(L ^ skey->camellia.k[18]);
/* FL */
a = (ulong32)(L >> 32);
b = (ulong32)(L & 0xFFFFFFFFUL);
a ^= b | (skey->camellia.kl[4] & 0xFFFFFFFFU);
b ^= ROL((a & (ulong32)(skey->camellia.kl[4] >> 32)), 1);
L = (((ulong64)a) << 32) | b;
/* FL^-1 */
a = (ulong32)(R >> 32);
b = (ulong32)(R & 0xFFFFFFFFUL);
b ^= ROL((a & (ulong32)(skey->camellia.kl[5] >> 32)), 1);
a ^= b | (skey->camellia.kl[5] & 0xFFFFFFFFU);
R = (((ulong64)a) << 32) | b;
}
/* third 6 rounds */
L ^= F(R ^ skey->camellia.k[17]);
R ^= F(L ^ skey->camellia.k[16]);
L ^= F(R ^ skey->camellia.k[15]);
R ^= F(L ^ skey->camellia.k[14]);
L ^= F(R ^ skey->camellia.k[13]);
R ^= F(L ^ skey->camellia.k[12]);
/* FL */
a = (ulong32)(L >> 32);
b = (ulong32)(L & 0xFFFFFFFFUL);
a ^= b | (skey->camellia.kl[2] & 0xFFFFFFFFU);
b ^= ROL((a & (ulong32)(skey->camellia.kl[2] >> 32)), 1);
L = (((ulong64)a) << 32) | b;
/* FL^-1 */
a = (ulong32)(R >> 32);
b = (ulong32)(R & 0xFFFFFFFFUL);
b ^= ROL((a & (ulong32)(skey->camellia.kl[3] >> 32)), 1);
a ^= b | (skey->camellia.kl[3] & 0xFFFFFFFFU);
R = (((ulong64)a) << 32) | b;
/* second 6 rounds */
L ^= F(R ^ skey->camellia.k[11]);
R ^= F(L ^ skey->camellia.k[10]);
L ^= F(R ^ skey->camellia.k[9]);
R ^= F(L ^ skey->camellia.k[8]);
L ^= F(R ^ skey->camellia.k[7]);
R ^= F(L ^ skey->camellia.k[6]);
/* FL */
a = (ulong32)(L >> 32);
b = (ulong32)(L & 0xFFFFFFFFUL);
a ^= b | (skey->camellia.kl[0] & 0xFFFFFFFFU);
b ^= ROL((a & (ulong32)(skey->camellia.kl[0] >> 32)), 1);
L = (((ulong64)a) << 32) | b;
/* FL^-1 */
a = (ulong32)(R >> 32);
b = (ulong32)(R & 0xFFFFFFFFUL);
b ^= ROL((a & (ulong32)(skey->camellia.kl[1] >> 32)), 1);
a ^= b | (skey->camellia.kl[1] & 0xFFFFFFFFU);
R = (((ulong64)a) << 32) | b;
/* first 6 rounds */
L ^= F(R ^ skey->camellia.k[5]);
R ^= F(L ^ skey->camellia.k[4]);
L ^= F(R ^ skey->camellia.k[3]);
R ^= F(L ^ skey->camellia.k[2]);
L ^= F(R ^ skey->camellia.k[1]);
R ^= F(L ^ skey->camellia.k[0]);
R ^= skey->camellia.kw[1];
L ^= skey->camellia.kw[0];
STORE64H(R, pt+8); STORE64H(L, pt+0);
return CRYPT_OK;
}
int camellia_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
int keylen;
unsigned char key[32], pt[16], ct[16];
} tests[] = {
{
16,
{ 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10 },
{ 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10 },
{ 0x67, 0x67, 0x31, 0x38, 0x54, 0x96, 0x69, 0x73,
0x08, 0x57, 0x06, 0x56, 0x48, 0xea, 0xbe, 0x43 }
},
{
24,
{ 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10,
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 },
{ 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10 },
{ 0xb4, 0x99, 0x34, 0x01, 0xb3, 0xe9, 0x96, 0xf8,
0x4e, 0xe5, 0xce, 0xe7, 0xd7, 0x9b, 0x09, 0xb9 }
},
{
32,
{ 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10,
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
{ 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10 },
{ 0x9a, 0xcc, 0x23, 0x7d, 0xff, 0x16, 0xd7, 0x6c,
0x20, 0xef, 0x7c, 0x91, 0x9e, 0x3a, 0x75, 0x09 }
},
{
32,
{ 0x60, 0x3D, 0xEB, 0x10, 0x15, 0xCA, 0x71, 0xBE,
0x2B, 0x73, 0xAE, 0xF0, 0x85, 0x7D, 0x77, 0x81,
0x1F, 0x35, 0x2C, 0x07, 0x3B, 0x61, 0x08, 0xD7,
0x2D, 0x98, 0x10, 0xA3, 0x09, 0x14, 0xDF, 0xF4 },
{ 0xF6, 0x9F, 0x24, 0x45, 0xDF, 0x4F, 0x9B, 0x17,
0xAD, 0x2B, 0x41, 0x7B, 0xE6, 0x6C, 0x37, 0x10 },
{ 0x79, 0x60, 0x10, 0x9F, 0xB6, 0xDC, 0x42, 0x94,
0x7F, 0xCF, 0xE5, 0x9E, 0xA3, 0xC5, 0xEB, 0x6B }
}
};
unsigned char buf[2][16];
symmetric_key skey;
int err;
unsigned int x;
for (x = 0; x < sizeof(tests)/sizeof(tests[0]); x++) {
zeromem(&skey, sizeof(skey));
if ((err = camellia_setup(tests[x].key, tests[x].keylen, 0, &skey)) != CRYPT_OK) {
return err;
}
if ((err = camellia_ecb_encrypt(tests[x].pt, buf[0], &skey)) != CRYPT_OK) {
camellia_done(&skey);
return err;
}
if ((err = camellia_ecb_decrypt(tests[x].ct, buf[1], &skey)) != CRYPT_OK) {
camellia_done(&skey);
return err;
}
camellia_done(&skey);
if (compare_testvector(tests[x].ct, 16, buf[0], 16, "Camellia Encrypt", x) ||
compare_testvector(tests[x].pt, 16, buf[1], 16, "Camellia Decrypt", x)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
void camellia_done(symmetric_key *skey)
{
LTC_UNUSED_PARAM(skey);
}
int camellia_keysize(int *keysize)
{
if (*keysize >= 32) { *keysize = 32; }
else if (*keysize >= 24) { *keysize = 24; }
else if (*keysize >= 16) { *keysize = 16; }
else return CRYPT_INVALID_KEYSIZE;
return CRYPT_OK;
}
#undef loc
#endif

View File

@@ -0,0 +1,709 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file cast5.c
Implementation of LTC_CAST5 (RFC 2144) by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_CAST5
const struct ltc_cipher_descriptor cast5_desc = {
"cast5",
15,
5, 16, 8, 16,
&cast5_setup,
&cast5_ecb_encrypt,
&cast5_ecb_decrypt,
&cast5_test,
&cast5_done,
&cast5_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
static const ulong32 S1[256] = {
0x30fb40d4UL, 0x9fa0ff0bUL, 0x6beccd2fUL, 0x3f258c7aUL, 0x1e213f2fUL, 0x9c004dd3UL,
0x6003e540UL, 0xcf9fc949UL, 0xbfd4af27UL, 0x88bbbdb5UL, 0xe2034090UL, 0x98d09675UL,
0x6e63a0e0UL, 0x15c361d2UL, 0xc2e7661dUL, 0x22d4ff8eUL, 0x28683b6fUL, 0xc07fd059UL,
0xff2379c8UL, 0x775f50e2UL, 0x43c340d3UL, 0xdf2f8656UL, 0x887ca41aUL, 0xa2d2bd2dUL,
0xa1c9e0d6UL, 0x346c4819UL, 0x61b76d87UL, 0x22540f2fUL, 0x2abe32e1UL, 0xaa54166bUL,
0x22568e3aUL, 0xa2d341d0UL, 0x66db40c8UL, 0xa784392fUL, 0x004dff2fUL, 0x2db9d2deUL,
0x97943facUL, 0x4a97c1d8UL, 0x527644b7UL, 0xb5f437a7UL, 0xb82cbaefUL, 0xd751d159UL,
0x6ff7f0edUL, 0x5a097a1fUL, 0x827b68d0UL, 0x90ecf52eUL, 0x22b0c054UL, 0xbc8e5935UL,
0x4b6d2f7fUL, 0x50bb64a2UL, 0xd2664910UL, 0xbee5812dUL, 0xb7332290UL, 0xe93b159fUL,
0xb48ee411UL, 0x4bff345dUL, 0xfd45c240UL, 0xad31973fUL, 0xc4f6d02eUL, 0x55fc8165UL,
0xd5b1caadUL, 0xa1ac2daeUL, 0xa2d4b76dUL, 0xc19b0c50UL, 0x882240f2UL, 0x0c6e4f38UL,
0xa4e4bfd7UL, 0x4f5ba272UL, 0x564c1d2fUL, 0xc59c5319UL, 0xb949e354UL, 0xb04669feUL,
0xb1b6ab8aUL, 0xc71358ddUL, 0x6385c545UL, 0x110f935dUL, 0x57538ad5UL, 0x6a390493UL,
0xe63d37e0UL, 0x2a54f6b3UL, 0x3a787d5fUL, 0x6276a0b5UL, 0x19a6fcdfUL, 0x7a42206aUL,
0x29f9d4d5UL, 0xf61b1891UL, 0xbb72275eUL, 0xaa508167UL, 0x38901091UL, 0xc6b505ebUL,
0x84c7cb8cUL, 0x2ad75a0fUL, 0x874a1427UL, 0xa2d1936bUL, 0x2ad286afUL, 0xaa56d291UL,
0xd7894360UL, 0x425c750dUL, 0x93b39e26UL, 0x187184c9UL, 0x6c00b32dUL, 0x73e2bb14UL,
0xa0bebc3cUL, 0x54623779UL, 0x64459eabUL, 0x3f328b82UL, 0x7718cf82UL, 0x59a2cea6UL,
0x04ee002eUL, 0x89fe78e6UL, 0x3fab0950UL, 0x325ff6c2UL, 0x81383f05UL, 0x6963c5c8UL,
0x76cb5ad6UL, 0xd49974c9UL, 0xca180dcfUL, 0x380782d5UL, 0xc7fa5cf6UL, 0x8ac31511UL,
0x35e79e13UL, 0x47da91d0UL, 0xf40f9086UL, 0xa7e2419eUL, 0x31366241UL, 0x051ef495UL,
0xaa573b04UL, 0x4a805d8dUL, 0x548300d0UL, 0x00322a3cUL, 0xbf64cddfUL, 0xba57a68eUL,
0x75c6372bUL, 0x50afd341UL, 0xa7c13275UL, 0x915a0bf5UL, 0x6b54bfabUL, 0x2b0b1426UL,
0xab4cc9d7UL, 0x449ccd82UL, 0xf7fbf265UL, 0xab85c5f3UL, 0x1b55db94UL, 0xaad4e324UL,
0xcfa4bd3fUL, 0x2deaa3e2UL, 0x9e204d02UL, 0xc8bd25acUL, 0xeadf55b3UL, 0xd5bd9e98UL,
0xe31231b2UL, 0x2ad5ad6cUL, 0x954329deUL, 0xadbe4528UL, 0xd8710f69UL, 0xaa51c90fUL,
0xaa786bf6UL, 0x22513f1eUL, 0xaa51a79bUL, 0x2ad344ccUL, 0x7b5a41f0UL, 0xd37cfbadUL,
0x1b069505UL, 0x41ece491UL, 0xb4c332e6UL, 0x032268d4UL, 0xc9600accUL, 0xce387e6dUL,
0xbf6bb16cUL, 0x6a70fb78UL, 0x0d03d9c9UL, 0xd4df39deUL, 0xe01063daUL, 0x4736f464UL,
0x5ad328d8UL, 0xb347cc96UL, 0x75bb0fc3UL, 0x98511bfbUL, 0x4ffbcc35UL, 0xb58bcf6aUL,
0xe11f0abcUL, 0xbfc5fe4aUL, 0xa70aec10UL, 0xac39570aUL, 0x3f04442fUL, 0x6188b153UL,
0xe0397a2eUL, 0x5727cb79UL, 0x9ceb418fUL, 0x1cacd68dUL, 0x2ad37c96UL, 0x0175cb9dUL,
0xc69dff09UL, 0xc75b65f0UL, 0xd9db40d8UL, 0xec0e7779UL, 0x4744ead4UL, 0xb11c3274UL,
0xdd24cb9eUL, 0x7e1c54bdUL, 0xf01144f9UL, 0xd2240eb1UL, 0x9675b3fdUL, 0xa3ac3755UL,
0xd47c27afUL, 0x51c85f4dUL, 0x56907596UL, 0xa5bb15e6UL, 0x580304f0UL, 0xca042cf1UL,
0x011a37eaUL, 0x8dbfaadbUL, 0x35ba3e4aUL, 0x3526ffa0UL, 0xc37b4d09UL, 0xbc306ed9UL,
0x98a52666UL, 0x5648f725UL, 0xff5e569dUL, 0x0ced63d0UL, 0x7c63b2cfUL, 0x700b45e1UL,
0xd5ea50f1UL, 0x85a92872UL, 0xaf1fbda7UL, 0xd4234870UL, 0xa7870bf3UL, 0x2d3b4d79UL,
0x42e04198UL, 0x0cd0ede7UL, 0x26470db8UL, 0xf881814cUL, 0x474d6ad7UL, 0x7c0c5e5cUL,
0xd1231959UL, 0x381b7298UL, 0xf5d2f4dbUL, 0xab838653UL, 0x6e2f1e23UL, 0x83719c9eUL,
0xbd91e046UL, 0x9a56456eUL, 0xdc39200cUL, 0x20c8c571UL, 0x962bda1cUL, 0xe1e696ffUL,
0xb141ab08UL, 0x7cca89b9UL, 0x1a69e783UL, 0x02cc4843UL, 0xa2f7c579UL, 0x429ef47dUL,
0x427b169cUL, 0x5ac9f049UL, 0xdd8f0f00UL, 0x5c8165bfUL};
static const ulong32 S2[256] = {
0x1f201094UL, 0xef0ba75bUL, 0x69e3cf7eUL, 0x393f4380UL, 0xfe61cf7aUL, 0xeec5207aUL,
0x55889c94UL, 0x72fc0651UL, 0xada7ef79UL, 0x4e1d7235UL, 0xd55a63ceUL, 0xde0436baUL,
0x99c430efUL, 0x5f0c0794UL, 0x18dcdb7dUL, 0xa1d6eff3UL, 0xa0b52f7bUL, 0x59e83605UL,
0xee15b094UL, 0xe9ffd909UL, 0xdc440086UL, 0xef944459UL, 0xba83ccb3UL, 0xe0c3cdfbUL,
0xd1da4181UL, 0x3b092ab1UL, 0xf997f1c1UL, 0xa5e6cf7bUL, 0x01420ddbUL, 0xe4e7ef5bUL,
0x25a1ff41UL, 0xe180f806UL, 0x1fc41080UL, 0x179bee7aUL, 0xd37ac6a9UL, 0xfe5830a4UL,
0x98de8b7fUL, 0x77e83f4eUL, 0x79929269UL, 0x24fa9f7bUL, 0xe113c85bUL, 0xacc40083UL,
0xd7503525UL, 0xf7ea615fUL, 0x62143154UL, 0x0d554b63UL, 0x5d681121UL, 0xc866c359UL,
0x3d63cf73UL, 0xcee234c0UL, 0xd4d87e87UL, 0x5c672b21UL, 0x071f6181UL, 0x39f7627fUL,
0x361e3084UL, 0xe4eb573bUL, 0x602f64a4UL, 0xd63acd9cUL, 0x1bbc4635UL, 0x9e81032dUL,
0x2701f50cUL, 0x99847ab4UL, 0xa0e3df79UL, 0xba6cf38cUL, 0x10843094UL, 0x2537a95eUL,
0xf46f6ffeUL, 0xa1ff3b1fUL, 0x208cfb6aUL, 0x8f458c74UL, 0xd9e0a227UL, 0x4ec73a34UL,
0xfc884f69UL, 0x3e4de8dfUL, 0xef0e0088UL, 0x3559648dUL, 0x8a45388cUL, 0x1d804366UL,
0x721d9bfdUL, 0xa58684bbUL, 0xe8256333UL, 0x844e8212UL, 0x128d8098UL, 0xfed33fb4UL,
0xce280ae1UL, 0x27e19ba5UL, 0xd5a6c252UL, 0xe49754bdUL, 0xc5d655ddUL, 0xeb667064UL,
0x77840b4dUL, 0xa1b6a801UL, 0x84db26a9UL, 0xe0b56714UL, 0x21f043b7UL, 0xe5d05860UL,
0x54f03084UL, 0x066ff472UL, 0xa31aa153UL, 0xdadc4755UL, 0xb5625dbfUL, 0x68561be6UL,
0x83ca6b94UL, 0x2d6ed23bUL, 0xeccf01dbUL, 0xa6d3d0baUL, 0xb6803d5cUL, 0xaf77a709UL,
0x33b4a34cUL, 0x397bc8d6UL, 0x5ee22b95UL, 0x5f0e5304UL, 0x81ed6f61UL, 0x20e74364UL,
0xb45e1378UL, 0xde18639bUL, 0x881ca122UL, 0xb96726d1UL, 0x8049a7e8UL, 0x22b7da7bUL,
0x5e552d25UL, 0x5272d237UL, 0x79d2951cUL, 0xc60d894cUL, 0x488cb402UL, 0x1ba4fe5bUL,
0xa4b09f6bUL, 0x1ca815cfUL, 0xa20c3005UL, 0x8871df63UL, 0xb9de2fcbUL, 0x0cc6c9e9UL,
0x0beeff53UL, 0xe3214517UL, 0xb4542835UL, 0x9f63293cUL, 0xee41e729UL, 0x6e1d2d7cUL,
0x50045286UL, 0x1e6685f3UL, 0xf33401c6UL, 0x30a22c95UL, 0x31a70850UL, 0x60930f13UL,
0x73f98417UL, 0xa1269859UL, 0xec645c44UL, 0x52c877a9UL, 0xcdff33a6UL, 0xa02b1741UL,
0x7cbad9a2UL, 0x2180036fUL, 0x50d99c08UL, 0xcb3f4861UL, 0xc26bd765UL, 0x64a3f6abUL,
0x80342676UL, 0x25a75e7bUL, 0xe4e6d1fcUL, 0x20c710e6UL, 0xcdf0b680UL, 0x17844d3bUL,
0x31eef84dUL, 0x7e0824e4UL, 0x2ccb49ebUL, 0x846a3baeUL, 0x8ff77888UL, 0xee5d60f6UL,
0x7af75673UL, 0x2fdd5cdbUL, 0xa11631c1UL, 0x30f66f43UL, 0xb3faec54UL, 0x157fd7faUL,
0xef8579ccUL, 0xd152de58UL, 0xdb2ffd5eUL, 0x8f32ce19UL, 0x306af97aUL, 0x02f03ef8UL,
0x99319ad5UL, 0xc242fa0fUL, 0xa7e3ebb0UL, 0xc68e4906UL, 0xb8da230cUL, 0x80823028UL,
0xdcdef3c8UL, 0xd35fb171UL, 0x088a1bc8UL, 0xbec0c560UL, 0x61a3c9e8UL, 0xbca8f54dUL,
0xc72feffaUL, 0x22822e99UL, 0x82c570b4UL, 0xd8d94e89UL, 0x8b1c34bcUL, 0x301e16e6UL,
0x273be979UL, 0xb0ffeaa6UL, 0x61d9b8c6UL, 0x00b24869UL, 0xb7ffce3fUL, 0x08dc283bUL,
0x43daf65aUL, 0xf7e19798UL, 0x7619b72fUL, 0x8f1c9ba4UL, 0xdc8637a0UL, 0x16a7d3b1UL,
0x9fc393b7UL, 0xa7136eebUL, 0xc6bcc63eUL, 0x1a513742UL, 0xef6828bcUL, 0x520365d6UL,
0x2d6a77abUL, 0x3527ed4bUL, 0x821fd216UL, 0x095c6e2eUL, 0xdb92f2fbUL, 0x5eea29cbUL,
0x145892f5UL, 0x91584f7fUL, 0x5483697bUL, 0x2667a8ccUL, 0x85196048UL, 0x8c4baceaUL,
0x833860d4UL, 0x0d23e0f9UL, 0x6c387e8aUL, 0x0ae6d249UL, 0xb284600cUL, 0xd835731dUL,
0xdcb1c647UL, 0xac4c56eaUL, 0x3ebd81b3UL, 0x230eabb0UL, 0x6438bc87UL, 0xf0b5b1faUL,
0x8f5ea2b3UL, 0xfc184642UL, 0x0a036b7aUL, 0x4fb089bdUL, 0x649da589UL, 0xa345415eUL,
0x5c038323UL, 0x3e5d3bb9UL, 0x43d79572UL, 0x7e6dd07cUL, 0x06dfdf1eUL, 0x6c6cc4efUL,
0x7160a539UL, 0x73bfbe70UL, 0x83877605UL, 0x4523ecf1UL};
static const ulong32 S3[256] = {
0x8defc240UL, 0x25fa5d9fUL, 0xeb903dbfUL, 0xe810c907UL, 0x47607fffUL, 0x369fe44bUL,
0x8c1fc644UL, 0xaececa90UL, 0xbeb1f9bfUL, 0xeefbcaeaUL, 0xe8cf1950UL, 0x51df07aeUL,
0x920e8806UL, 0xf0ad0548UL, 0xe13c8d83UL, 0x927010d5UL, 0x11107d9fUL, 0x07647db9UL,
0xb2e3e4d4UL, 0x3d4f285eUL, 0xb9afa820UL, 0xfade82e0UL, 0xa067268bUL, 0x8272792eUL,
0x553fb2c0UL, 0x489ae22bUL, 0xd4ef9794UL, 0x125e3fbcUL, 0x21fffceeUL, 0x825b1bfdUL,
0x9255c5edUL, 0x1257a240UL, 0x4e1a8302UL, 0xbae07fffUL, 0x528246e7UL, 0x8e57140eUL,
0x3373f7bfUL, 0x8c9f8188UL, 0xa6fc4ee8UL, 0xc982b5a5UL, 0xa8c01db7UL, 0x579fc264UL,
0x67094f31UL, 0xf2bd3f5fUL, 0x40fff7c1UL, 0x1fb78dfcUL, 0x8e6bd2c1UL, 0x437be59bUL,
0x99b03dbfUL, 0xb5dbc64bUL, 0x638dc0e6UL, 0x55819d99UL, 0xa197c81cUL, 0x4a012d6eUL,
0xc5884a28UL, 0xccc36f71UL, 0xb843c213UL, 0x6c0743f1UL, 0x8309893cUL, 0x0feddd5fUL,
0x2f7fe850UL, 0xd7c07f7eUL, 0x02507fbfUL, 0x5afb9a04UL, 0xa747d2d0UL, 0x1651192eUL,
0xaf70bf3eUL, 0x58c31380UL, 0x5f98302eUL, 0x727cc3c4UL, 0x0a0fb402UL, 0x0f7fef82UL,
0x8c96fdadUL, 0x5d2c2aaeUL, 0x8ee99a49UL, 0x50da88b8UL, 0x8427f4a0UL, 0x1eac5790UL,
0x796fb449UL, 0x8252dc15UL, 0xefbd7d9bUL, 0xa672597dUL, 0xada840d8UL, 0x45f54504UL,
0xfa5d7403UL, 0xe83ec305UL, 0x4f91751aUL, 0x925669c2UL, 0x23efe941UL, 0xa903f12eUL,
0x60270df2UL, 0x0276e4b6UL, 0x94fd6574UL, 0x927985b2UL, 0x8276dbcbUL, 0x02778176UL,
0xf8af918dUL, 0x4e48f79eUL, 0x8f616ddfUL, 0xe29d840eUL, 0x842f7d83UL, 0x340ce5c8UL,
0x96bbb682UL, 0x93b4b148UL, 0xef303cabUL, 0x984faf28UL, 0x779faf9bUL, 0x92dc560dUL,
0x224d1e20UL, 0x8437aa88UL, 0x7d29dc96UL, 0x2756d3dcUL, 0x8b907ceeUL, 0xb51fd240UL,
0xe7c07ce3UL, 0xe566b4a1UL, 0xc3e9615eUL, 0x3cf8209dUL, 0x6094d1e3UL, 0xcd9ca341UL,
0x5c76460eUL, 0x00ea983bUL, 0xd4d67881UL, 0xfd47572cUL, 0xf76cedd9UL, 0xbda8229cUL,
0x127dadaaUL, 0x438a074eUL, 0x1f97c090UL, 0x081bdb8aUL, 0x93a07ebeUL, 0xb938ca15UL,
0x97b03cffUL, 0x3dc2c0f8UL, 0x8d1ab2ecUL, 0x64380e51UL, 0x68cc7bfbUL, 0xd90f2788UL,
0x12490181UL, 0x5de5ffd4UL, 0xdd7ef86aUL, 0x76a2e214UL, 0xb9a40368UL, 0x925d958fUL,
0x4b39fffaUL, 0xba39aee9UL, 0xa4ffd30bUL, 0xfaf7933bUL, 0x6d498623UL, 0x193cbcfaUL,
0x27627545UL, 0x825cf47aUL, 0x61bd8ba0UL, 0xd11e42d1UL, 0xcead04f4UL, 0x127ea392UL,
0x10428db7UL, 0x8272a972UL, 0x9270c4a8UL, 0x127de50bUL, 0x285ba1c8UL, 0x3c62f44fUL,
0x35c0eaa5UL, 0xe805d231UL, 0x428929fbUL, 0xb4fcdf82UL, 0x4fb66a53UL, 0x0e7dc15bUL,
0x1f081fabUL, 0x108618aeUL, 0xfcfd086dUL, 0xf9ff2889UL, 0x694bcc11UL, 0x236a5caeUL,
0x12deca4dUL, 0x2c3f8cc5UL, 0xd2d02dfeUL, 0xf8ef5896UL, 0xe4cf52daUL, 0x95155b67UL,
0x494a488cUL, 0xb9b6a80cUL, 0x5c8f82bcUL, 0x89d36b45UL, 0x3a609437UL, 0xec00c9a9UL,
0x44715253UL, 0x0a874b49UL, 0xd773bc40UL, 0x7c34671cUL, 0x02717ef6UL, 0x4feb5536UL,
0xa2d02fffUL, 0xd2bf60c4UL, 0xd43f03c0UL, 0x50b4ef6dUL, 0x07478cd1UL, 0x006e1888UL,
0xa2e53f55UL, 0xb9e6d4bcUL, 0xa2048016UL, 0x97573833UL, 0xd7207d67UL, 0xde0f8f3dUL,
0x72f87b33UL, 0xabcc4f33UL, 0x7688c55dUL, 0x7b00a6b0UL, 0x947b0001UL, 0x570075d2UL,
0xf9bb88f8UL, 0x8942019eUL, 0x4264a5ffUL, 0x856302e0UL, 0x72dbd92bUL, 0xee971b69UL,
0x6ea22fdeUL, 0x5f08ae2bUL, 0xaf7a616dUL, 0xe5c98767UL, 0xcf1febd2UL, 0x61efc8c2UL,
0xf1ac2571UL, 0xcc8239c2UL, 0x67214cb8UL, 0xb1e583d1UL, 0xb7dc3e62UL, 0x7f10bdceUL,
0xf90a5c38UL, 0x0ff0443dUL, 0x606e6dc6UL, 0x60543a49UL, 0x5727c148UL, 0x2be98a1dUL,
0x8ab41738UL, 0x20e1be24UL, 0xaf96da0fUL, 0x68458425UL, 0x99833be5UL, 0x600d457dUL,
0x282f9350UL, 0x8334b362UL, 0xd91d1120UL, 0x2b6d8da0UL, 0x642b1e31UL, 0x9c305a00UL,
0x52bce688UL, 0x1b03588aUL, 0xf7baefd5UL, 0x4142ed9cUL, 0xa4315c11UL, 0x83323ec5UL,
0xdfef4636UL, 0xa133c501UL, 0xe9d3531cUL, 0xee353783UL};
static const ulong32 S4[256] = {
0x9db30420UL, 0x1fb6e9deUL, 0xa7be7befUL, 0xd273a298UL, 0x4a4f7bdbUL, 0x64ad8c57UL,
0x85510443UL, 0xfa020ed1UL, 0x7e287affUL, 0xe60fb663UL, 0x095f35a1UL, 0x79ebf120UL,
0xfd059d43UL, 0x6497b7b1UL, 0xf3641f63UL, 0x241e4adfUL, 0x28147f5fUL, 0x4fa2b8cdUL,
0xc9430040UL, 0x0cc32220UL, 0xfdd30b30UL, 0xc0a5374fUL, 0x1d2d00d9UL, 0x24147b15UL,
0xee4d111aUL, 0x0fca5167UL, 0x71ff904cUL, 0x2d195ffeUL, 0x1a05645fUL, 0x0c13fefeUL,
0x081b08caUL, 0x05170121UL, 0x80530100UL, 0xe83e5efeUL, 0xac9af4f8UL, 0x7fe72701UL,
0xd2b8ee5fUL, 0x06df4261UL, 0xbb9e9b8aUL, 0x7293ea25UL, 0xce84ffdfUL, 0xf5718801UL,
0x3dd64b04UL, 0xa26f263bUL, 0x7ed48400UL, 0x547eebe6UL, 0x446d4ca0UL, 0x6cf3d6f5UL,
0x2649abdfUL, 0xaea0c7f5UL, 0x36338cc1UL, 0x503f7e93UL, 0xd3772061UL, 0x11b638e1UL,
0x72500e03UL, 0xf80eb2bbUL, 0xabe0502eUL, 0xec8d77deUL, 0x57971e81UL, 0xe14f6746UL,
0xc9335400UL, 0x6920318fUL, 0x081dbb99UL, 0xffc304a5UL, 0x4d351805UL, 0x7f3d5ce3UL,
0xa6c866c6UL, 0x5d5bcca9UL, 0xdaec6feaUL, 0x9f926f91UL, 0x9f46222fUL, 0x3991467dUL,
0xa5bf6d8eUL, 0x1143c44fUL, 0x43958302UL, 0xd0214eebUL, 0x022083b8UL, 0x3fb6180cUL,
0x18f8931eUL, 0x281658e6UL, 0x26486e3eUL, 0x8bd78a70UL, 0x7477e4c1UL, 0xb506e07cUL,
0xf32d0a25UL, 0x79098b02UL, 0xe4eabb81UL, 0x28123b23UL, 0x69dead38UL, 0x1574ca16UL,
0xdf871b62UL, 0x211c40b7UL, 0xa51a9ef9UL, 0x0014377bUL, 0x041e8ac8UL, 0x09114003UL,
0xbd59e4d2UL, 0xe3d156d5UL, 0x4fe876d5UL, 0x2f91a340UL, 0x557be8deUL, 0x00eae4a7UL,
0x0ce5c2ecUL, 0x4db4bba6UL, 0xe756bdffUL, 0xdd3369acUL, 0xec17b035UL, 0x06572327UL,
0x99afc8b0UL, 0x56c8c391UL, 0x6b65811cUL, 0x5e146119UL, 0x6e85cb75UL, 0xbe07c002UL,
0xc2325577UL, 0x893ff4ecUL, 0x5bbfc92dUL, 0xd0ec3b25UL, 0xb7801ab7UL, 0x8d6d3b24UL,
0x20c763efUL, 0xc366a5fcUL, 0x9c382880UL, 0x0ace3205UL, 0xaac9548aUL, 0xeca1d7c7UL,
0x041afa32UL, 0x1d16625aUL, 0x6701902cUL, 0x9b757a54UL, 0x31d477f7UL, 0x9126b031UL,
0x36cc6fdbUL, 0xc70b8b46UL, 0xd9e66a48UL, 0x56e55a79UL, 0x026a4cebUL, 0x52437effUL,
0x2f8f76b4UL, 0x0df980a5UL, 0x8674cde3UL, 0xedda04ebUL, 0x17a9be04UL, 0x2c18f4dfUL,
0xb7747f9dUL, 0xab2af7b4UL, 0xefc34d20UL, 0x2e096b7cUL, 0x1741a254UL, 0xe5b6a035UL,
0x213d42f6UL, 0x2c1c7c26UL, 0x61c2f50fUL, 0x6552daf9UL, 0xd2c231f8UL, 0x25130f69UL,
0xd8167fa2UL, 0x0418f2c8UL, 0x001a96a6UL, 0x0d1526abUL, 0x63315c21UL, 0x5e0a72ecUL,
0x49bafefdUL, 0x187908d9UL, 0x8d0dbd86UL, 0x311170a7UL, 0x3e9b640cUL, 0xcc3e10d7UL,
0xd5cad3b6UL, 0x0caec388UL, 0xf73001e1UL, 0x6c728affUL, 0x71eae2a1UL, 0x1f9af36eUL,
0xcfcbd12fUL, 0xc1de8417UL, 0xac07be6bUL, 0xcb44a1d8UL, 0x8b9b0f56UL, 0x013988c3UL,
0xb1c52fcaUL, 0xb4be31cdUL, 0xd8782806UL, 0x12a3a4e2UL, 0x6f7de532UL, 0x58fd7eb6UL,
0xd01ee900UL, 0x24adffc2UL, 0xf4990fc5UL, 0x9711aac5UL, 0x001d7b95UL, 0x82e5e7d2UL,
0x109873f6UL, 0x00613096UL, 0xc32d9521UL, 0xada121ffUL, 0x29908415UL, 0x7fbb977fUL,
0xaf9eb3dbUL, 0x29c9ed2aUL, 0x5ce2a465UL, 0xa730f32cUL, 0xd0aa3fe8UL, 0x8a5cc091UL,
0xd49e2ce7UL, 0x0ce454a9UL, 0xd60acd86UL, 0x015f1919UL, 0x77079103UL, 0xdea03af6UL,
0x78a8565eUL, 0xdee356dfUL, 0x21f05cbeUL, 0x8b75e387UL, 0xb3c50651UL, 0xb8a5c3efUL,
0xd8eeb6d2UL, 0xe523be77UL, 0xc2154529UL, 0x2f69efdfUL, 0xafe67afbUL, 0xf470c4b2UL,
0xf3e0eb5bUL, 0xd6cc9876UL, 0x39e4460cUL, 0x1fda8538UL, 0x1987832fUL, 0xca007367UL,
0xa99144f8UL, 0x296b299eUL, 0x492fc295UL, 0x9266beabUL, 0xb5676e69UL, 0x9bd3dddaUL,
0xdf7e052fUL, 0xdb25701cUL, 0x1b5e51eeUL, 0xf65324e6UL, 0x6afce36cUL, 0x0316cc04UL,
0x8644213eUL, 0xb7dc59d0UL, 0x7965291fUL, 0xccd6fd43UL, 0x41823979UL, 0x932bcdf6UL,
0xb657c34dUL, 0x4edfd282UL, 0x7ae5290cUL, 0x3cb9536bUL, 0x851e20feUL, 0x9833557eUL,
0x13ecf0b0UL, 0xd3ffb372UL, 0x3f85c5c1UL, 0x0aef7ed2UL};
static const ulong32 S5[256] = {
0x7ec90c04UL, 0x2c6e74b9UL, 0x9b0e66dfUL, 0xa6337911UL, 0xb86a7fffUL, 0x1dd358f5UL,
0x44dd9d44UL, 0x1731167fUL, 0x08fbf1faUL, 0xe7f511ccUL, 0xd2051b00UL, 0x735aba00UL,
0x2ab722d8UL, 0x386381cbUL, 0xacf6243aUL, 0x69befd7aUL, 0xe6a2e77fUL, 0xf0c720cdUL,
0xc4494816UL, 0xccf5c180UL, 0x38851640UL, 0x15b0a848UL, 0xe68b18cbUL, 0x4caadeffUL,
0x5f480a01UL, 0x0412b2aaUL, 0x259814fcUL, 0x41d0efe2UL, 0x4e40b48dUL, 0x248eb6fbUL,
0x8dba1cfeUL, 0x41a99b02UL, 0x1a550a04UL, 0xba8f65cbUL, 0x7251f4e7UL, 0x95a51725UL,
0xc106ecd7UL, 0x97a5980aUL, 0xc539b9aaUL, 0x4d79fe6aUL, 0xf2f3f763UL, 0x68af8040UL,
0xed0c9e56UL, 0x11b4958bUL, 0xe1eb5a88UL, 0x8709e6b0UL, 0xd7e07156UL, 0x4e29fea7UL,
0x6366e52dUL, 0x02d1c000UL, 0xc4ac8e05UL, 0x9377f571UL, 0x0c05372aUL, 0x578535f2UL,
0x2261be02UL, 0xd642a0c9UL, 0xdf13a280UL, 0x74b55bd2UL, 0x682199c0UL, 0xd421e5ecUL,
0x53fb3ce8UL, 0xc8adedb3UL, 0x28a87fc9UL, 0x3d959981UL, 0x5c1ff900UL, 0xfe38d399UL,
0x0c4eff0bUL, 0x062407eaUL, 0xaa2f4fb1UL, 0x4fb96976UL, 0x90c79505UL, 0xb0a8a774UL,
0xef55a1ffUL, 0xe59ca2c2UL, 0xa6b62d27UL, 0xe66a4263UL, 0xdf65001fUL, 0x0ec50966UL,
0xdfdd55bcUL, 0x29de0655UL, 0x911e739aUL, 0x17af8975UL, 0x32c7911cUL, 0x89f89468UL,
0x0d01e980UL, 0x524755f4UL, 0x03b63cc9UL, 0x0cc844b2UL, 0xbcf3f0aaUL, 0x87ac36e9UL,
0xe53a7426UL, 0x01b3d82bUL, 0x1a9e7449UL, 0x64ee2d7eUL, 0xcddbb1daUL, 0x01c94910UL,
0xb868bf80UL, 0x0d26f3fdUL, 0x9342ede7UL, 0x04a5c284UL, 0x636737b6UL, 0x50f5b616UL,
0xf24766e3UL, 0x8eca36c1UL, 0x136e05dbUL, 0xfef18391UL, 0xfb887a37UL, 0xd6e7f7d4UL,
0xc7fb7dc9UL, 0x3063fcdfUL, 0xb6f589deUL, 0xec2941daUL, 0x26e46695UL, 0xb7566419UL,
0xf654efc5UL, 0xd08d58b7UL, 0x48925401UL, 0xc1bacb7fUL, 0xe5ff550fUL, 0xb6083049UL,
0x5bb5d0e8UL, 0x87d72e5aUL, 0xab6a6ee1UL, 0x223a66ceUL, 0xc62bf3cdUL, 0x9e0885f9UL,
0x68cb3e47UL, 0x086c010fUL, 0xa21de820UL, 0xd18b69deUL, 0xf3f65777UL, 0xfa02c3f6UL,
0x407edac3UL, 0xcbb3d550UL, 0x1793084dUL, 0xb0d70ebaUL, 0x0ab378d5UL, 0xd951fb0cUL,
0xded7da56UL, 0x4124bbe4UL, 0x94ca0b56UL, 0x0f5755d1UL, 0xe0e1e56eUL, 0x6184b5beUL,
0x580a249fUL, 0x94f74bc0UL, 0xe327888eUL, 0x9f7b5561UL, 0xc3dc0280UL, 0x05687715UL,
0x646c6bd7UL, 0x44904db3UL, 0x66b4f0a3UL, 0xc0f1648aUL, 0x697ed5afUL, 0x49e92ff6UL,
0x309e374fUL, 0x2cb6356aUL, 0x85808573UL, 0x4991f840UL, 0x76f0ae02UL, 0x083be84dUL,
0x28421c9aUL, 0x44489406UL, 0x736e4cb8UL, 0xc1092910UL, 0x8bc95fc6UL, 0x7d869cf4UL,
0x134f616fUL, 0x2e77118dUL, 0xb31b2be1UL, 0xaa90b472UL, 0x3ca5d717UL, 0x7d161bbaUL,
0x9cad9010UL, 0xaf462ba2UL, 0x9fe459d2UL, 0x45d34559UL, 0xd9f2da13UL, 0xdbc65487UL,
0xf3e4f94eUL, 0x176d486fUL, 0x097c13eaUL, 0x631da5c7UL, 0x445f7382UL, 0x175683f4UL,
0xcdc66a97UL, 0x70be0288UL, 0xb3cdcf72UL, 0x6e5dd2f3UL, 0x20936079UL, 0x459b80a5UL,
0xbe60e2dbUL, 0xa9c23101UL, 0xeba5315cUL, 0x224e42f2UL, 0x1c5c1572UL, 0xf6721b2cUL,
0x1ad2fff3UL, 0x8c25404eUL, 0x324ed72fUL, 0x4067b7fdUL, 0x0523138eUL, 0x5ca3bc78UL,
0xdc0fd66eUL, 0x75922283UL, 0x784d6b17UL, 0x58ebb16eUL, 0x44094f85UL, 0x3f481d87UL,
0xfcfeae7bUL, 0x77b5ff76UL, 0x8c2302bfUL, 0xaaf47556UL, 0x5f46b02aUL, 0x2b092801UL,
0x3d38f5f7UL, 0x0ca81f36UL, 0x52af4a8aUL, 0x66d5e7c0UL, 0xdf3b0874UL, 0x95055110UL,
0x1b5ad7a8UL, 0xf61ed5adUL, 0x6cf6e479UL, 0x20758184UL, 0xd0cefa65UL, 0x88f7be58UL,
0x4a046826UL, 0x0ff6f8f3UL, 0xa09c7f70UL, 0x5346aba0UL, 0x5ce96c28UL, 0xe176eda3UL,
0x6bac307fUL, 0x376829d2UL, 0x85360fa9UL, 0x17e3fe2aUL, 0x24b79767UL, 0xf5a96b20UL,
0xd6cd2595UL, 0x68ff1ebfUL, 0x7555442cUL, 0xf19f06beUL, 0xf9e0659aUL, 0xeeb9491dUL,
0x34010718UL, 0xbb30cab8UL, 0xe822fe15UL, 0x88570983UL, 0x750e6249UL, 0xda627e55UL,
0x5e76ffa8UL, 0xb1534546UL, 0x6d47de08UL, 0xefe9e7d4UL};
static const ulong32 S6[256] = {
0xf6fa8f9dUL, 0x2cac6ce1UL, 0x4ca34867UL, 0xe2337f7cUL, 0x95db08e7UL, 0x016843b4UL,
0xeced5cbcUL, 0x325553acUL, 0xbf9f0960UL, 0xdfa1e2edUL, 0x83f0579dUL, 0x63ed86b9UL,
0x1ab6a6b8UL, 0xde5ebe39UL, 0xf38ff732UL, 0x8989b138UL, 0x33f14961UL, 0xc01937bdUL,
0xf506c6daUL, 0xe4625e7eUL, 0xa308ea99UL, 0x4e23e33cUL, 0x79cbd7ccUL, 0x48a14367UL,
0xa3149619UL, 0xfec94bd5UL, 0xa114174aUL, 0xeaa01866UL, 0xa084db2dUL, 0x09a8486fUL,
0xa888614aUL, 0x2900af98UL, 0x01665991UL, 0xe1992863UL, 0xc8f30c60UL, 0x2e78ef3cUL,
0xd0d51932UL, 0xcf0fec14UL, 0xf7ca07d2UL, 0xd0a82072UL, 0xfd41197eUL, 0x9305a6b0UL,
0xe86be3daUL, 0x74bed3cdUL, 0x372da53cUL, 0x4c7f4448UL, 0xdab5d440UL, 0x6dba0ec3UL,
0x083919a7UL, 0x9fbaeed9UL, 0x49dbcfb0UL, 0x4e670c53UL, 0x5c3d9c01UL, 0x64bdb941UL,
0x2c0e636aUL, 0xba7dd9cdUL, 0xea6f7388UL, 0xe70bc762UL, 0x35f29adbUL, 0x5c4cdd8dUL,
0xf0d48d8cUL, 0xb88153e2UL, 0x08a19866UL, 0x1ae2eac8UL, 0x284caf89UL, 0xaa928223UL,
0x9334be53UL, 0x3b3a21bfUL, 0x16434be3UL, 0x9aea3906UL, 0xefe8c36eUL, 0xf890cdd9UL,
0x80226daeUL, 0xc340a4a3UL, 0xdf7e9c09UL, 0xa694a807UL, 0x5b7c5eccUL, 0x221db3a6UL,
0x9a69a02fUL, 0x68818a54UL, 0xceb2296fUL, 0x53c0843aUL, 0xfe893655UL, 0x25bfe68aUL,
0xb4628abcUL, 0xcf222ebfUL, 0x25ac6f48UL, 0xa9a99387UL, 0x53bddb65UL, 0xe76ffbe7UL,
0xe967fd78UL, 0x0ba93563UL, 0x8e342bc1UL, 0xe8a11be9UL, 0x4980740dUL, 0xc8087dfcUL,
0x8de4bf99UL, 0xa11101a0UL, 0x7fd37975UL, 0xda5a26c0UL, 0xe81f994fUL, 0x9528cd89UL,
0xfd339fedUL, 0xb87834bfUL, 0x5f04456dUL, 0x22258698UL, 0xc9c4c83bUL, 0x2dc156beUL,
0x4f628daaUL, 0x57f55ec5UL, 0xe2220abeUL, 0xd2916ebfUL, 0x4ec75b95UL, 0x24f2c3c0UL,
0x42d15d99UL, 0xcd0d7fa0UL, 0x7b6e27ffUL, 0xa8dc8af0UL, 0x7345c106UL, 0xf41e232fUL,
0x35162386UL, 0xe6ea8926UL, 0x3333b094UL, 0x157ec6f2UL, 0x372b74afUL, 0x692573e4UL,
0xe9a9d848UL, 0xf3160289UL, 0x3a62ef1dUL, 0xa787e238UL, 0xf3a5f676UL, 0x74364853UL,
0x20951063UL, 0x4576698dUL, 0xb6fad407UL, 0x592af950UL, 0x36f73523UL, 0x4cfb6e87UL,
0x7da4cec0UL, 0x6c152daaUL, 0xcb0396a8UL, 0xc50dfe5dUL, 0xfcd707abUL, 0x0921c42fUL,
0x89dff0bbUL, 0x5fe2be78UL, 0x448f4f33UL, 0x754613c9UL, 0x2b05d08dUL, 0x48b9d585UL,
0xdc049441UL, 0xc8098f9bUL, 0x7dede786UL, 0xc39a3373UL, 0x42410005UL, 0x6a091751UL,
0x0ef3c8a6UL, 0x890072d6UL, 0x28207682UL, 0xa9a9f7beUL, 0xbf32679dUL, 0xd45b5b75UL,
0xb353fd00UL, 0xcbb0e358UL, 0x830f220aUL, 0x1f8fb214UL, 0xd372cf08UL, 0xcc3c4a13UL,
0x8cf63166UL, 0x061c87beUL, 0x88c98f88UL, 0x6062e397UL, 0x47cf8e7aUL, 0xb6c85283UL,
0x3cc2acfbUL, 0x3fc06976UL, 0x4e8f0252UL, 0x64d8314dUL, 0xda3870e3UL, 0x1e665459UL,
0xc10908f0UL, 0x513021a5UL, 0x6c5b68b7UL, 0x822f8aa0UL, 0x3007cd3eUL, 0x74719eefUL,
0xdc872681UL, 0x073340d4UL, 0x7e432fd9UL, 0x0c5ec241UL, 0x8809286cUL, 0xf592d891UL,
0x08a930f6UL, 0x957ef305UL, 0xb7fbffbdUL, 0xc266e96fUL, 0x6fe4ac98UL, 0xb173ecc0UL,
0xbc60b42aUL, 0x953498daUL, 0xfba1ae12UL, 0x2d4bd736UL, 0x0f25faabUL, 0xa4f3fcebUL,
0xe2969123UL, 0x257f0c3dUL, 0x9348af49UL, 0x361400bcUL, 0xe8816f4aUL, 0x3814f200UL,
0xa3f94043UL, 0x9c7a54c2UL, 0xbc704f57UL, 0xda41e7f9UL, 0xc25ad33aUL, 0x54f4a084UL,
0xb17f5505UL, 0x59357cbeUL, 0xedbd15c8UL, 0x7f97c5abUL, 0xba5ac7b5UL, 0xb6f6deafUL,
0x3a479c3aUL, 0x5302da25UL, 0x653d7e6aUL, 0x54268d49UL, 0x51a477eaUL, 0x5017d55bUL,
0xd7d25d88UL, 0x44136c76UL, 0x0404a8c8UL, 0xb8e5a121UL, 0xb81a928aUL, 0x60ed5869UL,
0x97c55b96UL, 0xeaec991bUL, 0x29935913UL, 0x01fdb7f1UL, 0x088e8dfaUL, 0x9ab6f6f5UL,
0x3b4cbf9fUL, 0x4a5de3abUL, 0xe6051d35UL, 0xa0e1d855UL, 0xd36b4cf1UL, 0xf544edebUL,
0xb0e93524UL, 0xbebb8fbdUL, 0xa2d762cfUL, 0x49c92f54UL, 0x38b5f331UL, 0x7128a454UL,
0x48392905UL, 0xa65b1db8UL, 0x851c97bdUL, 0xd675cf2fUL};
static const ulong32 S7[256] = {
0x85e04019UL, 0x332bf567UL, 0x662dbfffUL, 0xcfc65693UL, 0x2a8d7f6fUL, 0xab9bc912UL,
0xde6008a1UL, 0x2028da1fUL, 0x0227bce7UL, 0x4d642916UL, 0x18fac300UL, 0x50f18b82UL,
0x2cb2cb11UL, 0xb232e75cUL, 0x4b3695f2UL, 0xb28707deUL, 0xa05fbcf6UL, 0xcd4181e9UL,
0xe150210cUL, 0xe24ef1bdUL, 0xb168c381UL, 0xfde4e789UL, 0x5c79b0d8UL, 0x1e8bfd43UL,
0x4d495001UL, 0x38be4341UL, 0x913cee1dUL, 0x92a79c3fUL, 0x089766beUL, 0xbaeeadf4UL,
0x1286becfUL, 0xb6eacb19UL, 0x2660c200UL, 0x7565bde4UL, 0x64241f7aUL, 0x8248dca9UL,
0xc3b3ad66UL, 0x28136086UL, 0x0bd8dfa8UL, 0x356d1cf2UL, 0x107789beUL, 0xb3b2e9ceUL,
0x0502aa8fUL, 0x0bc0351eUL, 0x166bf52aUL, 0xeb12ff82UL, 0xe3486911UL, 0xd34d7516UL,
0x4e7b3affUL, 0x5f43671bUL, 0x9cf6e037UL, 0x4981ac83UL, 0x334266ceUL, 0x8c9341b7UL,
0xd0d854c0UL, 0xcb3a6c88UL, 0x47bc2829UL, 0x4725ba37UL, 0xa66ad22bUL, 0x7ad61f1eUL,
0x0c5cbafaUL, 0x4437f107UL, 0xb6e79962UL, 0x42d2d816UL, 0x0a961288UL, 0xe1a5c06eUL,
0x13749e67UL, 0x72fc081aUL, 0xb1d139f7UL, 0xf9583745UL, 0xcf19df58UL, 0xbec3f756UL,
0xc06eba30UL, 0x07211b24UL, 0x45c28829UL, 0xc95e317fUL, 0xbc8ec511UL, 0x38bc46e9UL,
0xc6e6fa14UL, 0xbae8584aUL, 0xad4ebc46UL, 0x468f508bUL, 0x7829435fUL, 0xf124183bUL,
0x821dba9fUL, 0xaff60ff4UL, 0xea2c4e6dUL, 0x16e39264UL, 0x92544a8bUL, 0x009b4fc3UL,
0xaba68cedUL, 0x9ac96f78UL, 0x06a5b79aUL, 0xb2856e6eUL, 0x1aec3ca9UL, 0xbe838688UL,
0x0e0804e9UL, 0x55f1be56UL, 0xe7e5363bUL, 0xb3a1f25dUL, 0xf7debb85UL, 0x61fe033cUL,
0x16746233UL, 0x3c034c28UL, 0xda6d0c74UL, 0x79aac56cUL, 0x3ce4e1adUL, 0x51f0c802UL,
0x98f8f35aUL, 0x1626a49fUL, 0xeed82b29UL, 0x1d382fe3UL, 0x0c4fb99aUL, 0xbb325778UL,
0x3ec6d97bUL, 0x6e77a6a9UL, 0xcb658b5cUL, 0xd45230c7UL, 0x2bd1408bUL, 0x60c03eb7UL,
0xb9068d78UL, 0xa33754f4UL, 0xf430c87dUL, 0xc8a71302UL, 0xb96d8c32UL, 0xebd4e7beUL,
0xbe8b9d2dUL, 0x7979fb06UL, 0xe7225308UL, 0x8b75cf77UL, 0x11ef8da4UL, 0xe083c858UL,
0x8d6b786fUL, 0x5a6317a6UL, 0xfa5cf7a0UL, 0x5dda0033UL, 0xf28ebfb0UL, 0xf5b9c310UL,
0xa0eac280UL, 0x08b9767aUL, 0xa3d9d2b0UL, 0x79d34217UL, 0x021a718dUL, 0x9ac6336aUL,
0x2711fd60UL, 0x438050e3UL, 0x069908a8UL, 0x3d7fedc4UL, 0x826d2befUL, 0x4eeb8476UL,
0x488dcf25UL, 0x36c9d566UL, 0x28e74e41UL, 0xc2610acaUL, 0x3d49a9cfUL, 0xbae3b9dfUL,
0xb65f8de6UL, 0x92aeaf64UL, 0x3ac7d5e6UL, 0x9ea80509UL, 0xf22b017dUL, 0xa4173f70UL,
0xdd1e16c3UL, 0x15e0d7f9UL, 0x50b1b887UL, 0x2b9f4fd5UL, 0x625aba82UL, 0x6a017962UL,
0x2ec01b9cUL, 0x15488aa9UL, 0xd716e740UL, 0x40055a2cUL, 0x93d29a22UL, 0xe32dbf9aUL,
0x058745b9UL, 0x3453dc1eUL, 0xd699296eUL, 0x496cff6fUL, 0x1c9f4986UL, 0xdfe2ed07UL,
0xb87242d1UL, 0x19de7eaeUL, 0x053e561aUL, 0x15ad6f8cUL, 0x66626c1cUL, 0x7154c24cUL,
0xea082b2aUL, 0x93eb2939UL, 0x17dcb0f0UL, 0x58d4f2aeUL, 0x9ea294fbUL, 0x52cf564cUL,
0x9883fe66UL, 0x2ec40581UL, 0x763953c3UL, 0x01d6692eUL, 0xd3a0c108UL, 0xa1e7160eUL,
0xe4f2dfa6UL, 0x693ed285UL, 0x74904698UL, 0x4c2b0eddUL, 0x4f757656UL, 0x5d393378UL,
0xa132234fUL, 0x3d321c5dUL, 0xc3f5e194UL, 0x4b269301UL, 0xc79f022fUL, 0x3c997e7eUL,
0x5e4f9504UL, 0x3ffafbbdUL, 0x76f7ad0eUL, 0x296693f4UL, 0x3d1fce6fUL, 0xc61e45beUL,
0xd3b5ab34UL, 0xf72bf9b7UL, 0x1b0434c0UL, 0x4e72b567UL, 0x5592a33dUL, 0xb5229301UL,
0xcfd2a87fUL, 0x60aeb767UL, 0x1814386bUL, 0x30bcc33dUL, 0x38a0c07dUL, 0xfd1606f2UL,
0xc363519bUL, 0x589dd390UL, 0x5479f8e6UL, 0x1cb8d647UL, 0x97fd61a9UL, 0xea7759f4UL,
0x2d57539dUL, 0x569a58cfUL, 0xe84e63adUL, 0x462e1b78UL, 0x6580f87eUL, 0xf3817914UL,
0x91da55f4UL, 0x40a230f3UL, 0xd1988f35UL, 0xb6e318d2UL, 0x3ffa50bcUL, 0x3d40f021UL,
0xc3c0bdaeUL, 0x4958c24cUL, 0x518f36b2UL, 0x84b1d370UL, 0x0fedce83UL, 0x878ddadaUL,
0xf2a279c7UL, 0x94e01be8UL, 0x90716f4bUL, 0x954b8aa3UL};
static const ulong32 S8[256] = {
0xe216300dUL, 0xbbddfffcUL, 0xa7ebdabdUL, 0x35648095UL, 0x7789f8b7UL, 0xe6c1121bUL,
0x0e241600UL, 0x052ce8b5UL, 0x11a9cfb0UL, 0xe5952f11UL, 0xece7990aUL, 0x9386d174UL,
0x2a42931cUL, 0x76e38111UL, 0xb12def3aUL, 0x37ddddfcUL, 0xde9adeb1UL, 0x0a0cc32cUL,
0xbe197029UL, 0x84a00940UL, 0xbb243a0fUL, 0xb4d137cfUL, 0xb44e79f0UL, 0x049eedfdUL,
0x0b15a15dUL, 0x480d3168UL, 0x8bbbde5aUL, 0x669ded42UL, 0xc7ece831UL, 0x3f8f95e7UL,
0x72df191bUL, 0x7580330dUL, 0x94074251UL, 0x5c7dcdfaUL, 0xabbe6d63UL, 0xaa402164UL,
0xb301d40aUL, 0x02e7d1caUL, 0x53571daeUL, 0x7a3182a2UL, 0x12a8ddecUL, 0xfdaa335dUL,
0x176f43e8UL, 0x71fb46d4UL, 0x38129022UL, 0xce949ad4UL, 0xb84769adUL, 0x965bd862UL,
0x82f3d055UL, 0x66fb9767UL, 0x15b80b4eUL, 0x1d5b47a0UL, 0x4cfde06fUL, 0xc28ec4b8UL,
0x57e8726eUL, 0x647a78fcUL, 0x99865d44UL, 0x608bd593UL, 0x6c200e03UL, 0x39dc5ff6UL,
0x5d0b00a3UL, 0xae63aff2UL, 0x7e8bd632UL, 0x70108c0cUL, 0xbbd35049UL, 0x2998df04UL,
0x980cf42aUL, 0x9b6df491UL, 0x9e7edd53UL, 0x06918548UL, 0x58cb7e07UL, 0x3b74ef2eUL,
0x522fffb1UL, 0xd24708ccUL, 0x1c7e27cdUL, 0xa4eb215bUL, 0x3cf1d2e2UL, 0x19b47a38UL,
0x424f7618UL, 0x35856039UL, 0x9d17dee7UL, 0x27eb35e6UL, 0xc9aff67bUL, 0x36baf5b8UL,
0x09c467cdUL, 0xc18910b1UL, 0xe11dbf7bUL, 0x06cd1af8UL, 0x7170c608UL, 0x2d5e3354UL,
0xd4de495aUL, 0x64c6d006UL, 0xbcc0c62cUL, 0x3dd00db3UL, 0x708f8f34UL, 0x77d51b42UL,
0x264f620fUL, 0x24b8d2bfUL, 0x15c1b79eUL, 0x46a52564UL, 0xf8d7e54eUL, 0x3e378160UL,
0x7895cda5UL, 0x859c15a5UL, 0xe6459788UL, 0xc37bc75fUL, 0xdb07ba0cUL, 0x0676a3abUL,
0x7f229b1eUL, 0x31842e7bUL, 0x24259fd7UL, 0xf8bef472UL, 0x835ffcb8UL, 0x6df4c1f2UL,
0x96f5b195UL, 0xfd0af0fcUL, 0xb0fe134cUL, 0xe2506d3dUL, 0x4f9b12eaUL, 0xf215f225UL,
0xa223736fUL, 0x9fb4c428UL, 0x25d04979UL, 0x34c713f8UL, 0xc4618187UL, 0xea7a6e98UL,
0x7cd16efcUL, 0x1436876cUL, 0xf1544107UL, 0xbedeee14UL, 0x56e9af27UL, 0xa04aa441UL,
0x3cf7c899UL, 0x92ecbae6UL, 0xdd67016dUL, 0x151682ebUL, 0xa842eedfUL, 0xfdba60b4UL,
0xf1907b75UL, 0x20e3030fUL, 0x24d8c29eUL, 0xe139673bUL, 0xefa63fb8UL, 0x71873054UL,
0xb6f2cf3bUL, 0x9f326442UL, 0xcb15a4ccUL, 0xb01a4504UL, 0xf1e47d8dUL, 0x844a1be5UL,
0xbae7dfdcUL, 0x42cbda70UL, 0xcd7dae0aUL, 0x57e85b7aUL, 0xd53f5af6UL, 0x20cf4d8cUL,
0xcea4d428UL, 0x79d130a4UL, 0x3486ebfbUL, 0x33d3cddcUL, 0x77853b53UL, 0x37effcb5UL,
0xc5068778UL, 0xe580b3e6UL, 0x4e68b8f4UL, 0xc5c8b37eUL, 0x0d809ea2UL, 0x398feb7cUL,
0x132a4f94UL, 0x43b7950eUL, 0x2fee7d1cUL, 0x223613bdUL, 0xdd06caa2UL, 0x37df932bUL,
0xc4248289UL, 0xacf3ebc3UL, 0x5715f6b7UL, 0xef3478ddUL, 0xf267616fUL, 0xc148cbe4UL,
0x9052815eUL, 0x5e410fabUL, 0xb48a2465UL, 0x2eda7fa4UL, 0xe87b40e4UL, 0xe98ea084UL,
0x5889e9e1UL, 0xefd390fcUL, 0xdd07d35bUL, 0xdb485694UL, 0x38d7e5b2UL, 0x57720101UL,
0x730edebcUL, 0x5b643113UL, 0x94917e4fUL, 0x503c2fbaUL, 0x646f1282UL, 0x7523d24aUL,
0xe0779695UL, 0xf9c17a8fUL, 0x7a5b2121UL, 0xd187b896UL, 0x29263a4dUL, 0xba510cdfUL,
0x81f47c9fUL, 0xad1163edUL, 0xea7b5965UL, 0x1a00726eUL, 0x11403092UL, 0x00da6d77UL,
0x4a0cdd61UL, 0xad1f4603UL, 0x605bdfb0UL, 0x9eedc364UL, 0x22ebe6a8UL, 0xcee7d28aUL,
0xa0e736a0UL, 0x5564a6b9UL, 0x10853209UL, 0xc7eb8f37UL, 0x2de705caUL, 0x8951570fUL,
0xdf09822bUL, 0xbd691a6cUL, 0xaa12e4f2UL, 0x87451c0fUL, 0xe0f6a27aUL, 0x3ada4819UL,
0x4cf1764fUL, 0x0d771c2bUL, 0x67cdb156UL, 0x350d8384UL, 0x5938fa0fUL, 0x42399ef3UL,
0x36997b07UL, 0x0e84093dUL, 0x4aa93e61UL, 0x8360d87bUL, 0x1fa98b0cUL, 0x1149382cUL,
0xe97625a5UL, 0x0614d1b7UL, 0x0e25244bUL, 0x0c768347UL, 0x589e8d82UL, 0x0d2059d1UL,
0xa466bb1eUL, 0xf8da0a82UL, 0x04f19130UL, 0xba6e4ec0UL, 0x99265164UL, 0x1ee7230dUL,
0x50b2ad80UL, 0xeaee6801UL, 0x8db2a283UL, 0xea8bf59eUL};
/* returns the i'th byte of a variable */
#ifdef _MSC_VER
#define GB(x, i) ((unsigned char)((x[(15-i)>>2])>>(unsigned)(8*((15-i)&3))))
#else
#define GB(x, i) (((x[(15-i)>>2])>>(unsigned)(8*((15-i)&3)))&255)
#endif
/**
Initialize the LTC_CAST5 block cipher
@param key The symmetric key you wish to pass
@param keylen The key length in bytes
@param num_rounds The number of rounds desired (0 for default)
@param skey The key in as scheduled by this function.
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_cast5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
#else
int cast5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
#endif
{
ulong32 x[4], z[4];
unsigned char buf[16];
int y, i;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
if (num_rounds != 12 && num_rounds != 16 && num_rounds != 0) {
return CRYPT_INVALID_ROUNDS;
}
if (num_rounds == 12 && keylen > 10) {
return CRYPT_INVALID_ROUNDS;
}
if (keylen < 5 || keylen > 16) {
return CRYPT_INVALID_KEYSIZE;
}
/* extend the key as required */
zeromem(buf, sizeof(buf));
XMEMCPY(buf, key, (size_t)keylen);
/* load and start the awful looking network */
for (y = 0; y < 4; y++) {
LOAD32H(x[3-y],buf+4*y);
}
for (i = y = 0; y < 2; y++) {
z[3] = x[3] ^ S5[GB(x, 0xD)] ^ S6[GB(x, 0xF)] ^ S7[GB(x, 0xC)] ^ S8[GB(x, 0xE)] ^ S7[GB(x, 0x8)];
z[2] = x[1] ^ S5[GB(z, 0x0)] ^ S6[GB(z, 0x2)] ^ S7[GB(z, 0x1)] ^ S8[GB(z, 0x3)] ^ S8[GB(x, 0xA)];
z[1] = x[0] ^ S5[GB(z, 0x7)] ^ S6[GB(z, 0x6)] ^ S7[GB(z, 0x5)] ^ S8[GB(z, 0x4)] ^ S5[GB(x, 0x9)];
z[0] = x[2] ^ S5[GB(z, 0xA)] ^ S6[GB(z, 0x9)] ^ S7[GB(z, 0xb)] ^ S8[GB(z, 0x8)] ^ S6[GB(x, 0xB)];
skey->cast5.K[i++] = S5[GB(z, 0x8)] ^ S6[GB(z, 0x9)] ^ S7[GB(z, 0x7)] ^ S8[GB(z, 0x6)] ^ S5[GB(z, 0x2)];
skey->cast5.K[i++] = S5[GB(z, 0xA)] ^ S6[GB(z, 0xB)] ^ S7[GB(z, 0x5)] ^ S8[GB(z, 0x4)] ^ S6[GB(z, 0x6)];
skey->cast5.K[i++] = S5[GB(z, 0xC)] ^ S6[GB(z, 0xd)] ^ S7[GB(z, 0x3)] ^ S8[GB(z, 0x2)] ^ S7[GB(z, 0x9)];
skey->cast5.K[i++] = S5[GB(z, 0xE)] ^ S6[GB(z, 0xF)] ^ S7[GB(z, 0x1)] ^ S8[GB(z, 0x0)] ^ S8[GB(z, 0xc)];
x[3] = z[1] ^ S5[GB(z, 0x5)] ^ S6[GB(z, 0x7)] ^ S7[GB(z, 0x4)] ^ S8[GB(z, 0x6)] ^ S7[GB(z, 0x0)];
x[2] = z[3] ^ S5[GB(x, 0x0)] ^ S6[GB(x, 0x2)] ^ S7[GB(x, 0x1)] ^ S8[GB(x, 0x3)] ^ S8[GB(z, 0x2)];
x[1] = z[2] ^ S5[GB(x, 0x7)] ^ S6[GB(x, 0x6)] ^ S7[GB(x, 0x5)] ^ S8[GB(x, 0x4)] ^ S5[GB(z, 0x1)];
x[0] = z[0] ^ S5[GB(x, 0xA)] ^ S6[GB(x, 0x9)] ^ S7[GB(x, 0xb)] ^ S8[GB(x, 0x8)] ^ S6[GB(z, 0x3)];
skey->cast5.K[i++] = S5[GB(x, 0x3)] ^ S6[GB(x, 0x2)] ^ S7[GB(x, 0xc)] ^ S8[GB(x, 0xd)] ^ S5[GB(x, 0x8)];
skey->cast5.K[i++] = S5[GB(x, 0x1)] ^ S6[GB(x, 0x0)] ^ S7[GB(x, 0xe)] ^ S8[GB(x, 0xf)] ^ S6[GB(x, 0xd)];
skey->cast5.K[i++] = S5[GB(x, 0x7)] ^ S6[GB(x, 0x6)] ^ S7[GB(x, 0x8)] ^ S8[GB(x, 0x9)] ^ S7[GB(x, 0x3)];
skey->cast5.K[i++] = S5[GB(x, 0x5)] ^ S6[GB(x, 0x4)] ^ S7[GB(x, 0xa)] ^ S8[GB(x, 0xb)] ^ S8[GB(x, 0x7)];
/* second half */
z[3] = x[3] ^ S5[GB(x, 0xD)] ^ S6[GB(x, 0xF)] ^ S7[GB(x, 0xC)] ^ S8[GB(x, 0xE)] ^ S7[GB(x, 0x8)];
z[2] = x[1] ^ S5[GB(z, 0x0)] ^ S6[GB(z, 0x2)] ^ S7[GB(z, 0x1)] ^ S8[GB(z, 0x3)] ^ S8[GB(x, 0xA)];
z[1] = x[0] ^ S5[GB(z, 0x7)] ^ S6[GB(z, 0x6)] ^ S7[GB(z, 0x5)] ^ S8[GB(z, 0x4)] ^ S5[GB(x, 0x9)];
z[0] = x[2] ^ S5[GB(z, 0xA)] ^ S6[GB(z, 0x9)] ^ S7[GB(z, 0xb)] ^ S8[GB(z, 0x8)] ^ S6[GB(x, 0xB)];
skey->cast5.K[i++] = S5[GB(z, 0x3)] ^ S6[GB(z, 0x2)] ^ S7[GB(z, 0xc)] ^ S8[GB(z, 0xd)] ^ S5[GB(z, 0x9)];
skey->cast5.K[i++] = S5[GB(z, 0x1)] ^ S6[GB(z, 0x0)] ^ S7[GB(z, 0xe)] ^ S8[GB(z, 0xf)] ^ S6[GB(z, 0xc)];
skey->cast5.K[i++] = S5[GB(z, 0x7)] ^ S6[GB(z, 0x6)] ^ S7[GB(z, 0x8)] ^ S8[GB(z, 0x9)] ^ S7[GB(z, 0x2)];
skey->cast5.K[i++] = S5[GB(z, 0x5)] ^ S6[GB(z, 0x4)] ^ S7[GB(z, 0xa)] ^ S8[GB(z, 0xb)] ^ S8[GB(z, 0x6)];
x[3] = z[1] ^ S5[GB(z, 0x5)] ^ S6[GB(z, 0x7)] ^ S7[GB(z, 0x4)] ^ S8[GB(z, 0x6)] ^ S7[GB(z, 0x0)];
x[2] = z[3] ^ S5[GB(x, 0x0)] ^ S6[GB(x, 0x2)] ^ S7[GB(x, 0x1)] ^ S8[GB(x, 0x3)] ^ S8[GB(z, 0x2)];
x[1] = z[2] ^ S5[GB(x, 0x7)] ^ S6[GB(x, 0x6)] ^ S7[GB(x, 0x5)] ^ S8[GB(x, 0x4)] ^ S5[GB(z, 0x1)];
x[0] = z[0] ^ S5[GB(x, 0xA)] ^ S6[GB(x, 0x9)] ^ S7[GB(x, 0xb)] ^ S8[GB(x, 0x8)] ^ S6[GB(z, 0x3)];
skey->cast5.K[i++] = S5[GB(x, 0x8)] ^ S6[GB(x, 0x9)] ^ S7[GB(x, 0x7)] ^ S8[GB(x, 0x6)] ^ S5[GB(x, 0x3)];
skey->cast5.K[i++] = S5[GB(x, 0xa)] ^ S6[GB(x, 0xb)] ^ S7[GB(x, 0x5)] ^ S8[GB(x, 0x4)] ^ S6[GB(x, 0x7)];
skey->cast5.K[i++] = S5[GB(x, 0xc)] ^ S6[GB(x, 0xd)] ^ S7[GB(x, 0x3)] ^ S8[GB(x, 0x2)] ^ S7[GB(x, 0x8)];
skey->cast5.K[i++] = S5[GB(x, 0xe)] ^ S6[GB(x, 0xf)] ^ S7[GB(x, 0x1)] ^ S8[GB(x, 0x0)] ^ S8[GB(x, 0xd)];
}
skey->cast5.keylen = keylen;
#ifdef LTC_CLEAN_STACK
zeromem(buf, sizeof(buf));
zeromem(x, sizeof(x));
zeromem(z, sizeof(z));
#endif
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int cast5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
int z;
z = s_cast5_setup(key, keylen, num_rounds, skey);
burn_stack(sizeof(ulong32)*8 + 16 + sizeof(int)*2);
return z;
}
#endif
#define FI cast5_FI
LTC_INLINE static ulong32 FI(ulong32 R, ulong32 Km, ulong32 Kr)
{
ulong32 I;
I = (Km + R);
I = ROL(I, Kr);
return ((S1[LTC_BYTE(I, 3)] ^ S2[LTC_BYTE(I,2)]) - S3[LTC_BYTE(I,1)]) + S4[LTC_BYTE(I,0)];
}
LTC_INLINE static ulong32 FII(ulong32 R, ulong32 Km, ulong32 Kr)
{
ulong32 I;
I = (Km ^ R);
I = ROL(I, Kr);
return ((S1[LTC_BYTE(I, 3)] - S2[LTC_BYTE(I,2)]) + S3[LTC_BYTE(I,1)]) ^ S4[LTC_BYTE(I,0)];
}
LTC_INLINE static ulong32 FIII(ulong32 R, ulong32 Km, ulong32 Kr)
{
ulong32 I;
I = (Km - R);
I = ROL(I, Kr);
return ((S1[LTC_BYTE(I, 3)] + S2[LTC_BYTE(I,2)]) ^ S3[LTC_BYTE(I,1)]) - S4[LTC_BYTE(I,0)];
}
/**
Encrypts a block of text with LTC_CAST5
@param pt The input plaintext (8 bytes)
@param ct The output ciphertext (8 bytes)
@param skey The key as scheduled
*/
#ifdef LTC_CLEAN_STACK
static int s_cast5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#else
int cast5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#endif
{
ulong32 R, L;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
LOAD32H(L,&pt[0]);
LOAD32H(R,&pt[4]);
L ^= FI(R, skey->cast5.K[0], skey->cast5.K[16]);
R ^= FII(L, skey->cast5.K[1], skey->cast5.K[17]);
L ^= FIII(R, skey->cast5.K[2], skey->cast5.K[18]);
R ^= FI(L, skey->cast5.K[3], skey->cast5.K[19]);
L ^= FII(R, skey->cast5.K[4], skey->cast5.K[20]);
R ^= FIII(L, skey->cast5.K[5], skey->cast5.K[21]);
L ^= FI(R, skey->cast5.K[6], skey->cast5.K[22]);
R ^= FII(L, skey->cast5.K[7], skey->cast5.K[23]);
L ^= FIII(R, skey->cast5.K[8], skey->cast5.K[24]);
R ^= FI(L, skey->cast5.K[9], skey->cast5.K[25]);
L ^= FII(R, skey->cast5.K[10], skey->cast5.K[26]);
R ^= FIII(L, skey->cast5.K[11], skey->cast5.K[27]);
if (skey->cast5.keylen > 10) {
L ^= FI(R, skey->cast5.K[12], skey->cast5.K[28]);
R ^= FII(L, skey->cast5.K[13], skey->cast5.K[29]);
L ^= FIII(R, skey->cast5.K[14], skey->cast5.K[30]);
R ^= FI(L, skey->cast5.K[15], skey->cast5.K[31]);
}
STORE32H(R,&ct[0]);
STORE32H(L,&ct[4]);
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int cast5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
{
int err = s_cast5_ecb_encrypt(pt,ct,skey);
burn_stack(sizeof(ulong32)*3);
return err;
}
#endif
/**
Decrypts a block of text with LTC_CAST5
@param ct The input ciphertext (8 bytes)
@param pt The output plaintext (8 bytes)
@param skey The key as scheduled
*/
#ifdef LTC_CLEAN_STACK
static int s_cast5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#else
int cast5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#endif
{
ulong32 R, L;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
LOAD32H(R,&ct[0]);
LOAD32H(L,&ct[4]);
if (skey->cast5.keylen > 10) {
R ^= FI(L, skey->cast5.K[15], skey->cast5.K[31]);
L ^= FIII(R, skey->cast5.K[14], skey->cast5.K[30]);
R ^= FII(L, skey->cast5.K[13], skey->cast5.K[29]);
L ^= FI(R, skey->cast5.K[12], skey->cast5.K[28]);
}
R ^= FIII(L, skey->cast5.K[11], skey->cast5.K[27]);
L ^= FII(R, skey->cast5.K[10], skey->cast5.K[26]);
R ^= FI(L, skey->cast5.K[9], skey->cast5.K[25]);
L ^= FIII(R, skey->cast5.K[8], skey->cast5.K[24]);
R ^= FII(L, skey->cast5.K[7], skey->cast5.K[23]);
L ^= FI(R, skey->cast5.K[6], skey->cast5.K[22]);
R ^= FIII(L, skey->cast5.K[5], skey->cast5.K[21]);
L ^= FII(R, skey->cast5.K[4], skey->cast5.K[20]);
R ^= FI(L, skey->cast5.K[3], skey->cast5.K[19]);
L ^= FIII(R, skey->cast5.K[2], skey->cast5.K[18]);
R ^= FII(L, skey->cast5.K[1], skey->cast5.K[17]);
L ^= FI(R, skey->cast5.K[0], skey->cast5.K[16]);
STORE32H(L,&pt[0]);
STORE32H(R,&pt[4]);
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int cast5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
{
int err = s_cast5_ecb_decrypt(ct,pt,skey);
burn_stack(sizeof(ulong32)*3);
return err;
}
#endif
/**
Performs a self-test of the LTC_CAST5 block cipher
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int cast5_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
int keylen;
unsigned char key[16];
unsigned char pt[8];
unsigned char ct[8];
} tests[] = {
{ 16,
{0x01, 0x23, 0x45, 0x67, 0x12, 0x34, 0x56, 0x78, 0x23, 0x45, 0x67, 0x89, 0x34, 0x56, 0x78, 0x9A},
{0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF},
{0x23, 0x8B, 0x4F, 0xE5, 0x84, 0x7E, 0x44, 0xB2}
},
{ 10,
{0x01, 0x23, 0x45, 0x67, 0x12, 0x34, 0x56, 0x78, 0x23, 0x45, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF},
{0xEB, 0x6A, 0x71, 0x1A, 0x2C, 0x02, 0x27, 0x1B},
},
{ 5,
{0x01, 0x23, 0x45, 0x67, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF},
{0x7A, 0xC8, 0x16, 0xD1, 0x6E, 0x9B, 0x30, 0x2E}
}
};
int i, y, err;
symmetric_key key;
unsigned char tmp[2][8];
for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
if ((err = cast5_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
return err;
}
cast5_ecb_encrypt(tests[i].pt, tmp[0], &key);
cast5_ecb_decrypt(tmp[0], tmp[1], &key);
if ((compare_testvector(tmp[0], 8, tests[i].ct, 8, "CAST5 Encrypt", i) != 0) ||
(compare_testvector(tmp[1], 8, tests[i].pt, 8, "CAST5 Decrypt", i) != 0)) {
return CRYPT_FAIL_TESTVECTOR;
}
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
for (y = 0; y < 8; y++) tmp[0][y] = 0;
for (y = 0; y < 1000; y++) cast5_ecb_encrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 1000; y++) cast5_ecb_decrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
}
return CRYPT_OK;
#endif
}
/** Terminate the context
@param skey The scheduled key
*/
void cast5_done(symmetric_key *skey)
{
LTC_UNUSED_PARAM(skey);
}
/**
Gets suitable key size
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
@return CRYPT_OK if the input key size is acceptable.
*/
int cast5_keysize(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize < 5) {
return CRYPT_INVALID_KEYSIZE;
}
if (*keysize > 16) {
*keysize = 16;
}
return CRYPT_OK;
}
#undef GB
#undef FI
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,258 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* Based on idea.cpp - originally written and placed in the public domain by Wei Dai
https://github.com/weidai11/cryptopp/blob/master/idea.cpp
Patents should be expired. On 2017-10-16 wikipedia says:
https://en.wikipedia.org/wiki/International_Data_Encryption_Algorithm
A patent application for IDEA was first filed in Switzerland (CH A 1690/90) on May 18, 1990,
then an international patent application was filed under the Patent Cooperation Treaty on
May 16, 1991. Patents were eventually granted in Austria, France, Germany, Italy, the Netherlands,
Spain, Sweden, Switzerland, the United Kingdom, (European Patent Register entry for European
patent no. 0482154, filed May 16, 1991, issued June 22, 1994 and expired May 16, 2011),
the United States (U.S. Patent 5,214,703, issued May 25, 1993 and expired January 7, 2012)
and Japan (JP 3225440) (expired May 16, 2011).
*/
#include "tomcrypt_private.h"
#ifdef LTC_IDEA
const struct ltc_cipher_descriptor idea_desc = {
"idea",
24, /* cipher_ID */
16, 16, 8, 8, /* min_key_len, max_key_len, block_len, default_rounds */
&idea_setup,
&idea_ecb_encrypt,
&idea_ecb_decrypt,
&idea_test,
&idea_done,
&idea_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
typedef unsigned short int ushort16;
#define LOW16(x) ((x)&0xffff) /* compiler should be able to optimize this away if x is 16 bits */
#define HIGH16(x) ((x)>>16)
#define MUL(a,b) { \
ulong32 p = (ulong32)LOW16(a) * b; \
if (p) { \
p = LOW16(p) - HIGH16(p); \
a = (ushort16)p - (ushort16)HIGH16(p); \
} \
else \
a = 1 - a - b; \
}
#define STORE16(x,y) { (y)[0] = (unsigned char)(((x)>>8)&255); (y)[1] = (unsigned char)((x)&255); }
#define LOAD16(x,y) { x = ((ushort16)((y)[0] & 255)<<8) | ((ushort16)((y)[1] & 255)); }
static ushort16 s_mul_inv(ushort16 x)
{
ushort16 y = x;
unsigned i;
for (i = 0; i < 15; i++) {
MUL(y, LOW16(y));
MUL(y, x);
}
return LOW16(y);
}
static ushort16 s_add_inv(ushort16 x)
{
return LOW16(0 - x);
}
#define s_setup_key s_idea_setup_key
static int s_setup_key(const unsigned char *key, symmetric_key *skey)
{
int i, j;
ushort16 *e_key = skey->idea.ek;
ushort16 *d_key = skey->idea.dk;
/* prepare enc key */
for (i = 0; i < 8; i++) {
LOAD16(e_key[i], key + 2 * i);
}
for (; i < LTC_IDEA_KEYLEN; i++) {
j = (i - i % 8) - 8;
e_key[i] = LOW16((e_key[j+(i+1)%8] << 9) | (e_key[j+(i+2)%8] >> 7));
}
/* prepare dec key */
for (i = 0; i < LTC_IDEA_ROUNDS; i++) {
d_key[i*6+0] = s_mul_inv(e_key[(LTC_IDEA_ROUNDS-i)*6+0]);
d_key[i*6+1] = s_add_inv(e_key[(LTC_IDEA_ROUNDS-i)*6+1+(i>0 ? 1 : 0)]);
d_key[i*6+2] = s_add_inv(e_key[(LTC_IDEA_ROUNDS-i)*6+2-(i>0 ? 1 : 0)]);
d_key[i*6+3] = s_mul_inv(e_key[(LTC_IDEA_ROUNDS-i)*6+3]);
d_key[i*6+4] = e_key[(LTC_IDEA_ROUNDS-1-i)*6+4];
d_key[i*6+5] = e_key[(LTC_IDEA_ROUNDS-1-i)*6+5];
}
d_key[i*6+0] = s_mul_inv(e_key[(LTC_IDEA_ROUNDS-i)*6+0]);
d_key[i*6+1] = s_add_inv(e_key[(LTC_IDEA_ROUNDS-i)*6+1]);
d_key[i*6+2] = s_add_inv(e_key[(LTC_IDEA_ROUNDS-i)*6+2]);
d_key[i*6+3] = s_mul_inv(e_key[(LTC_IDEA_ROUNDS-i)*6+3]);
return CRYPT_OK;
}
static int s_process_block(const unsigned char *in, unsigned char *out, const ushort16 *m_key)
{
int i;
ushort16 x0, x1, x2, x3, t0, t1;
LOAD16(x0, in + 0);
LOAD16(x1, in + 2);
LOAD16(x2, in + 4);
LOAD16(x3, in + 6);
for (i = 0; i < LTC_IDEA_ROUNDS; i++) {
MUL(x0, m_key[i*6+0]);
x1 += m_key[i*6+1];
x2 += m_key[i*6+2];
MUL(x3, m_key[i*6+3]);
t0 = x0^x2;
MUL(t0, m_key[i*6+4]);
t1 = t0 + (x1^x3);
MUL(t1, m_key[i*6+5]);
t0 += t1;
x0 ^= t1;
x3 ^= t0;
t0 ^= x1;
x1 = x2^t1;
x2 = t0;
}
MUL(x0, m_key[LTC_IDEA_ROUNDS*6+0]);
x2 += m_key[LTC_IDEA_ROUNDS*6+1];
x1 += m_key[LTC_IDEA_ROUNDS*6+2];
MUL(x3, m_key[LTC_IDEA_ROUNDS*6+3]);
STORE16(x0, out + 0);
STORE16(x2, out + 2);
STORE16(x1, out + 4);
STORE16(x3, out + 6);
return CRYPT_OK;
}
int idea_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
if (num_rounds != 0 && num_rounds != 8) return CRYPT_INVALID_ROUNDS;
if (keylen != 16) return CRYPT_INVALID_KEYSIZE;
return s_setup_key(key, skey);
}
int idea_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
{
int err = s_process_block(pt, ct, skey->idea.ek);
#ifdef LTC_CLEAN_STACK
burn_stack(sizeof(ushort16) * 6 + sizeof(int));
#endif
return err;
}
int idea_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
{
int err = s_process_block(ct, pt, skey->idea.dk);
#ifdef LTC_CLEAN_STACK
burn_stack(sizeof(ushort16) * 6 + sizeof(int));
#endif
return err;
}
void idea_done(symmetric_key *skey)
{
LTC_UNUSED_PARAM(skey);
}
int idea_keysize(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize < 16) {
return CRYPT_INVALID_KEYSIZE;
}
*keysize = 16;
return CRYPT_OK;
}
int idea_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
unsigned char key[16], pt[8], ct[8];
} tests[] = {
{
/* key */ { 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
/* pt */ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
/* ct */ { 0xB1, 0xF5, 0xF7, 0xF8, 0x79, 0x01, 0x37, 0x0F }
},
{
/* key */ { 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
/* pt */ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
/* ct */ { 0xB3, 0x92, 0x7D, 0xFF, 0xB6, 0x35, 0x86, 0x26 }
},
{
/* key */ { 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
/* pt */ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
/* ct */ { 0xE9, 0x87, 0xE0, 0x02, 0x9F, 0xB9, 0x97, 0x85 }
},
{
/* key */ { 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
/* pt */ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
/* ct */ { 0x75, 0x4A, 0x03, 0xCE, 0x08, 0xDB, 0x7D, 0xAA }
},
{
/* key */ { 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
/* pt */ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
/* ct */ { 0xF0, 0x15, 0xF9, 0xFB, 0x0C, 0xFC, 0x7E, 0x1C }
},
};
unsigned char buf[2][8];
symmetric_key key;
int err, x;
if (sizeof(ushort16) != 2) {
return CRYPT_FAIL_TESTVECTOR;
}
for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) {
if ((err = idea_setup(tests[x].key, 16, 8, &key)) != CRYPT_OK) {
return err;
}
if ((err = idea_ecb_encrypt(tests[x].pt, buf[0], &key)) != CRYPT_OK) {
return err;
}
if (compare_testvector(buf[0], 8, tests[x].ct, 8, "IDEA Encrypt", x)) {
return CRYPT_FAIL_TESTVECTOR;
}
if ((err = idea_ecb_decrypt(tests[x].ct, buf[1], &key)) != CRYPT_OK) {
return err;
}
if (compare_testvector(buf[1], 8, tests[x].pt, 8, "IDEA Decrypt", x)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
#undef LOW16
#undef HIGH16
#undef MUL
#undef STORE16
#undef LOAD16
#undef s_setup_key
#endif

View File

@@ -0,0 +1,311 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file kasumi.c
Implementation of the 3GPP Kasumi block cipher
Derived from the 3GPP standard source code
*/
#include "tomcrypt_private.h"
#ifdef LTC_KASUMI
typedef unsigned u16;
#define ROL16(x, y) ((((x)<<(y)) | ((x)>>(16-(y)))) & 0xFFFF)
const struct ltc_cipher_descriptor kasumi_desc = {
"kasumi",
21,
16, 16, 8, 8,
&kasumi_setup,
&kasumi_ecb_encrypt,
&kasumi_ecb_decrypt,
&kasumi_test,
&kasumi_done,
&kasumi_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
#define FI kasumi_FI
static u16 FI( u16 in, u16 subkey )
{
u16 nine, seven;
static const u16 S7[128] = {
54, 50, 62, 56, 22, 34, 94, 96, 38, 6, 63, 93, 2, 18,123, 33,
55,113, 39,114, 21, 67, 65, 12, 47, 73, 46, 27, 25,111,124, 81,
53, 9,121, 79, 52, 60, 58, 48,101,127, 40,120,104, 70, 71, 43,
20,122, 72, 61, 23,109, 13,100, 77, 1, 16, 7, 82, 10,105, 98,
117,116, 76, 11, 89,106, 0,125,118, 99, 86, 69, 30, 57,126, 87,
112, 51, 17, 5, 95, 14, 90, 84, 91, 8, 35,103, 32, 97, 28, 66,
102, 31, 26, 45, 75, 4, 85, 92, 37, 74, 80, 49, 68, 29,115, 44,
64,107,108, 24,110, 83, 36, 78, 42, 19, 15, 41, 88,119, 59, 3 };
static const u16 S9[512] = {
167,239,161,379,391,334, 9,338, 38,226, 48,358,452,385, 90,397,
183,253,147,331,415,340, 51,362,306,500,262, 82,216,159,356,177,
175,241,489, 37,206, 17, 0,333, 44,254,378, 58,143,220, 81,400,
95, 3,315,245, 54,235,218,405,472,264,172,494,371,290,399, 76,
165,197,395,121,257,480,423,212,240, 28,462,176,406,507,288,223,
501,407,249,265, 89,186,221,428,164, 74,440,196,458,421,350,163,
232,158,134,354, 13,250,491,142,191, 69,193,425,152,227,366,135,
344,300,276,242,437,320,113,278, 11,243, 87,317, 36, 93,496, 27,
487,446,482, 41, 68,156,457,131,326,403,339, 20, 39,115,442,124,
475,384,508, 53,112,170,479,151,126,169, 73,268,279,321,168,364,
363,292, 46,499,393,327,324, 24,456,267,157,460,488,426,309,229,
439,506,208,271,349,401,434,236, 16,209,359, 52, 56,120,199,277,
465,416,252,287,246, 6, 83,305,420,345,153,502, 65, 61,244,282,
173,222,418, 67,386,368,261,101,476,291,195,430, 49, 79,166,330,
280,383,373,128,382,408,155,495,367,388,274,107,459,417, 62,454,
132,225,203,316,234, 14,301, 91,503,286,424,211,347,307,140,374,
35,103,125,427, 19,214,453,146,498,314,444,230,256,329,198,285,
50,116, 78,410, 10,205,510,171,231, 45,139,467, 29, 86,505, 32,
72, 26,342,150,313,490,431,238,411,325,149,473, 40,119,174,355,
185,233,389, 71,448,273,372, 55,110,178,322, 12,469,392,369,190,
1,109,375,137,181, 88, 75,308,260,484, 98,272,370,275,412,111,
336,318, 4,504,492,259,304, 77,337,435, 21,357,303,332,483, 18,
47, 85, 25,497,474,289,100,269,296,478,270,106, 31,104,433, 84,
414,486,394, 96, 99,154,511,148,413,361,409,255,162,215,302,201,
266,351,343,144,441,365,108,298,251, 34,182,509,138,210,335,133,
311,352,328,141,396,346,123,319,450,281,429,228,443,481, 92,404,
485,422,248,297, 23,213,130,466, 22,217,283, 70,294,360,419,127,
312,377, 7,468,194, 2,117,295,463,258,224,447,247,187, 80,398,
284,353,105,390,299,471,470,184, 57,200,348, 63,204,188, 33,451,
97, 30,310,219, 94,160,129,493, 64,179,263,102,189,207,114,402,
438,477,387,122,192, 42,381, 5,145,118,180,449,293,323,136,380,
43, 66, 60,455,341,445,202,432, 8,237, 15,376,436,464, 59,461};
/* The sixteen bit input is split into two unequal halves, *
* nine bits and seven bits - as is the subkey */
nine = (u16)(in>>7)&0x1FF;
seven = (u16)(in&0x7F);
/* Now run the various operations */
nine = (u16)(S9[nine] ^ seven);
seven = (u16)(S7[seven] ^ (nine & 0x7F));
seven ^= (subkey>>9);
nine ^= (subkey&0x1FF);
nine = (u16)(S9[nine] ^ seven);
seven = (u16)(S7[seven] ^ (nine & 0x7F));
return (u16)(seven<<9) + nine;
}
static ulong32 FO( ulong32 in, int round_no, const symmetric_key *key)
{
u16 left, right;
/* Split the input into two 16-bit words */
left = (u16)(in>>16);
right = (u16) in&0xFFFF;
/* Now apply the same basic transformation three times */
left ^= key->kasumi.KOi1[round_no];
left = FI( left, key->kasumi.KIi1[round_no] );
left ^= right;
right ^= key->kasumi.KOi2[round_no];
right = FI( right, key->kasumi.KIi2[round_no] );
right ^= left;
left ^= key->kasumi.KOi3[round_no];
left = FI( left, key->kasumi.KIi3[round_no] );
left ^= right;
return (((ulong32)right)<<16)+left;
}
static ulong32 FL( ulong32 in, int round_no, const symmetric_key *key )
{
u16 l, r, a, b;
/* split out the left and right halves */
l = (u16)(in>>16);
r = (u16)(in)&0xFFFF;
/* do the FL() operations */
a = (u16) (l & key->kasumi.KLi1[round_no]);
r ^= ROL16(a,1);
b = (u16)(r | key->kasumi.KLi2[round_no]);
l ^= ROL16(b,1);
/* put the two halves back together */
return (((ulong32)l)<<16) + r;
}
int kasumi_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
{
ulong32 left, right, temp;
int n;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
LOAD32H(left, pt);
LOAD32H(right, pt+4);
for (n = 0; n <= 7; ) {
temp = FL(left, n, skey);
temp = FO(temp, n++, skey);
right ^= temp;
temp = FO(right, n, skey);
temp = FL(temp, n++, skey);
left ^= temp;
}
STORE32H(left, ct);
STORE32H(right, ct+4);
return CRYPT_OK;
}
int kasumi_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
{
ulong32 left, right, temp;
int n;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
LOAD32H(left, ct);
LOAD32H(right, ct+4);
for (n = 7; n >= 0; ) {
temp = FO(right, n, skey);
temp = FL(temp, n--, skey);
left ^= temp;
temp = FL(left, n, skey);
temp = FO(temp, n--, skey);
right ^= temp;
}
STORE32H(left, pt);
STORE32H(right, pt+4);
return CRYPT_OK;
}
int kasumi_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
static const u16 C[8] = { 0x0123,0x4567,0x89AB,0xCDEF, 0xFEDC,0xBA98,0x7654,0x3210 };
u16 ukey[8], Kprime[8];
int n;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
if (keylen != 16) {
return CRYPT_INVALID_KEYSIZE;
}
if (num_rounds != 0 && num_rounds != 8) {
return CRYPT_INVALID_ROUNDS;
}
/* Start by ensuring the subkeys are endian correct on a 16-bit basis */
for (n = 0; n < 8; n++ ) {
ukey[n] = (((u16)key[2*n]) << 8) | key[2*n+1];
}
/* Now build the K'[] keys */
for (n = 0; n < 8; n++) {
Kprime[n] = ukey[n] ^ C[n];
}
/* Finally construct the various sub keys */
for(n = 0; n < 8; n++) {
skey->kasumi.KLi1[n] = ROL16(ukey[n],1);
skey->kasumi.KLi2[n] = Kprime[(n+2)&0x7];
skey->kasumi.KOi1[n] = ROL16(ukey[(n+1)&0x7],5);
skey->kasumi.KOi2[n] = ROL16(ukey[(n+5)&0x7],8);
skey->kasumi.KOi3[n] = ROL16(ukey[(n+6)&0x7],13);
skey->kasumi.KIi1[n] = Kprime[(n+4)&0x7];
skey->kasumi.KIi2[n] = Kprime[(n+3)&0x7];
skey->kasumi.KIi3[n] = Kprime[(n+7)&0x7];
}
return CRYPT_OK;
}
void kasumi_done(symmetric_key *skey)
{
LTC_UNUSED_PARAM(skey);
}
int kasumi_keysize(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize >= 16) {
*keysize = 16;
return CRYPT_OK;
}
return CRYPT_INVALID_KEYSIZE;
}
int kasumi_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
unsigned char key[16], pt[8], ct[8];
} tests[] = {
{
{ 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x4B, 0x58, 0xA7, 0x71, 0xAF, 0xC7, 0xE5, 0xE8 }
},
{
{ 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x7E, 0xEF, 0x11, 0x3C, 0x95, 0xBB, 0x5A, 0x77 }
},
{
{ 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x5F, 0x14, 0x06, 0x86, 0xD7, 0xAD, 0x5A, 0x39 },
},
{
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x2E, 0x14, 0x91, 0xCF, 0x70, 0xAA, 0x46, 0x5D }
},
{
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xB5, 0x45, 0x86, 0xF4, 0xAB, 0x9A, 0xE5, 0x46 }
},
};
unsigned char buf[2][8];
symmetric_key key;
int err, x;
for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) {
if ((err = kasumi_setup(tests[x].key, 16, 0, &key)) != CRYPT_OK) {
return err;
}
if ((err = kasumi_ecb_encrypt(tests[x].pt, buf[0], &key)) != CRYPT_OK) {
return err;
}
if ((err = kasumi_ecb_decrypt(tests[x].ct, buf[1], &key)) != CRYPT_OK) {
return err;
}
if (compare_testvector(buf[1], 8, tests[x].pt, 8, "Kasumi Decrypt", x) ||
compare_testvector(buf[0], 8, tests[x].ct, 8, "Kasumi Encrypt", x)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
#undef ROL16
#undef FI
#endif

View File

@@ -0,0 +1,842 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file khazad.c
Khazad implementation derived from public domain source
Authors: Paulo S.L.M. Barreto and Vincent Rijmen.
*/
#ifdef LTC_KHAZAD
const struct ltc_cipher_descriptor khazad_desc = {
"khazad",
18,
16, 16, 8, 8,
&khazad_setup,
&khazad_ecb_encrypt,
&khazad_ecb_decrypt,
&khazad_test,
&khazad_done,
&khazad_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
#define R 8
static const ulong64 T0[256] = {
CONST64(0xbad3d268bbb96a01), CONST64(0x54fc4d19e59a66b1), CONST64(0x2f71bc93e26514cd), CONST64(0x749ccdb925871b51),
CONST64(0x53f55102f7a257a4), CONST64(0xd3686bb8d0d6be03), CONST64(0xd26b6fbdd6deb504), CONST64(0x4dd72964b35285fe),
CONST64(0x50f05d0dfdba4aad), CONST64(0xace98a26cf09e063), CONST64(0x8d8a0e83091c9684), CONST64(0xbfdcc679a5914d1a),
CONST64(0x7090ddad3da7374d), CONST64(0x52f65507f1aa5ca3), CONST64(0x9ab352c87ba417e1), CONST64(0x4cd42d61b55a8ef9),
CONST64(0xea238f65460320ac), CONST64(0xd56273a6c4e68411), CONST64(0x97a466f155cc68c2), CONST64(0xd16e63b2dcc6a80d),
CONST64(0x3355ccffaa85d099), CONST64(0x51f35908fbb241aa), CONST64(0x5bed712ac7e20f9c), CONST64(0xa6f7a204f359ae55),
CONST64(0xde7f5f81febec120), CONST64(0x48d83d75ad7aa2e5), CONST64(0xa8e59a32d729cc7f), CONST64(0x99b65ec771bc0ae8),
CONST64(0xdb704b90e096e63b), CONST64(0x3256c8faac8ddb9e), CONST64(0xb7c4e65195d11522), CONST64(0xfc19d72b32b3aace),
CONST64(0xe338ab48704b7393), CONST64(0x9ebf42dc63843bfd), CONST64(0x91ae7eef41fc52d0), CONST64(0x9bb056cd7dac1ce6),
CONST64(0xe23baf4d76437894), CONST64(0xbbd0d66dbdb16106), CONST64(0x41c319589b32f1da), CONST64(0x6eb2a5cb7957e517),
CONST64(0xa5f2ae0bf941b35c), CONST64(0xcb400bc08016564b), CONST64(0x6bbdb1da677fc20c), CONST64(0x95a26efb59dc7ecc),
CONST64(0xa1febe1fe1619f40), CONST64(0xf308eb1810cbc3e3), CONST64(0xb1cefe4f81e12f30), CONST64(0x0206080a0c10160e),
CONST64(0xcc4917db922e675e), CONST64(0xc45137f3a26e3f66), CONST64(0x1d2774694ee8cf53), CONST64(0x143c504478a09c6c),
CONST64(0xc3582be8b0560e73), CONST64(0x63a591f2573f9a34), CONST64(0xda734f95e69eed3c), CONST64(0x5de76934d3d2358e),
CONST64(0x5fe1613edfc22380), CONST64(0xdc79578bf2aed72e), CONST64(0x7d87e99413cf486e), CONST64(0xcd4a13de94266c59),
CONST64(0x7f81e19e1fdf5e60), CONST64(0x5aee752fc1ea049b), CONST64(0x6cb4adc17547f319), CONST64(0x5ce46d31d5da3e89),
CONST64(0xf704fb0c08ebefff), CONST64(0x266a98bed42d47f2), CONST64(0xff1cdb2438abb7c7), CONST64(0xed2a937e543b11b9),
CONST64(0xe825876f4a1336a2), CONST64(0x9dba4ed3699c26f4), CONST64(0x6fb1a1ce7f5fee10), CONST64(0x8e8f028c03048b8d),
CONST64(0x192b647d56c8e34f), CONST64(0xa0fdba1ae7699447), CONST64(0xf00de7171ad3deea), CONST64(0x89861e97113cba98),
CONST64(0x0f113c332278692d), CONST64(0x07091c1b12383115), CONST64(0xafec8629c511fd6a), CONST64(0xfb10cb30208b9bdb),
CONST64(0x0818202830405838), CONST64(0x153f54417ea8976b), CONST64(0x0d1734392e687f23), CONST64(0x040c101418202c1c),
CONST64(0x0103040506080b07), CONST64(0x64ac8de94507ab21), CONST64(0xdf7c5b84f8b6ca27), CONST64(0x769ac5b329970d5f),
CONST64(0x798bf9800bef6472), CONST64(0xdd7a538ef4a6dc29), CONST64(0x3d47f4c98ef5b2b3), CONST64(0x163a584e74b08a62),
CONST64(0x3f41fcc382e5a4bd), CONST64(0x3759dcebb2a5fc85), CONST64(0x6db7a9c4734ff81e), CONST64(0x3848e0d890dd95a8),
CONST64(0xb9d6de67b1a17708), CONST64(0x7395d1a237bf2a44), CONST64(0xe926836a4c1b3da5), CONST64(0x355fd4e1beb5ea8b),
CONST64(0x55ff491ce3926db6), CONST64(0x7193d9a83baf3c4a), CONST64(0x7b8df18a07ff727c), CONST64(0x8c890a860f149d83),
CONST64(0x7296d5a731b72143), CONST64(0x88851a921734b19f), CONST64(0xf607ff090ee3e4f8), CONST64(0x2a7ea882fc4d33d6),
CONST64(0x3e42f8c684edafba), CONST64(0x5ee2653bd9ca2887), CONST64(0x27699cbbd2254cf5), CONST64(0x46ca0543890ac0cf),
CONST64(0x0c14303c28607424), CONST64(0x65af89ec430fa026), CONST64(0x68b8bdd56d67df05), CONST64(0x61a399f85b2f8c3a),
CONST64(0x03050c0f0a181d09), CONST64(0xc15e23e2bc46187d), CONST64(0x57f94116ef827bb8), CONST64(0xd6677fa9cefe9918),
CONST64(0xd976439aec86f035), CONST64(0x58e87d25cdfa1295), CONST64(0xd875479fea8efb32), CONST64(0x66aa85e34917bd2f),
CONST64(0xd7647bacc8f6921f), CONST64(0x3a4ee8d29ccd83a6), CONST64(0xc84507cf8a0e4b42), CONST64(0x3c44f0cc88fdb9b4),
CONST64(0xfa13cf35268390dc), CONST64(0x96a762f453c463c5), CONST64(0xa7f4a601f551a552), CONST64(0x98b55ac277b401ef),
CONST64(0xec29977b52331abe), CONST64(0xb8d5da62b7a97c0f), CONST64(0xc7543bfca876226f), CONST64(0xaeef822cc319f66d),
CONST64(0x69bbb9d06b6fd402), CONST64(0x4bdd317aa762bfec), CONST64(0xabe0963ddd31d176), CONST64(0xa9e69e37d121c778),
CONST64(0x67a981e64f1fb628), CONST64(0x0a1e28223c504e36), CONST64(0x47c901468f02cbc8), CONST64(0xf20bef1d16c3c8e4),
CONST64(0xb5c2ee5b99c1032c), CONST64(0x226688aacc0d6bee), CONST64(0xe532b356647b4981), CONST64(0xee2f9f715e230cb0),
CONST64(0xbedfc27ca399461d), CONST64(0x2b7dac87fa4538d1), CONST64(0x819e3ebf217ce2a0), CONST64(0x1236485a6c90a67e),
CONST64(0x839836b52d6cf4ae), CONST64(0x1b2d6c775ad8f541), CONST64(0x0e1238362470622a), CONST64(0x23658cafca0560e9),
CONST64(0xf502f30604fbf9f1), CONST64(0x45cf094c8312ddc6), CONST64(0x216384a5c61576e7), CONST64(0xce4f1fd19e3e7150),
CONST64(0x49db3970ab72a9e2), CONST64(0x2c74b09ce87d09c4), CONST64(0xf916c33a2c9b8dd5), CONST64(0xe637bf596e635488),
CONST64(0xb6c7e25493d91e25), CONST64(0x2878a088f05d25d8), CONST64(0x17395c4b72b88165), CONST64(0x829b32b02b64ffa9),
CONST64(0x1a2e68725cd0fe46), CONST64(0x8b80169d1d2cac96), CONST64(0xfe1fdf213ea3bcc0), CONST64(0x8a8312981b24a791),
CONST64(0x091b242d3648533f), CONST64(0xc94603ca8c064045), CONST64(0x879426a1354cd8b2), CONST64(0x4ed2256bb94a98f7),
CONST64(0xe13ea3427c5b659d), CONST64(0x2e72b896e46d1fca), CONST64(0xe431b75362734286), CONST64(0xe03da7477a536e9a),
CONST64(0xeb208b60400b2bab), CONST64(0x90ad7aea47f459d7), CONST64(0xa4f1aa0eff49b85b), CONST64(0x1e22786644f0d25a),
CONST64(0x85922eab395ccebc), CONST64(0x60a09dfd5d27873d), CONST64(0x0000000000000000), CONST64(0x256f94b1de355afb),
CONST64(0xf401f70302f3f2f6), CONST64(0xf10ee3121cdbd5ed), CONST64(0x94a16afe5fd475cb), CONST64(0x0b1d2c273a584531),
CONST64(0xe734bb5c686b5f8f), CONST64(0x759fc9bc238f1056), CONST64(0xef2c9b74582b07b7), CONST64(0x345cd0e4b8bde18c),
CONST64(0x3153c4f5a695c697), CONST64(0xd46177a3c2ee8f16), CONST64(0xd06d67b7dacea30a), CONST64(0x869722a43344d3b5),
CONST64(0x7e82e59b19d75567), CONST64(0xadea8e23c901eb64), CONST64(0xfd1ad32e34bba1c9), CONST64(0x297ba48df6552edf),
CONST64(0x3050c0f0a09dcd90), CONST64(0x3b4decd79ac588a1), CONST64(0x9fbc46d9658c30fa), CONST64(0xf815c73f2a9386d2),
CONST64(0xc6573ff9ae7e2968), CONST64(0x13354c5f6a98ad79), CONST64(0x060a181e14303a12), CONST64(0x050f14111e28271b),
CONST64(0xc55233f6a4663461), CONST64(0x113344556688bb77), CONST64(0x7799c1b62f9f0658), CONST64(0x7c84ed9115c74369),
CONST64(0x7a8ef58f01f7797b), CONST64(0x7888fd850de76f75), CONST64(0x365ad8eeb4adf782), CONST64(0x1c24706c48e0c454),
CONST64(0x394be4dd96d59eaf), CONST64(0x59eb7920cbf21992), CONST64(0x1828607850c0e848), CONST64(0x56fa4513e98a70bf),
CONST64(0xb3c8f6458df1393e), CONST64(0xb0cdfa4a87e92437), CONST64(0x246c90b4d83d51fc), CONST64(0x206080a0c01d7de0),
CONST64(0xb2cbf2408bf93239), CONST64(0x92ab72e04be44fd9), CONST64(0xa3f8b615ed71894e), CONST64(0xc05d27e7ba4e137a),
CONST64(0x44cc0d49851ad6c1), CONST64(0x62a695f751379133), CONST64(0x103040506080b070), CONST64(0xb4c1ea5e9fc9082b),
CONST64(0x84912aae3f54c5bb), CONST64(0x43c511529722e7d4), CONST64(0x93a876e54dec44de), CONST64(0xc25b2fedb65e0574),
CONST64(0x4ade357fa16ab4eb), CONST64(0xbddace73a9815b14), CONST64(0x8f8c0689050c808a), CONST64(0x2d77b499ee7502c3),
CONST64(0xbcd9ca76af895013), CONST64(0x9cb94ad66f942df3), CONST64(0x6abeb5df6177c90b), CONST64(0x40c01d5d9d3afadd),
CONST64(0xcf4c1bd498367a57), CONST64(0xa2fbb210eb798249), CONST64(0x809d3aba2774e9a7), CONST64(0x4fd1216ebf4293f0),
CONST64(0x1f217c6342f8d95d), CONST64(0xca430fc5861e5d4c), CONST64(0xaae39238db39da71), CONST64(0x42c61557912aecd3),
};
static const ulong64 T1[256] = {
CONST64(0xd3ba68d2b9bb016a), CONST64(0xfc54194d9ae5b166), CONST64(0x712f93bc65e2cd14), CONST64(0x9c74b9cd8725511b),
CONST64(0xf5530251a2f7a457), CONST64(0x68d3b86bd6d003be), CONST64(0x6bd2bd6fded604b5), CONST64(0xd74d642952b3fe85),
CONST64(0xf0500d5dbafdad4a), CONST64(0xe9ac268a09cf63e0), CONST64(0x8a8d830e1c098496), CONST64(0xdcbf79c691a51a4d),
CONST64(0x9070addda73d4d37), CONST64(0xf6520755aaf1a35c), CONST64(0xb39ac852a47be117), CONST64(0xd44c612d5ab5f98e),
CONST64(0x23ea658f0346ac20), CONST64(0x62d5a673e6c41184), CONST64(0xa497f166cc55c268), CONST64(0x6ed1b263c6dc0da8),
CONST64(0x5533ffcc85aa99d0), CONST64(0xf3510859b2fbaa41), CONST64(0xed5b2a71e2c79c0f), CONST64(0xf7a604a259f355ae),
CONST64(0x7fde815fbefe20c1), CONST64(0xd848753d7aade5a2), CONST64(0xe5a8329a29d77fcc), CONST64(0xb699c75ebc71e80a),
CONST64(0x70db904b96e03be6), CONST64(0x5632fac88dac9edb), CONST64(0xc4b751e6d1952215), CONST64(0x19fc2bd7b332ceaa),
CONST64(0x38e348ab4b709373), CONST64(0xbf9edc428463fd3b), CONST64(0xae91ef7efc41d052), CONST64(0xb09bcd56ac7de61c),
CONST64(0x3be24daf43769478), CONST64(0xd0bb6dd6b1bd0661), CONST64(0xc3415819329bdaf1), CONST64(0xb26ecba5577917e5),
CONST64(0xf2a50bae41f95cb3), CONST64(0x40cbc00b16804b56), CONST64(0xbd6bdab17f670cc2), CONST64(0xa295fb6edc59cc7e),
CONST64(0xfea11fbe61e1409f), CONST64(0x08f318ebcb10e3c3), CONST64(0xceb14ffee181302f), CONST64(0x06020a08100c0e16),
CONST64(0x49ccdb172e925e67), CONST64(0x51c4f3376ea2663f), CONST64(0x271d6974e84e53cf), CONST64(0x3c144450a0786c9c),
CONST64(0x58c3e82b56b0730e), CONST64(0xa563f2913f57349a), CONST64(0x73da954f9ee63ced), CONST64(0xe75d3469d2d38e35),
CONST64(0xe15f3e61c2df8023), CONST64(0x79dc8b57aef22ed7), CONST64(0x877d94e9cf136e48), CONST64(0x4acdde132694596c),
CONST64(0x817f9ee1df1f605e), CONST64(0xee5a2f75eac19b04), CONST64(0xb46cc1ad477519f3), CONST64(0xe45c316ddad5893e),
CONST64(0x04f70cfbeb08ffef), CONST64(0x6a26be982dd4f247), CONST64(0x1cff24dbab38c7b7), CONST64(0x2aed7e933b54b911),
CONST64(0x25e86f87134aa236), CONST64(0xba9dd34e9c69f426), CONST64(0xb16fcea15f7f10ee), CONST64(0x8f8e8c0204038d8b),
CONST64(0x2b197d64c8564fe3), CONST64(0xfda01aba69e74794), CONST64(0x0df017e7d31aeade), CONST64(0x8689971e3c1198ba),
CONST64(0x110f333c78222d69), CONST64(0x09071b1c38121531), CONST64(0xecaf298611c56afd), CONST64(0x10fb30cb8b20db9b),
CONST64(0x1808282040303858), CONST64(0x3f154154a87e6b97), CONST64(0x170d3934682e237f), CONST64(0x0c04141020181c2c),
CONST64(0x030105040806070b), CONST64(0xac64e98d074521ab), CONST64(0x7cdf845bb6f827ca), CONST64(0x9a76b3c597295f0d),
CONST64(0x8b7980f9ef0b7264), CONST64(0x7add8e53a6f429dc), CONST64(0x473dc9f4f58eb3b2), CONST64(0x3a164e58b074628a),
CONST64(0x413fc3fce582bda4), CONST64(0x5937ebdca5b285fc), CONST64(0xb76dc4a94f731ef8), CONST64(0x4838d8e0dd90a895),
CONST64(0xd6b967dea1b10877), CONST64(0x9573a2d1bf37442a), CONST64(0x26e96a831b4ca53d), CONST64(0x5f35e1d4b5be8bea),
CONST64(0xff551c4992e3b66d), CONST64(0x9371a8d9af3b4a3c), CONST64(0x8d7b8af1ff077c72), CONST64(0x898c860a140f839d),
CONST64(0x9672a7d5b7314321), CONST64(0x8588921a34179fb1), CONST64(0x07f609ffe30ef8e4), CONST64(0x7e2a82a84dfcd633),
CONST64(0x423ec6f8ed84baaf), CONST64(0xe25e3b65cad98728), CONST64(0x6927bb9c25d2f54c), CONST64(0xca4643050a89cfc0),
CONST64(0x140c3c3060282474), CONST64(0xaf65ec890f4326a0), CONST64(0xb868d5bd676d05df), CONST64(0xa361f8992f5b3a8c),
CONST64(0x05030f0c180a091d), CONST64(0x5ec1e22346bc7d18), CONST64(0xf957164182efb87b), CONST64(0x67d6a97ffece1899),
CONST64(0x76d99a4386ec35f0), CONST64(0xe858257dfacd9512), CONST64(0x75d89f478eea32fb), CONST64(0xaa66e38517492fbd),
CONST64(0x64d7ac7bf6c81f92), CONST64(0x4e3ad2e8cd9ca683), CONST64(0x45c8cf070e8a424b), CONST64(0x443cccf0fd88b4b9),
CONST64(0x13fa35cf8326dc90), CONST64(0xa796f462c453c563), CONST64(0xf4a701a651f552a5), CONST64(0xb598c25ab477ef01),
CONST64(0x29ec7b973352be1a), CONST64(0xd5b862daa9b70f7c), CONST64(0x54c7fc3b76a86f22), CONST64(0xefae2c8219c36df6),
CONST64(0xbb69d0b96f6b02d4), CONST64(0xdd4b7a3162a7ecbf), CONST64(0xe0ab3d9631dd76d1), CONST64(0xe6a9379e21d178c7),
CONST64(0xa967e6811f4f28b6), CONST64(0x1e0a2228503c364e), CONST64(0xc9474601028fc8cb), CONST64(0x0bf21defc316e4c8),
CONST64(0xc2b55beec1992c03), CONST64(0x6622aa880dccee6b), CONST64(0x32e556b37b648149), CONST64(0x2fee719f235eb00c),
CONST64(0xdfbe7cc299a31d46), CONST64(0x7d2b87ac45fad138), CONST64(0x9e81bf3e7c21a0e2), CONST64(0x36125a48906c7ea6),
CONST64(0x9883b5366c2daef4), CONST64(0x2d1b776cd85a41f5), CONST64(0x120e363870242a62), CONST64(0x6523af8c05cae960),
CONST64(0x02f506f3fb04f1f9), CONST64(0xcf454c091283c6dd), CONST64(0x6321a58415c6e776), CONST64(0x4fced11f3e9e5071),
CONST64(0xdb49703972abe2a9), CONST64(0x742c9cb07de8c409), CONST64(0x16f93ac39b2cd58d), CONST64(0x37e659bf636e8854),
CONST64(0xc7b654e2d993251e), CONST64(0x782888a05df0d825), CONST64(0x39174b5cb8726581), CONST64(0x9b82b032642ba9ff),
CONST64(0x2e1a7268d05c46fe), CONST64(0x808b9d162c1d96ac), CONST64(0x1ffe21dfa33ec0bc), CONST64(0x838a9812241b91a7),
CONST64(0x1b092d2448363f53), CONST64(0x46c9ca03068c4540), CONST64(0x9487a1264c35b2d8), CONST64(0xd24e6b254ab9f798),
CONST64(0x3ee142a35b7c9d65), CONST64(0x722e96b86de4ca1f), CONST64(0x31e453b773628642), CONST64(0x3de047a7537a9a6e),
CONST64(0x20eb608b0b40ab2b), CONST64(0xad90ea7af447d759), CONST64(0xf1a40eaa49ff5bb8), CONST64(0x221e6678f0445ad2),
CONST64(0x9285ab2e5c39bcce), CONST64(0xa060fd9d275d3d87), CONST64(0x0000000000000000), CONST64(0x6f25b19435defb5a),
CONST64(0x01f403f7f302f6f2), CONST64(0x0ef112e3db1cedd5), CONST64(0xa194fe6ad45fcb75), CONST64(0x1d0b272c583a3145),
CONST64(0x34e75cbb6b688f5f), CONST64(0x9f75bcc98f235610), CONST64(0x2cef749b2b58b707), CONST64(0x5c34e4d0bdb88ce1),
CONST64(0x5331f5c495a697c6), CONST64(0x61d4a377eec2168f), CONST64(0x6dd0b767ceda0aa3), CONST64(0x9786a4224433b5d3),
CONST64(0x827e9be5d7196755), CONST64(0xeaad238e01c964eb), CONST64(0x1afd2ed3bb34c9a1), CONST64(0x7b298da455f6df2e),
CONST64(0x5030f0c09da090cd), CONST64(0x4d3bd7ecc59aa188), CONST64(0xbc9fd9468c65fa30), CONST64(0x15f83fc7932ad286),
CONST64(0x57c6f93f7eae6829), CONST64(0x35135f4c986a79ad), CONST64(0x0a061e183014123a), CONST64(0x0f051114281e1b27),
CONST64(0x52c5f63366a46134), CONST64(0x33115544886677bb), CONST64(0x9977b6c19f2f5806), CONST64(0x847c91edc7156943),
CONST64(0x8e7a8ff5f7017b79), CONST64(0x887885fde70d756f), CONST64(0x5a36eed8adb482f7), CONST64(0x241c6c70e04854c4),
CONST64(0x4b39dde4d596af9e), CONST64(0xeb592079f2cb9219), CONST64(0x28187860c05048e8), CONST64(0xfa5613458ae9bf70),
CONST64(0xc8b345f6f18d3e39), CONST64(0xcdb04afae9873724), CONST64(0x6c24b4903dd8fc51), CONST64(0x6020a0801dc0e07d),
CONST64(0xcbb240f2f98b3932), CONST64(0xab92e072e44bd94f), CONST64(0xf8a315b671ed4e89), CONST64(0x5dc0e7274eba7a13),
CONST64(0xcc44490d1a85c1d6), CONST64(0xa662f79537513391), CONST64(0x30105040806070b0), CONST64(0xc1b45eeac99f2b08),
CONST64(0x9184ae2a543fbbc5), CONST64(0xc54352112297d4e7), CONST64(0xa893e576ec4dde44), CONST64(0x5bc2ed2f5eb67405),
CONST64(0xde4a7f356aa1ebb4), CONST64(0xdabd73ce81a9145b), CONST64(0x8c8f89060c058a80), CONST64(0x772d99b475eec302),
CONST64(0xd9bc76ca89af1350), CONST64(0xb99cd64a946ff32d), CONST64(0xbe6adfb577610bc9), CONST64(0xc0405d1d3a9dddfa),
CONST64(0x4ccfd41b3698577a), CONST64(0xfba210b279eb4982), CONST64(0x9d80ba3a7427a7e9), CONST64(0xd14f6e2142bff093),
CONST64(0x211f637cf8425dd9), CONST64(0x43cac50f1e864c5d), CONST64(0xe3aa389239db71da), CONST64(0xc64257152a91d3ec),
};
static const ulong64 T2[256] = {
CONST64(0xd268bad36a01bbb9), CONST64(0x4d1954fc66b1e59a), CONST64(0xbc932f7114cde265), CONST64(0xcdb9749c1b512587),
CONST64(0x510253f557a4f7a2), CONST64(0x6bb8d368be03d0d6), CONST64(0x6fbdd26bb504d6de), CONST64(0x29644dd785feb352),
CONST64(0x5d0d50f04aadfdba), CONST64(0x8a26ace9e063cf09), CONST64(0x0e838d8a9684091c), CONST64(0xc679bfdc4d1aa591),
CONST64(0xddad7090374d3da7), CONST64(0x550752f65ca3f1aa), CONST64(0x52c89ab317e17ba4), CONST64(0x2d614cd48ef9b55a),
CONST64(0x8f65ea2320ac4603), CONST64(0x73a6d5628411c4e6), CONST64(0x66f197a468c255cc), CONST64(0x63b2d16ea80ddcc6),
CONST64(0xccff3355d099aa85), CONST64(0x590851f341aafbb2), CONST64(0x712a5bed0f9cc7e2), CONST64(0xa204a6f7ae55f359),
CONST64(0x5f81de7fc120febe), CONST64(0x3d7548d8a2e5ad7a), CONST64(0x9a32a8e5cc7fd729), CONST64(0x5ec799b60ae871bc),
CONST64(0x4b90db70e63be096), CONST64(0xc8fa3256db9eac8d), CONST64(0xe651b7c4152295d1), CONST64(0xd72bfc19aace32b3),
CONST64(0xab48e3387393704b), CONST64(0x42dc9ebf3bfd6384), CONST64(0x7eef91ae52d041fc), CONST64(0x56cd9bb01ce67dac),
CONST64(0xaf4de23b78947643), CONST64(0xd66dbbd06106bdb1), CONST64(0x195841c3f1da9b32), CONST64(0xa5cb6eb2e5177957),
CONST64(0xae0ba5f2b35cf941), CONST64(0x0bc0cb40564b8016), CONST64(0xb1da6bbdc20c677f), CONST64(0x6efb95a27ecc59dc),
CONST64(0xbe1fa1fe9f40e161), CONST64(0xeb18f308c3e310cb), CONST64(0xfe4fb1ce2f3081e1), CONST64(0x080a0206160e0c10),
CONST64(0x17dbcc49675e922e), CONST64(0x37f3c4513f66a26e), CONST64(0x74691d27cf534ee8), CONST64(0x5044143c9c6c78a0),
CONST64(0x2be8c3580e73b056), CONST64(0x91f263a59a34573f), CONST64(0x4f95da73ed3ce69e), CONST64(0x69345de7358ed3d2),
CONST64(0x613e5fe12380dfc2), CONST64(0x578bdc79d72ef2ae), CONST64(0xe9947d87486e13cf), CONST64(0x13decd4a6c599426),
CONST64(0xe19e7f815e601fdf), CONST64(0x752f5aee049bc1ea), CONST64(0xadc16cb4f3197547), CONST64(0x6d315ce43e89d5da),
CONST64(0xfb0cf704efff08eb), CONST64(0x98be266a47f2d42d), CONST64(0xdb24ff1cb7c738ab), CONST64(0x937eed2a11b9543b),
CONST64(0x876fe82536a24a13), CONST64(0x4ed39dba26f4699c), CONST64(0xa1ce6fb1ee107f5f), CONST64(0x028c8e8f8b8d0304),
CONST64(0x647d192be34f56c8), CONST64(0xba1aa0fd9447e769), CONST64(0xe717f00ddeea1ad3), CONST64(0x1e978986ba98113c),
CONST64(0x3c330f11692d2278), CONST64(0x1c1b070931151238), CONST64(0x8629afecfd6ac511), CONST64(0xcb30fb109bdb208b),
CONST64(0x2028081858383040), CONST64(0x5441153f976b7ea8), CONST64(0x34390d177f232e68), CONST64(0x1014040c2c1c1820),
CONST64(0x040501030b070608), CONST64(0x8de964acab214507), CONST64(0x5b84df7cca27f8b6), CONST64(0xc5b3769a0d5f2997),
CONST64(0xf980798b64720bef), CONST64(0x538edd7adc29f4a6), CONST64(0xf4c93d47b2b38ef5), CONST64(0x584e163a8a6274b0),
CONST64(0xfcc33f41a4bd82e5), CONST64(0xdceb3759fc85b2a5), CONST64(0xa9c46db7f81e734f), CONST64(0xe0d8384895a890dd),
CONST64(0xde67b9d67708b1a1), CONST64(0xd1a273952a4437bf), CONST64(0x836ae9263da54c1b), CONST64(0xd4e1355fea8bbeb5),
CONST64(0x491c55ff6db6e392), CONST64(0xd9a871933c4a3baf), CONST64(0xf18a7b8d727c07ff), CONST64(0x0a868c899d830f14),
CONST64(0xd5a77296214331b7), CONST64(0x1a928885b19f1734), CONST64(0xff09f607e4f80ee3), CONST64(0xa8822a7e33d6fc4d),
CONST64(0xf8c63e42afba84ed), CONST64(0x653b5ee22887d9ca), CONST64(0x9cbb27694cf5d225), CONST64(0x054346cac0cf890a),
CONST64(0x303c0c1474242860), CONST64(0x89ec65afa026430f), CONST64(0xbdd568b8df056d67), CONST64(0x99f861a38c3a5b2f),
CONST64(0x0c0f03051d090a18), CONST64(0x23e2c15e187dbc46), CONST64(0x411657f97bb8ef82), CONST64(0x7fa9d6679918cefe),
CONST64(0x439ad976f035ec86), CONST64(0x7d2558e81295cdfa), CONST64(0x479fd875fb32ea8e), CONST64(0x85e366aabd2f4917),
CONST64(0x7bacd764921fc8f6), CONST64(0xe8d23a4e83a69ccd), CONST64(0x07cfc8454b428a0e), CONST64(0xf0cc3c44b9b488fd),
CONST64(0xcf35fa1390dc2683), CONST64(0x62f496a763c553c4), CONST64(0xa601a7f4a552f551), CONST64(0x5ac298b501ef77b4),
CONST64(0x977bec291abe5233), CONST64(0xda62b8d57c0fb7a9), CONST64(0x3bfcc754226fa876), CONST64(0x822caeeff66dc319),
CONST64(0xb9d069bbd4026b6f), CONST64(0x317a4bddbfeca762), CONST64(0x963dabe0d176dd31), CONST64(0x9e37a9e6c778d121),
CONST64(0x81e667a9b6284f1f), CONST64(0x28220a1e4e363c50), CONST64(0x014647c9cbc88f02), CONST64(0xef1df20bc8e416c3),
CONST64(0xee5bb5c2032c99c1), CONST64(0x88aa22666beecc0d), CONST64(0xb356e5324981647b), CONST64(0x9f71ee2f0cb05e23),
CONST64(0xc27cbedf461da399), CONST64(0xac872b7d38d1fa45), CONST64(0x3ebf819ee2a0217c), CONST64(0x485a1236a67e6c90),
CONST64(0x36b58398f4ae2d6c), CONST64(0x6c771b2df5415ad8), CONST64(0x38360e12622a2470), CONST64(0x8caf236560e9ca05),
CONST64(0xf306f502f9f104fb), CONST64(0x094c45cfddc68312), CONST64(0x84a5216376e7c615), CONST64(0x1fd1ce4f71509e3e),
CONST64(0x397049dba9e2ab72), CONST64(0xb09c2c7409c4e87d), CONST64(0xc33af9168dd52c9b), CONST64(0xbf59e63754886e63),
CONST64(0xe254b6c71e2593d9), CONST64(0xa088287825d8f05d), CONST64(0x5c4b1739816572b8), CONST64(0x32b0829bffa92b64),
CONST64(0x68721a2efe465cd0), CONST64(0x169d8b80ac961d2c), CONST64(0xdf21fe1fbcc03ea3), CONST64(0x12988a83a7911b24),
CONST64(0x242d091b533f3648), CONST64(0x03cac94640458c06), CONST64(0x26a18794d8b2354c), CONST64(0x256b4ed298f7b94a),
CONST64(0xa342e13e659d7c5b), CONST64(0xb8962e721fcae46d), CONST64(0xb753e43142866273), CONST64(0xa747e03d6e9a7a53),
CONST64(0x8b60eb202bab400b), CONST64(0x7aea90ad59d747f4), CONST64(0xaa0ea4f1b85bff49), CONST64(0x78661e22d25a44f0),
CONST64(0x2eab8592cebc395c), CONST64(0x9dfd60a0873d5d27), CONST64(0x0000000000000000), CONST64(0x94b1256f5afbde35),
CONST64(0xf703f401f2f602f3), CONST64(0xe312f10ed5ed1cdb), CONST64(0x6afe94a175cb5fd4), CONST64(0x2c270b1d45313a58),
CONST64(0xbb5ce7345f8f686b), CONST64(0xc9bc759f1056238f), CONST64(0x9b74ef2c07b7582b), CONST64(0xd0e4345ce18cb8bd),
CONST64(0xc4f53153c697a695), CONST64(0x77a3d4618f16c2ee), CONST64(0x67b7d06da30adace), CONST64(0x22a48697d3b53344),
CONST64(0xe59b7e82556719d7), CONST64(0x8e23adeaeb64c901), CONST64(0xd32efd1aa1c934bb), CONST64(0xa48d297b2edff655),
CONST64(0xc0f03050cd90a09d), CONST64(0xecd73b4d88a19ac5), CONST64(0x46d99fbc30fa658c), CONST64(0xc73ff81586d22a93),
CONST64(0x3ff9c6572968ae7e), CONST64(0x4c5f1335ad796a98), CONST64(0x181e060a3a121430), CONST64(0x1411050f271b1e28),
CONST64(0x33f6c5523461a466), CONST64(0x44551133bb776688), CONST64(0xc1b6779906582f9f), CONST64(0xed917c84436915c7),
CONST64(0xf58f7a8e797b01f7), CONST64(0xfd8578886f750de7), CONST64(0xd8ee365af782b4ad), CONST64(0x706c1c24c45448e0),
CONST64(0xe4dd394b9eaf96d5), CONST64(0x792059eb1992cbf2), CONST64(0x60781828e84850c0), CONST64(0x451356fa70bfe98a),
CONST64(0xf645b3c8393e8df1), CONST64(0xfa4ab0cd243787e9), CONST64(0x90b4246c51fcd83d), CONST64(0x80a020607de0c01d),
CONST64(0xf240b2cb32398bf9), CONST64(0x72e092ab4fd94be4), CONST64(0xb615a3f8894eed71), CONST64(0x27e7c05d137aba4e),
CONST64(0x0d4944ccd6c1851a), CONST64(0x95f762a691335137), CONST64(0x40501030b0706080), CONST64(0xea5eb4c1082b9fc9),
CONST64(0x2aae8491c5bb3f54), CONST64(0x115243c5e7d49722), CONST64(0x76e593a844de4dec), CONST64(0x2fedc25b0574b65e),
CONST64(0x357f4adeb4eba16a), CONST64(0xce73bdda5b14a981), CONST64(0x06898f8c808a050c), CONST64(0xb4992d7702c3ee75),
CONST64(0xca76bcd95013af89), CONST64(0x4ad69cb92df36f94), CONST64(0xb5df6abec90b6177), CONST64(0x1d5d40c0fadd9d3a),
CONST64(0x1bd4cf4c7a579836), CONST64(0xb210a2fb8249eb79), CONST64(0x3aba809de9a72774), CONST64(0x216e4fd193f0bf42),
CONST64(0x7c631f21d95d42f8), CONST64(0x0fc5ca435d4c861e), CONST64(0x9238aae3da71db39), CONST64(0x155742c6ecd3912a),
};
static const ulong64 T3[256] = {
CONST64(0x68d2d3ba016ab9bb), CONST64(0x194dfc54b1669ae5), CONST64(0x93bc712fcd1465e2), CONST64(0xb9cd9c74511b8725),
CONST64(0x0251f553a457a2f7), CONST64(0xb86b68d303bed6d0), CONST64(0xbd6f6bd204b5ded6), CONST64(0x6429d74dfe8552b3),
CONST64(0x0d5df050ad4abafd), CONST64(0x268ae9ac63e009cf), CONST64(0x830e8a8d84961c09), CONST64(0x79c6dcbf1a4d91a5),
CONST64(0xaddd90704d37a73d), CONST64(0x0755f652a35caaf1), CONST64(0xc852b39ae117a47b), CONST64(0x612dd44cf98e5ab5),
CONST64(0x658f23eaac200346), CONST64(0xa67362d51184e6c4), CONST64(0xf166a497c268cc55), CONST64(0xb2636ed10da8c6dc),
CONST64(0xffcc553399d085aa), CONST64(0x0859f351aa41b2fb), CONST64(0x2a71ed5b9c0fe2c7), CONST64(0x04a2f7a655ae59f3),
CONST64(0x815f7fde20c1befe), CONST64(0x753dd848e5a27aad), CONST64(0x329ae5a87fcc29d7), CONST64(0xc75eb699e80abc71),
CONST64(0x904b70db3be696e0), CONST64(0xfac856329edb8dac), CONST64(0x51e6c4b72215d195), CONST64(0x2bd719fcceaab332),
CONST64(0x48ab38e393734b70), CONST64(0xdc42bf9efd3b8463), CONST64(0xef7eae91d052fc41), CONST64(0xcd56b09be61cac7d),
CONST64(0x4daf3be294784376), CONST64(0x6dd6d0bb0661b1bd), CONST64(0x5819c341daf1329b), CONST64(0xcba5b26e17e55779),
CONST64(0x0baef2a55cb341f9), CONST64(0xc00b40cb4b561680), CONST64(0xdab1bd6b0cc27f67), CONST64(0xfb6ea295cc7edc59),
CONST64(0x1fbefea1409f61e1), CONST64(0x18eb08f3e3c3cb10), CONST64(0x4ffeceb1302fe181), CONST64(0x0a0806020e16100c),
CONST64(0xdb1749cc5e672e92), CONST64(0xf33751c4663f6ea2), CONST64(0x6974271d53cfe84e), CONST64(0x44503c146c9ca078),
CONST64(0xe82b58c3730e56b0), CONST64(0xf291a563349a3f57), CONST64(0x954f73da3ced9ee6), CONST64(0x3469e75d8e35d2d3),
CONST64(0x3e61e15f8023c2df), CONST64(0x8b5779dc2ed7aef2), CONST64(0x94e9877d6e48cf13), CONST64(0xde134acd596c2694),
CONST64(0x9ee1817f605edf1f), CONST64(0x2f75ee5a9b04eac1), CONST64(0xc1adb46c19f34775), CONST64(0x316de45c893edad5),
CONST64(0x0cfb04f7ffefeb08), CONST64(0xbe986a26f2472dd4), CONST64(0x24db1cffc7b7ab38), CONST64(0x7e932aedb9113b54),
CONST64(0x6f8725e8a236134a), CONST64(0xd34eba9df4269c69), CONST64(0xcea1b16f10ee5f7f), CONST64(0x8c028f8e8d8b0403),
CONST64(0x7d642b194fe3c856), CONST64(0x1abafda0479469e7), CONST64(0x17e70df0eaded31a), CONST64(0x971e868998ba3c11),
CONST64(0x333c110f2d697822), CONST64(0x1b1c090715313812), CONST64(0x2986ecaf6afd11c5), CONST64(0x30cb10fbdb9b8b20),
CONST64(0x2820180838584030), CONST64(0x41543f156b97a87e), CONST64(0x3934170d237f682e), CONST64(0x14100c041c2c2018),
CONST64(0x05040301070b0806), CONST64(0xe98dac6421ab0745), CONST64(0x845b7cdf27cab6f8), CONST64(0xb3c59a765f0d9729),
CONST64(0x80f98b797264ef0b), CONST64(0x8e537add29dca6f4), CONST64(0xc9f4473db3b2f58e), CONST64(0x4e583a16628ab074),
CONST64(0xc3fc413fbda4e582), CONST64(0xebdc593785fca5b2), CONST64(0xc4a9b76d1ef84f73), CONST64(0xd8e04838a895dd90),
CONST64(0x67ded6b90877a1b1), CONST64(0xa2d19573442abf37), CONST64(0x6a8326e9a53d1b4c), CONST64(0xe1d45f358beab5be),
CONST64(0x1c49ff55b66d92e3), CONST64(0xa8d993714a3caf3b), CONST64(0x8af18d7b7c72ff07), CONST64(0x860a898c839d140f),
CONST64(0xa7d596724321b731), CONST64(0x921a85889fb13417), CONST64(0x09ff07f6f8e4e30e), CONST64(0x82a87e2ad6334dfc),
CONST64(0xc6f8423ebaafed84), CONST64(0x3b65e25e8728cad9), CONST64(0xbb9c6927f54c25d2), CONST64(0x4305ca46cfc00a89),
CONST64(0x3c30140c24746028), CONST64(0xec89af6526a00f43), CONST64(0xd5bdb86805df676d), CONST64(0xf899a3613a8c2f5b),
CONST64(0x0f0c0503091d180a), CONST64(0xe2235ec17d1846bc), CONST64(0x1641f957b87b82ef), CONST64(0xa97f67d61899fece),
CONST64(0x9a4376d935f086ec), CONST64(0x257de8589512facd), CONST64(0x9f4775d832fb8eea), CONST64(0xe385aa662fbd1749),
CONST64(0xac7b64d71f92f6c8), CONST64(0xd2e84e3aa683cd9c), CONST64(0xcf0745c8424b0e8a), CONST64(0xccf0443cb4b9fd88),
CONST64(0x35cf13fadc908326), CONST64(0xf462a796c563c453), CONST64(0x01a6f4a752a551f5), CONST64(0xc25ab598ef01b477),
CONST64(0x7b9729ecbe1a3352), CONST64(0x62dad5b80f7ca9b7), CONST64(0xfc3b54c76f2276a8), CONST64(0x2c82efae6df619c3),
CONST64(0xd0b9bb6902d46f6b), CONST64(0x7a31dd4becbf62a7), CONST64(0x3d96e0ab76d131dd), CONST64(0x379ee6a978c721d1),
CONST64(0xe681a96728b61f4f), CONST64(0x22281e0a364e503c), CONST64(0x4601c947c8cb028f), CONST64(0x1def0bf2e4c8c316),
CONST64(0x5beec2b52c03c199), CONST64(0xaa886622ee6b0dcc), CONST64(0x56b332e581497b64), CONST64(0x719f2feeb00c235e),
CONST64(0x7cc2dfbe1d4699a3), CONST64(0x87ac7d2bd13845fa), CONST64(0xbf3e9e81a0e27c21), CONST64(0x5a4836127ea6906c),
CONST64(0xb5369883aef46c2d), CONST64(0x776c2d1b41f5d85a), CONST64(0x3638120e2a627024), CONST64(0xaf8c6523e96005ca),
CONST64(0x06f302f5f1f9fb04), CONST64(0x4c09cf45c6dd1283), CONST64(0xa5846321e77615c6), CONST64(0xd11f4fce50713e9e),
CONST64(0x7039db49e2a972ab), CONST64(0x9cb0742cc4097de8), CONST64(0x3ac316f9d58d9b2c), CONST64(0x59bf37e68854636e),
CONST64(0x54e2c7b6251ed993), CONST64(0x88a07828d8255df0), CONST64(0x4b5c39176581b872), CONST64(0xb0329b82a9ff642b),
CONST64(0x72682e1a46fed05c), CONST64(0x9d16808b96ac2c1d), CONST64(0x21df1ffec0bca33e), CONST64(0x9812838a91a7241b),
CONST64(0x2d241b093f534836), CONST64(0xca0346c94540068c), CONST64(0xa1269487b2d84c35), CONST64(0x6b25d24ef7984ab9),
CONST64(0x42a33ee19d655b7c), CONST64(0x96b8722eca1f6de4), CONST64(0x53b731e486427362), CONST64(0x47a73de09a6e537a),
CONST64(0x608b20ebab2b0b40), CONST64(0xea7aad90d759f447), CONST64(0x0eaaf1a45bb849ff), CONST64(0x6678221e5ad2f044),
CONST64(0xab2e9285bcce5c39), CONST64(0xfd9da0603d87275d), CONST64(0x0000000000000000), CONST64(0xb1946f25fb5a35de),
CONST64(0x03f701f4f6f2f302), CONST64(0x12e30ef1edd5db1c), CONST64(0xfe6aa194cb75d45f), CONST64(0x272c1d0b3145583a),
CONST64(0x5cbb34e78f5f6b68), CONST64(0xbcc99f7556108f23), CONST64(0x749b2cefb7072b58), CONST64(0xe4d05c348ce1bdb8),
CONST64(0xf5c4533197c695a6), CONST64(0xa37761d4168feec2), CONST64(0xb7676dd00aa3ceda), CONST64(0xa4229786b5d34433),
CONST64(0x9be5827e6755d719), CONST64(0x238eeaad64eb01c9), CONST64(0x2ed31afdc9a1bb34), CONST64(0x8da47b29df2e55f6),
CONST64(0xf0c0503090cd9da0), CONST64(0xd7ec4d3ba188c59a), CONST64(0xd946bc9ffa308c65), CONST64(0x3fc715f8d286932a),
CONST64(0xf93f57c668297eae), CONST64(0x5f4c351379ad986a), CONST64(0x1e180a06123a3014), CONST64(0x11140f051b27281e),
CONST64(0xf63352c5613466a4), CONST64(0x5544331177bb8866), CONST64(0xb6c1997758069f2f), CONST64(0x91ed847c6943c715),
CONST64(0x8ff58e7a7b79f701), CONST64(0x85fd8878756fe70d), CONST64(0xeed85a3682f7adb4), CONST64(0x6c70241c54c4e048),
CONST64(0xdde44b39af9ed596), CONST64(0x2079eb599219f2cb), CONST64(0x7860281848e8c050), CONST64(0x1345fa56bf708ae9),
CONST64(0x45f6c8b33e39f18d), CONST64(0x4afacdb03724e987), CONST64(0xb4906c24fc513dd8), CONST64(0xa0806020e07d1dc0),
CONST64(0x40f2cbb23932f98b), CONST64(0xe072ab92d94fe44b), CONST64(0x15b6f8a34e8971ed), CONST64(0xe7275dc07a134eba),
CONST64(0x490dcc44c1d61a85), CONST64(0xf795a66233913751), CONST64(0x5040301070b08060), CONST64(0x5eeac1b42b08c99f),
CONST64(0xae2a9184bbc5543f), CONST64(0x5211c543d4e72297), CONST64(0xe576a893de44ec4d), CONST64(0xed2f5bc274055eb6),
CONST64(0x7f35de4aebb46aa1), CONST64(0x73cedabd145b81a9), CONST64(0x89068c8f8a800c05), CONST64(0x99b4772dc30275ee),
CONST64(0x76cad9bc135089af), CONST64(0xd64ab99cf32d946f), CONST64(0xdfb5be6a0bc97761), CONST64(0x5d1dc040ddfa3a9d),
CONST64(0xd41b4ccf577a3698), CONST64(0x10b2fba2498279eb), CONST64(0xba3a9d80a7e97427), CONST64(0x6e21d14ff09342bf),
CONST64(0x637c211f5dd9f842), CONST64(0xc50f43ca4c5d1e86), CONST64(0x3892e3aa71da39db), CONST64(0x5715c642d3ec2a91),
};
static const ulong64 T4[256] = {
CONST64(0xbbb96a01bad3d268), CONST64(0xe59a66b154fc4d19), CONST64(0xe26514cd2f71bc93), CONST64(0x25871b51749ccdb9),
CONST64(0xf7a257a453f55102), CONST64(0xd0d6be03d3686bb8), CONST64(0xd6deb504d26b6fbd), CONST64(0xb35285fe4dd72964),
CONST64(0xfdba4aad50f05d0d), CONST64(0xcf09e063ace98a26), CONST64(0x091c96848d8a0e83), CONST64(0xa5914d1abfdcc679),
CONST64(0x3da7374d7090ddad), CONST64(0xf1aa5ca352f65507), CONST64(0x7ba417e19ab352c8), CONST64(0xb55a8ef94cd42d61),
CONST64(0x460320acea238f65), CONST64(0xc4e68411d56273a6), CONST64(0x55cc68c297a466f1), CONST64(0xdcc6a80dd16e63b2),
CONST64(0xaa85d0993355ccff), CONST64(0xfbb241aa51f35908), CONST64(0xc7e20f9c5bed712a), CONST64(0xf359ae55a6f7a204),
CONST64(0xfebec120de7f5f81), CONST64(0xad7aa2e548d83d75), CONST64(0xd729cc7fa8e59a32), CONST64(0x71bc0ae899b65ec7),
CONST64(0xe096e63bdb704b90), CONST64(0xac8ddb9e3256c8fa), CONST64(0x95d11522b7c4e651), CONST64(0x32b3aacefc19d72b),
CONST64(0x704b7393e338ab48), CONST64(0x63843bfd9ebf42dc), CONST64(0x41fc52d091ae7eef), CONST64(0x7dac1ce69bb056cd),
CONST64(0x76437894e23baf4d), CONST64(0xbdb16106bbd0d66d), CONST64(0x9b32f1da41c31958), CONST64(0x7957e5176eb2a5cb),
CONST64(0xf941b35ca5f2ae0b), CONST64(0x8016564bcb400bc0), CONST64(0x677fc20c6bbdb1da), CONST64(0x59dc7ecc95a26efb),
CONST64(0xe1619f40a1febe1f), CONST64(0x10cbc3e3f308eb18), CONST64(0x81e12f30b1cefe4f), CONST64(0x0c10160e0206080a),
CONST64(0x922e675ecc4917db), CONST64(0xa26e3f66c45137f3), CONST64(0x4ee8cf531d277469), CONST64(0x78a09c6c143c5044),
CONST64(0xb0560e73c3582be8), CONST64(0x573f9a3463a591f2), CONST64(0xe69eed3cda734f95), CONST64(0xd3d2358e5de76934),
CONST64(0xdfc223805fe1613e), CONST64(0xf2aed72edc79578b), CONST64(0x13cf486e7d87e994), CONST64(0x94266c59cd4a13de),
CONST64(0x1fdf5e607f81e19e), CONST64(0xc1ea049b5aee752f), CONST64(0x7547f3196cb4adc1), CONST64(0xd5da3e895ce46d31),
CONST64(0x08ebeffff704fb0c), CONST64(0xd42d47f2266a98be), CONST64(0x38abb7c7ff1cdb24), CONST64(0x543b11b9ed2a937e),
CONST64(0x4a1336a2e825876f), CONST64(0x699c26f49dba4ed3), CONST64(0x7f5fee106fb1a1ce), CONST64(0x03048b8d8e8f028c),
CONST64(0x56c8e34f192b647d), CONST64(0xe7699447a0fdba1a), CONST64(0x1ad3deeaf00de717), CONST64(0x113cba9889861e97),
CONST64(0x2278692d0f113c33), CONST64(0x1238311507091c1b), CONST64(0xc511fd6aafec8629), CONST64(0x208b9bdbfb10cb30),
CONST64(0x3040583808182028), CONST64(0x7ea8976b153f5441), CONST64(0x2e687f230d173439), CONST64(0x18202c1c040c1014),
CONST64(0x06080b0701030405), CONST64(0x4507ab2164ac8de9), CONST64(0xf8b6ca27df7c5b84), CONST64(0x29970d5f769ac5b3),
CONST64(0x0bef6472798bf980), CONST64(0xf4a6dc29dd7a538e), CONST64(0x8ef5b2b33d47f4c9), CONST64(0x74b08a62163a584e),
CONST64(0x82e5a4bd3f41fcc3), CONST64(0xb2a5fc853759dceb), CONST64(0x734ff81e6db7a9c4), CONST64(0x90dd95a83848e0d8),
CONST64(0xb1a17708b9d6de67), CONST64(0x37bf2a447395d1a2), CONST64(0x4c1b3da5e926836a), CONST64(0xbeb5ea8b355fd4e1),
CONST64(0xe3926db655ff491c), CONST64(0x3baf3c4a7193d9a8), CONST64(0x07ff727c7b8df18a), CONST64(0x0f149d838c890a86),
CONST64(0x31b721437296d5a7), CONST64(0x1734b19f88851a92), CONST64(0x0ee3e4f8f607ff09), CONST64(0xfc4d33d62a7ea882),
CONST64(0x84edafba3e42f8c6), CONST64(0xd9ca28875ee2653b), CONST64(0xd2254cf527699cbb), CONST64(0x890ac0cf46ca0543),
CONST64(0x286074240c14303c), CONST64(0x430fa02665af89ec), CONST64(0x6d67df0568b8bdd5), CONST64(0x5b2f8c3a61a399f8),
CONST64(0x0a181d0903050c0f), CONST64(0xbc46187dc15e23e2), CONST64(0xef827bb857f94116), CONST64(0xcefe9918d6677fa9),
CONST64(0xec86f035d976439a), CONST64(0xcdfa129558e87d25), CONST64(0xea8efb32d875479f), CONST64(0x4917bd2f66aa85e3),
CONST64(0xc8f6921fd7647bac), CONST64(0x9ccd83a63a4ee8d2), CONST64(0x8a0e4b42c84507cf), CONST64(0x88fdb9b43c44f0cc),
CONST64(0x268390dcfa13cf35), CONST64(0x53c463c596a762f4), CONST64(0xf551a552a7f4a601), CONST64(0x77b401ef98b55ac2),
CONST64(0x52331abeec29977b), CONST64(0xb7a97c0fb8d5da62), CONST64(0xa876226fc7543bfc), CONST64(0xc319f66daeef822c),
CONST64(0x6b6fd40269bbb9d0), CONST64(0xa762bfec4bdd317a), CONST64(0xdd31d176abe0963d), CONST64(0xd121c778a9e69e37),
CONST64(0x4f1fb62867a981e6), CONST64(0x3c504e360a1e2822), CONST64(0x8f02cbc847c90146), CONST64(0x16c3c8e4f20bef1d),
CONST64(0x99c1032cb5c2ee5b), CONST64(0xcc0d6bee226688aa), CONST64(0x647b4981e532b356), CONST64(0x5e230cb0ee2f9f71),
CONST64(0xa399461dbedfc27c), CONST64(0xfa4538d12b7dac87), CONST64(0x217ce2a0819e3ebf), CONST64(0x6c90a67e1236485a),
CONST64(0x2d6cf4ae839836b5), CONST64(0x5ad8f5411b2d6c77), CONST64(0x2470622a0e123836), CONST64(0xca0560e923658caf),
CONST64(0x04fbf9f1f502f306), CONST64(0x8312ddc645cf094c), CONST64(0xc61576e7216384a5), CONST64(0x9e3e7150ce4f1fd1),
CONST64(0xab72a9e249db3970), CONST64(0xe87d09c42c74b09c), CONST64(0x2c9b8dd5f916c33a), CONST64(0x6e635488e637bf59),
CONST64(0x93d91e25b6c7e254), CONST64(0xf05d25d82878a088), CONST64(0x72b8816517395c4b), CONST64(0x2b64ffa9829b32b0),
CONST64(0x5cd0fe461a2e6872), CONST64(0x1d2cac968b80169d), CONST64(0x3ea3bcc0fe1fdf21), CONST64(0x1b24a7918a831298),
CONST64(0x3648533f091b242d), CONST64(0x8c064045c94603ca), CONST64(0x354cd8b2879426a1), CONST64(0xb94a98f74ed2256b),
CONST64(0x7c5b659de13ea342), CONST64(0xe46d1fca2e72b896), CONST64(0x62734286e431b753), CONST64(0x7a536e9ae03da747),
CONST64(0x400b2babeb208b60), CONST64(0x47f459d790ad7aea), CONST64(0xff49b85ba4f1aa0e), CONST64(0x44f0d25a1e227866),
CONST64(0x395ccebc85922eab), CONST64(0x5d27873d60a09dfd), CONST64(0x0000000000000000), CONST64(0xde355afb256f94b1),
CONST64(0x02f3f2f6f401f703), CONST64(0x1cdbd5edf10ee312), CONST64(0x5fd475cb94a16afe), CONST64(0x3a5845310b1d2c27),
CONST64(0x686b5f8fe734bb5c), CONST64(0x238f1056759fc9bc), CONST64(0x582b07b7ef2c9b74), CONST64(0xb8bde18c345cd0e4),
CONST64(0xa695c6973153c4f5), CONST64(0xc2ee8f16d46177a3), CONST64(0xdacea30ad06d67b7), CONST64(0x3344d3b5869722a4),
CONST64(0x19d755677e82e59b), CONST64(0xc901eb64adea8e23), CONST64(0x34bba1c9fd1ad32e), CONST64(0xf6552edf297ba48d),
CONST64(0xa09dcd903050c0f0), CONST64(0x9ac588a13b4decd7), CONST64(0x658c30fa9fbc46d9), CONST64(0x2a9386d2f815c73f),
CONST64(0xae7e2968c6573ff9), CONST64(0x6a98ad7913354c5f), CONST64(0x14303a12060a181e), CONST64(0x1e28271b050f1411),
CONST64(0xa4663461c55233f6), CONST64(0x6688bb7711334455), CONST64(0x2f9f06587799c1b6), CONST64(0x15c743697c84ed91),
CONST64(0x01f7797b7a8ef58f), CONST64(0x0de76f757888fd85), CONST64(0xb4adf782365ad8ee), CONST64(0x48e0c4541c24706c),
CONST64(0x96d59eaf394be4dd), CONST64(0xcbf2199259eb7920), CONST64(0x50c0e84818286078), CONST64(0xe98a70bf56fa4513),
CONST64(0x8df1393eb3c8f645), CONST64(0x87e92437b0cdfa4a), CONST64(0xd83d51fc246c90b4), CONST64(0xc01d7de0206080a0),
CONST64(0x8bf93239b2cbf240), CONST64(0x4be44fd992ab72e0), CONST64(0xed71894ea3f8b615), CONST64(0xba4e137ac05d27e7),
CONST64(0x851ad6c144cc0d49), CONST64(0x5137913362a695f7), CONST64(0x6080b07010304050), CONST64(0x9fc9082bb4c1ea5e),
CONST64(0x3f54c5bb84912aae), CONST64(0x9722e7d443c51152), CONST64(0x4dec44de93a876e5), CONST64(0xb65e0574c25b2fed),
CONST64(0xa16ab4eb4ade357f), CONST64(0xa9815b14bddace73), CONST64(0x050c808a8f8c0689), CONST64(0xee7502c32d77b499),
CONST64(0xaf895013bcd9ca76), CONST64(0x6f942df39cb94ad6), CONST64(0x6177c90b6abeb5df), CONST64(0x9d3afadd40c01d5d),
CONST64(0x98367a57cf4c1bd4), CONST64(0xeb798249a2fbb210), CONST64(0x2774e9a7809d3aba), CONST64(0xbf4293f04fd1216e),
CONST64(0x42f8d95d1f217c63), CONST64(0x861e5d4cca430fc5), CONST64(0xdb39da71aae39238), CONST64(0x912aecd342c61557),
};
static const ulong64 T5[256] = {
CONST64(0xb9bb016ad3ba68d2), CONST64(0x9ae5b166fc54194d), CONST64(0x65e2cd14712f93bc), CONST64(0x8725511b9c74b9cd),
CONST64(0xa2f7a457f5530251), CONST64(0xd6d003be68d3b86b), CONST64(0xded604b56bd2bd6f), CONST64(0x52b3fe85d74d6429),
CONST64(0xbafdad4af0500d5d), CONST64(0x09cf63e0e9ac268a), CONST64(0x1c0984968a8d830e), CONST64(0x91a51a4ddcbf79c6),
CONST64(0xa73d4d379070addd), CONST64(0xaaf1a35cf6520755), CONST64(0xa47be117b39ac852), CONST64(0x5ab5f98ed44c612d),
CONST64(0x0346ac2023ea658f), CONST64(0xe6c4118462d5a673), CONST64(0xcc55c268a497f166), CONST64(0xc6dc0da86ed1b263),
CONST64(0x85aa99d05533ffcc), CONST64(0xb2fbaa41f3510859), CONST64(0xe2c79c0fed5b2a71), CONST64(0x59f355aef7a604a2),
CONST64(0xbefe20c17fde815f), CONST64(0x7aade5a2d848753d), CONST64(0x29d77fcce5a8329a), CONST64(0xbc71e80ab699c75e),
CONST64(0x96e03be670db904b), CONST64(0x8dac9edb5632fac8), CONST64(0xd1952215c4b751e6), CONST64(0xb332ceaa19fc2bd7),
CONST64(0x4b70937338e348ab), CONST64(0x8463fd3bbf9edc42), CONST64(0xfc41d052ae91ef7e), CONST64(0xac7de61cb09bcd56),
CONST64(0x437694783be24daf), CONST64(0xb1bd0661d0bb6dd6), CONST64(0x329bdaf1c3415819), CONST64(0x577917e5b26ecba5),
CONST64(0x41f95cb3f2a50bae), CONST64(0x16804b5640cbc00b), CONST64(0x7f670cc2bd6bdab1), CONST64(0xdc59cc7ea295fb6e),
CONST64(0x61e1409ffea11fbe), CONST64(0xcb10e3c308f318eb), CONST64(0xe181302fceb14ffe), CONST64(0x100c0e1606020a08),
CONST64(0x2e925e6749ccdb17), CONST64(0x6ea2663f51c4f337), CONST64(0xe84e53cf271d6974), CONST64(0xa0786c9c3c144450),
CONST64(0x56b0730e58c3e82b), CONST64(0x3f57349aa563f291), CONST64(0x9ee63ced73da954f), CONST64(0xd2d38e35e75d3469),
CONST64(0xc2df8023e15f3e61), CONST64(0xaef22ed779dc8b57), CONST64(0xcf136e48877d94e9), CONST64(0x2694596c4acdde13),
CONST64(0xdf1f605e817f9ee1), CONST64(0xeac19b04ee5a2f75), CONST64(0x477519f3b46cc1ad), CONST64(0xdad5893ee45c316d),
CONST64(0xeb08ffef04f70cfb), CONST64(0x2dd4f2476a26be98), CONST64(0xab38c7b71cff24db), CONST64(0x3b54b9112aed7e93),
CONST64(0x134aa23625e86f87), CONST64(0x9c69f426ba9dd34e), CONST64(0x5f7f10eeb16fcea1), CONST64(0x04038d8b8f8e8c02),
CONST64(0xc8564fe32b197d64), CONST64(0x69e74794fda01aba), CONST64(0xd31aeade0df017e7), CONST64(0x3c1198ba8689971e),
CONST64(0x78222d69110f333c), CONST64(0x3812153109071b1c), CONST64(0x11c56afdecaf2986), CONST64(0x8b20db9b10fb30cb),
CONST64(0x4030385818082820), CONST64(0xa87e6b973f154154), CONST64(0x682e237f170d3934), CONST64(0x20181c2c0c041410),
CONST64(0x0806070b03010504), CONST64(0x074521abac64e98d), CONST64(0xb6f827ca7cdf845b), CONST64(0x97295f0d9a76b3c5),
CONST64(0xef0b72648b7980f9), CONST64(0xa6f429dc7add8e53), CONST64(0xf58eb3b2473dc9f4), CONST64(0xb074628a3a164e58),
CONST64(0xe582bda4413fc3fc), CONST64(0xa5b285fc5937ebdc), CONST64(0x4f731ef8b76dc4a9), CONST64(0xdd90a8954838d8e0),
CONST64(0xa1b10877d6b967de), CONST64(0xbf37442a9573a2d1), CONST64(0x1b4ca53d26e96a83), CONST64(0xb5be8bea5f35e1d4),
CONST64(0x92e3b66dff551c49), CONST64(0xaf3b4a3c9371a8d9), CONST64(0xff077c728d7b8af1), CONST64(0x140f839d898c860a),
CONST64(0xb73143219672a7d5), CONST64(0x34179fb18588921a), CONST64(0xe30ef8e407f609ff), CONST64(0x4dfcd6337e2a82a8),
CONST64(0xed84baaf423ec6f8), CONST64(0xcad98728e25e3b65), CONST64(0x25d2f54c6927bb9c), CONST64(0x0a89cfc0ca464305),
CONST64(0x60282474140c3c30), CONST64(0x0f4326a0af65ec89), CONST64(0x676d05dfb868d5bd), CONST64(0x2f5b3a8ca361f899),
CONST64(0x180a091d05030f0c), CONST64(0x46bc7d185ec1e223), CONST64(0x82efb87bf9571641), CONST64(0xfece189967d6a97f),
CONST64(0x86ec35f076d99a43), CONST64(0xfacd9512e858257d), CONST64(0x8eea32fb75d89f47), CONST64(0x17492fbdaa66e385),
CONST64(0xf6c81f9264d7ac7b), CONST64(0xcd9ca6834e3ad2e8), CONST64(0x0e8a424b45c8cf07), CONST64(0xfd88b4b9443cccf0),
CONST64(0x8326dc9013fa35cf), CONST64(0xc453c563a796f462), CONST64(0x51f552a5f4a701a6), CONST64(0xb477ef01b598c25a),
CONST64(0x3352be1a29ec7b97), CONST64(0xa9b70f7cd5b862da), CONST64(0x76a86f2254c7fc3b), CONST64(0x19c36df6efae2c82),
CONST64(0x6f6b02d4bb69d0b9), CONST64(0x62a7ecbfdd4b7a31), CONST64(0x31dd76d1e0ab3d96), CONST64(0x21d178c7e6a9379e),
CONST64(0x1f4f28b6a967e681), CONST64(0x503c364e1e0a2228), CONST64(0x028fc8cbc9474601), CONST64(0xc316e4c80bf21def),
CONST64(0xc1992c03c2b55bee), CONST64(0x0dccee6b6622aa88), CONST64(0x7b64814932e556b3), CONST64(0x235eb00c2fee719f),
CONST64(0x99a31d46dfbe7cc2), CONST64(0x45fad1387d2b87ac), CONST64(0x7c21a0e29e81bf3e), CONST64(0x906c7ea636125a48),
CONST64(0x6c2daef49883b536), CONST64(0xd85a41f52d1b776c), CONST64(0x70242a62120e3638), CONST64(0x05cae9606523af8c),
CONST64(0xfb04f1f902f506f3), CONST64(0x1283c6ddcf454c09), CONST64(0x15c6e7766321a584), CONST64(0x3e9e50714fced11f),
CONST64(0x72abe2a9db497039), CONST64(0x7de8c409742c9cb0), CONST64(0x9b2cd58d16f93ac3), CONST64(0x636e885437e659bf),
CONST64(0xd993251ec7b654e2), CONST64(0x5df0d825782888a0), CONST64(0xb872658139174b5c), CONST64(0x642ba9ff9b82b032),
CONST64(0xd05c46fe2e1a7268), CONST64(0x2c1d96ac808b9d16), CONST64(0xa33ec0bc1ffe21df), CONST64(0x241b91a7838a9812),
CONST64(0x48363f531b092d24), CONST64(0x068c454046c9ca03), CONST64(0x4c35b2d89487a126), CONST64(0x4ab9f798d24e6b25),
CONST64(0x5b7c9d653ee142a3), CONST64(0x6de4ca1f722e96b8), CONST64(0x7362864231e453b7), CONST64(0x537a9a6e3de047a7),
CONST64(0x0b40ab2b20eb608b), CONST64(0xf447d759ad90ea7a), CONST64(0x49ff5bb8f1a40eaa), CONST64(0xf0445ad2221e6678),
CONST64(0x5c39bcce9285ab2e), CONST64(0x275d3d87a060fd9d), CONST64(0x0000000000000000), CONST64(0x35defb5a6f25b194),
CONST64(0xf302f6f201f403f7), CONST64(0xdb1cedd50ef112e3), CONST64(0xd45fcb75a194fe6a), CONST64(0x583a31451d0b272c),
CONST64(0x6b688f5f34e75cbb), CONST64(0x8f2356109f75bcc9), CONST64(0x2b58b7072cef749b), CONST64(0xbdb88ce15c34e4d0),
CONST64(0x95a697c65331f5c4), CONST64(0xeec2168f61d4a377), CONST64(0xceda0aa36dd0b767), CONST64(0x4433b5d39786a422),
CONST64(0xd7196755827e9be5), CONST64(0x01c964ebeaad238e), CONST64(0xbb34c9a11afd2ed3), CONST64(0x55f6df2e7b298da4),
CONST64(0x9da090cd5030f0c0), CONST64(0xc59aa1884d3bd7ec), CONST64(0x8c65fa30bc9fd946), CONST64(0x932ad28615f83fc7),
CONST64(0x7eae682957c6f93f), CONST64(0x986a79ad35135f4c), CONST64(0x3014123a0a061e18), CONST64(0x281e1b270f051114),
CONST64(0x66a4613452c5f633), CONST64(0x886677bb33115544), CONST64(0x9f2f58069977b6c1), CONST64(0xc7156943847c91ed),
CONST64(0xf7017b798e7a8ff5), CONST64(0xe70d756f887885fd), CONST64(0xadb482f75a36eed8), CONST64(0xe04854c4241c6c70),
CONST64(0xd596af9e4b39dde4), CONST64(0xf2cb9219eb592079), CONST64(0xc05048e828187860), CONST64(0x8ae9bf70fa561345),
CONST64(0xf18d3e39c8b345f6), CONST64(0xe9873724cdb04afa), CONST64(0x3dd8fc516c24b490), CONST64(0x1dc0e07d6020a080),
CONST64(0xf98b3932cbb240f2), CONST64(0xe44bd94fab92e072), CONST64(0x71ed4e89f8a315b6), CONST64(0x4eba7a135dc0e727),
CONST64(0x1a85c1d6cc44490d), CONST64(0x37513391a662f795), CONST64(0x806070b030105040), CONST64(0xc99f2b08c1b45eea),
CONST64(0x543fbbc59184ae2a), CONST64(0x2297d4e7c5435211), CONST64(0xec4dde44a893e576), CONST64(0x5eb674055bc2ed2f),
CONST64(0x6aa1ebb4de4a7f35), CONST64(0x81a9145bdabd73ce), CONST64(0x0c058a808c8f8906), CONST64(0x75eec302772d99b4),
CONST64(0x89af1350d9bc76ca), CONST64(0x946ff32db99cd64a), CONST64(0x77610bc9be6adfb5), CONST64(0x3a9dddfac0405d1d),
CONST64(0x3698577a4ccfd41b), CONST64(0x79eb4982fba210b2), CONST64(0x7427a7e99d80ba3a), CONST64(0x42bff093d14f6e21),
CONST64(0xf8425dd9211f637c), CONST64(0x1e864c5d43cac50f), CONST64(0x39db71dae3aa3892), CONST64(0x2a91d3ecc6425715),
};
static const ulong64 T6[256] = {
CONST64(0x6a01bbb9d268bad3), CONST64(0x66b1e59a4d1954fc), CONST64(0x14cde265bc932f71), CONST64(0x1b512587cdb9749c),
CONST64(0x57a4f7a2510253f5), CONST64(0xbe03d0d66bb8d368), CONST64(0xb504d6de6fbdd26b), CONST64(0x85feb35229644dd7),
CONST64(0x4aadfdba5d0d50f0), CONST64(0xe063cf098a26ace9), CONST64(0x9684091c0e838d8a), CONST64(0x4d1aa591c679bfdc),
CONST64(0x374d3da7ddad7090), CONST64(0x5ca3f1aa550752f6), CONST64(0x17e17ba452c89ab3), CONST64(0x8ef9b55a2d614cd4),
CONST64(0x20ac46038f65ea23), CONST64(0x8411c4e673a6d562), CONST64(0x68c255cc66f197a4), CONST64(0xa80ddcc663b2d16e),
CONST64(0xd099aa85ccff3355), CONST64(0x41aafbb2590851f3), CONST64(0x0f9cc7e2712a5bed), CONST64(0xae55f359a204a6f7),
CONST64(0xc120febe5f81de7f), CONST64(0xa2e5ad7a3d7548d8), CONST64(0xcc7fd7299a32a8e5), CONST64(0x0ae871bc5ec799b6),
CONST64(0xe63be0964b90db70), CONST64(0xdb9eac8dc8fa3256), CONST64(0x152295d1e651b7c4), CONST64(0xaace32b3d72bfc19),
CONST64(0x7393704bab48e338), CONST64(0x3bfd638442dc9ebf), CONST64(0x52d041fc7eef91ae), CONST64(0x1ce67dac56cd9bb0),
CONST64(0x78947643af4de23b), CONST64(0x6106bdb1d66dbbd0), CONST64(0xf1da9b32195841c3), CONST64(0xe5177957a5cb6eb2),
CONST64(0xb35cf941ae0ba5f2), CONST64(0x564b80160bc0cb40), CONST64(0xc20c677fb1da6bbd), CONST64(0x7ecc59dc6efb95a2),
CONST64(0x9f40e161be1fa1fe), CONST64(0xc3e310cbeb18f308), CONST64(0x2f3081e1fe4fb1ce), CONST64(0x160e0c10080a0206),
CONST64(0x675e922e17dbcc49), CONST64(0x3f66a26e37f3c451), CONST64(0xcf534ee874691d27), CONST64(0x9c6c78a05044143c),
CONST64(0x0e73b0562be8c358), CONST64(0x9a34573f91f263a5), CONST64(0xed3ce69e4f95da73), CONST64(0x358ed3d269345de7),
CONST64(0x2380dfc2613e5fe1), CONST64(0xd72ef2ae578bdc79), CONST64(0x486e13cfe9947d87), CONST64(0x6c59942613decd4a),
CONST64(0x5e601fdfe19e7f81), CONST64(0x049bc1ea752f5aee), CONST64(0xf3197547adc16cb4), CONST64(0x3e89d5da6d315ce4),
CONST64(0xefff08ebfb0cf704), CONST64(0x47f2d42d98be266a), CONST64(0xb7c738abdb24ff1c), CONST64(0x11b9543b937eed2a),
CONST64(0x36a24a13876fe825), CONST64(0x26f4699c4ed39dba), CONST64(0xee107f5fa1ce6fb1), CONST64(0x8b8d0304028c8e8f),
CONST64(0xe34f56c8647d192b), CONST64(0x9447e769ba1aa0fd), CONST64(0xdeea1ad3e717f00d), CONST64(0xba98113c1e978986),
CONST64(0x692d22783c330f11), CONST64(0x311512381c1b0709), CONST64(0xfd6ac5118629afec), CONST64(0x9bdb208bcb30fb10),
CONST64(0x5838304020280818), CONST64(0x976b7ea85441153f), CONST64(0x7f232e6834390d17), CONST64(0x2c1c18201014040c),
CONST64(0x0b07060804050103), CONST64(0xab2145078de964ac), CONST64(0xca27f8b65b84df7c), CONST64(0x0d5f2997c5b3769a),
CONST64(0x64720beff980798b), CONST64(0xdc29f4a6538edd7a), CONST64(0xb2b38ef5f4c93d47), CONST64(0x8a6274b0584e163a),
CONST64(0xa4bd82e5fcc33f41), CONST64(0xfc85b2a5dceb3759), CONST64(0xf81e734fa9c46db7), CONST64(0x95a890dde0d83848),
CONST64(0x7708b1a1de67b9d6), CONST64(0x2a4437bfd1a27395), CONST64(0x3da54c1b836ae926), CONST64(0xea8bbeb5d4e1355f),
CONST64(0x6db6e392491c55ff), CONST64(0x3c4a3bafd9a87193), CONST64(0x727c07fff18a7b8d), CONST64(0x9d830f140a868c89),
CONST64(0x214331b7d5a77296), CONST64(0xb19f17341a928885), CONST64(0xe4f80ee3ff09f607), CONST64(0x33d6fc4da8822a7e),
CONST64(0xafba84edf8c63e42), CONST64(0x2887d9ca653b5ee2), CONST64(0x4cf5d2259cbb2769), CONST64(0xc0cf890a054346ca),
CONST64(0x74242860303c0c14), CONST64(0xa026430f89ec65af), CONST64(0xdf056d67bdd568b8), CONST64(0x8c3a5b2f99f861a3),
CONST64(0x1d090a180c0f0305), CONST64(0x187dbc4623e2c15e), CONST64(0x7bb8ef82411657f9), CONST64(0x9918cefe7fa9d667),
CONST64(0xf035ec86439ad976), CONST64(0x1295cdfa7d2558e8), CONST64(0xfb32ea8e479fd875), CONST64(0xbd2f491785e366aa),
CONST64(0x921fc8f67bacd764), CONST64(0x83a69ccde8d23a4e), CONST64(0x4b428a0e07cfc845), CONST64(0xb9b488fdf0cc3c44),
CONST64(0x90dc2683cf35fa13), CONST64(0x63c553c462f496a7), CONST64(0xa552f551a601a7f4), CONST64(0x01ef77b45ac298b5),
CONST64(0x1abe5233977bec29), CONST64(0x7c0fb7a9da62b8d5), CONST64(0x226fa8763bfcc754), CONST64(0xf66dc319822caeef),
CONST64(0xd4026b6fb9d069bb), CONST64(0xbfeca762317a4bdd), CONST64(0xd176dd31963dabe0), CONST64(0xc778d1219e37a9e6),
CONST64(0xb6284f1f81e667a9), CONST64(0x4e363c5028220a1e), CONST64(0xcbc88f02014647c9), CONST64(0xc8e416c3ef1df20b),
CONST64(0x032c99c1ee5bb5c2), CONST64(0x6beecc0d88aa2266), CONST64(0x4981647bb356e532), CONST64(0x0cb05e239f71ee2f),
CONST64(0x461da399c27cbedf), CONST64(0x38d1fa45ac872b7d), CONST64(0xe2a0217c3ebf819e), CONST64(0xa67e6c90485a1236),
CONST64(0xf4ae2d6c36b58398), CONST64(0xf5415ad86c771b2d), CONST64(0x622a247038360e12), CONST64(0x60e9ca058caf2365),
CONST64(0xf9f104fbf306f502), CONST64(0xddc68312094c45cf), CONST64(0x76e7c61584a52163), CONST64(0x71509e3e1fd1ce4f),
CONST64(0xa9e2ab72397049db), CONST64(0x09c4e87db09c2c74), CONST64(0x8dd52c9bc33af916), CONST64(0x54886e63bf59e637),
CONST64(0x1e2593d9e254b6c7), CONST64(0x25d8f05da0882878), CONST64(0x816572b85c4b1739), CONST64(0xffa92b6432b0829b),
CONST64(0xfe465cd068721a2e), CONST64(0xac961d2c169d8b80), CONST64(0xbcc03ea3df21fe1f), CONST64(0xa7911b2412988a83),
CONST64(0x533f3648242d091b), CONST64(0x40458c0603cac946), CONST64(0xd8b2354c26a18794), CONST64(0x98f7b94a256b4ed2),
CONST64(0x659d7c5ba342e13e), CONST64(0x1fcae46db8962e72), CONST64(0x42866273b753e431), CONST64(0x6e9a7a53a747e03d),
CONST64(0x2bab400b8b60eb20), CONST64(0x59d747f47aea90ad), CONST64(0xb85bff49aa0ea4f1), CONST64(0xd25a44f078661e22),
CONST64(0xcebc395c2eab8592), CONST64(0x873d5d279dfd60a0), CONST64(0x0000000000000000), CONST64(0x5afbde3594b1256f),
CONST64(0xf2f602f3f703f401), CONST64(0xd5ed1cdbe312f10e), CONST64(0x75cb5fd46afe94a1), CONST64(0x45313a582c270b1d),
CONST64(0x5f8f686bbb5ce734), CONST64(0x1056238fc9bc759f), CONST64(0x07b7582b9b74ef2c), CONST64(0xe18cb8bdd0e4345c),
CONST64(0xc697a695c4f53153), CONST64(0x8f16c2ee77a3d461), CONST64(0xa30adace67b7d06d), CONST64(0xd3b5334422a48697),
CONST64(0x556719d7e59b7e82), CONST64(0xeb64c9018e23adea), CONST64(0xa1c934bbd32efd1a), CONST64(0x2edff655a48d297b),
CONST64(0xcd90a09dc0f03050), CONST64(0x88a19ac5ecd73b4d), CONST64(0x30fa658c46d99fbc), CONST64(0x86d22a93c73ff815),
CONST64(0x2968ae7e3ff9c657), CONST64(0xad796a984c5f1335), CONST64(0x3a121430181e060a), CONST64(0x271b1e281411050f),
CONST64(0x3461a46633f6c552), CONST64(0xbb77668844551133), CONST64(0x06582f9fc1b67799), CONST64(0x436915c7ed917c84),
CONST64(0x797b01f7f58f7a8e), CONST64(0x6f750de7fd857888), CONST64(0xf782b4add8ee365a), CONST64(0xc45448e0706c1c24),
CONST64(0x9eaf96d5e4dd394b), CONST64(0x1992cbf2792059eb), CONST64(0xe84850c060781828), CONST64(0x70bfe98a451356fa),
CONST64(0x393e8df1f645b3c8), CONST64(0x243787e9fa4ab0cd), CONST64(0x51fcd83d90b4246c), CONST64(0x7de0c01d80a02060),
CONST64(0x32398bf9f240b2cb), CONST64(0x4fd94be472e092ab), CONST64(0x894eed71b615a3f8), CONST64(0x137aba4e27e7c05d),
CONST64(0xd6c1851a0d4944cc), CONST64(0x9133513795f762a6), CONST64(0xb070608040501030), CONST64(0x082b9fc9ea5eb4c1),
CONST64(0xc5bb3f542aae8491), CONST64(0xe7d49722115243c5), CONST64(0x44de4dec76e593a8), CONST64(0x0574b65e2fedc25b),
CONST64(0xb4eba16a357f4ade), CONST64(0x5b14a981ce73bdda), CONST64(0x808a050c06898f8c), CONST64(0x02c3ee75b4992d77),
CONST64(0x5013af89ca76bcd9), CONST64(0x2df36f944ad69cb9), CONST64(0xc90b6177b5df6abe), CONST64(0xfadd9d3a1d5d40c0),
CONST64(0x7a5798361bd4cf4c), CONST64(0x8249eb79b210a2fb), CONST64(0xe9a727743aba809d), CONST64(0x93f0bf42216e4fd1),
CONST64(0xd95d42f87c631f21), CONST64(0x5d4c861e0fc5ca43), CONST64(0xda71db399238aae3), CONST64(0xecd3912a155742c6),
};
static const ulong64 T7[256] = {
CONST64(0x016ab9bb68d2d3ba), CONST64(0xb1669ae5194dfc54), CONST64(0xcd1465e293bc712f), CONST64(0x511b8725b9cd9c74),
CONST64(0xa457a2f70251f553), CONST64(0x03bed6d0b86b68d3), CONST64(0x04b5ded6bd6f6bd2), CONST64(0xfe8552b36429d74d),
CONST64(0xad4abafd0d5df050), CONST64(0x63e009cf268ae9ac), CONST64(0x84961c09830e8a8d), CONST64(0x1a4d91a579c6dcbf),
CONST64(0x4d37a73daddd9070), CONST64(0xa35caaf10755f652), CONST64(0xe117a47bc852b39a), CONST64(0xf98e5ab5612dd44c),
CONST64(0xac200346658f23ea), CONST64(0x1184e6c4a67362d5), CONST64(0xc268cc55f166a497), CONST64(0x0da8c6dcb2636ed1),
CONST64(0x99d085aaffcc5533), CONST64(0xaa41b2fb0859f351), CONST64(0x9c0fe2c72a71ed5b), CONST64(0x55ae59f304a2f7a6),
CONST64(0x20c1befe815f7fde), CONST64(0xe5a27aad753dd848), CONST64(0x7fcc29d7329ae5a8), CONST64(0xe80abc71c75eb699),
CONST64(0x3be696e0904b70db), CONST64(0x9edb8dacfac85632), CONST64(0x2215d19551e6c4b7), CONST64(0xceaab3322bd719fc),
CONST64(0x93734b7048ab38e3), CONST64(0xfd3b8463dc42bf9e), CONST64(0xd052fc41ef7eae91), CONST64(0xe61cac7dcd56b09b),
CONST64(0x947843764daf3be2), CONST64(0x0661b1bd6dd6d0bb), CONST64(0xdaf1329b5819c341), CONST64(0x17e55779cba5b26e),
CONST64(0x5cb341f90baef2a5), CONST64(0x4b561680c00b40cb), CONST64(0x0cc27f67dab1bd6b), CONST64(0xcc7edc59fb6ea295),
CONST64(0x409f61e11fbefea1), CONST64(0xe3c3cb1018eb08f3), CONST64(0x302fe1814ffeceb1), CONST64(0x0e16100c0a080602),
CONST64(0x5e672e92db1749cc), CONST64(0x663f6ea2f33751c4), CONST64(0x53cfe84e6974271d), CONST64(0x6c9ca07844503c14),
CONST64(0x730e56b0e82b58c3), CONST64(0x349a3f57f291a563), CONST64(0x3ced9ee6954f73da), CONST64(0x8e35d2d33469e75d),
CONST64(0x8023c2df3e61e15f), CONST64(0x2ed7aef28b5779dc), CONST64(0x6e48cf1394e9877d), CONST64(0x596c2694de134acd),
CONST64(0x605edf1f9ee1817f), CONST64(0x9b04eac12f75ee5a), CONST64(0x19f34775c1adb46c), CONST64(0x893edad5316de45c),
CONST64(0xffefeb080cfb04f7), CONST64(0xf2472dd4be986a26), CONST64(0xc7b7ab3824db1cff), CONST64(0xb9113b547e932aed),
CONST64(0xa236134a6f8725e8), CONST64(0xf4269c69d34eba9d), CONST64(0x10ee5f7fcea1b16f), CONST64(0x8d8b04038c028f8e),
CONST64(0x4fe3c8567d642b19), CONST64(0x479469e71abafda0), CONST64(0xeaded31a17e70df0), CONST64(0x98ba3c11971e8689),
CONST64(0x2d697822333c110f), CONST64(0x153138121b1c0907), CONST64(0x6afd11c52986ecaf), CONST64(0xdb9b8b2030cb10fb),
CONST64(0x3858403028201808), CONST64(0x6b97a87e41543f15), CONST64(0x237f682e3934170d), CONST64(0x1c2c201814100c04),
CONST64(0x070b080605040301), CONST64(0x21ab0745e98dac64), CONST64(0x27cab6f8845b7cdf), CONST64(0x5f0d9729b3c59a76),
CONST64(0x7264ef0b80f98b79), CONST64(0x29dca6f48e537add), CONST64(0xb3b2f58ec9f4473d), CONST64(0x628ab0744e583a16),
CONST64(0xbda4e582c3fc413f), CONST64(0x85fca5b2ebdc5937), CONST64(0x1ef84f73c4a9b76d), CONST64(0xa895dd90d8e04838),
CONST64(0x0877a1b167ded6b9), CONST64(0x442abf37a2d19573), CONST64(0xa53d1b4c6a8326e9), CONST64(0x8beab5bee1d45f35),
CONST64(0xb66d92e31c49ff55), CONST64(0x4a3caf3ba8d99371), CONST64(0x7c72ff078af18d7b), CONST64(0x839d140f860a898c),
CONST64(0x4321b731a7d59672), CONST64(0x9fb13417921a8588), CONST64(0xf8e4e30e09ff07f6), CONST64(0xd6334dfc82a87e2a),
CONST64(0xbaafed84c6f8423e), CONST64(0x8728cad93b65e25e), CONST64(0xf54c25d2bb9c6927), CONST64(0xcfc00a894305ca46),
CONST64(0x247460283c30140c), CONST64(0x26a00f43ec89af65), CONST64(0x05df676dd5bdb868), CONST64(0x3a8c2f5bf899a361),
CONST64(0x091d180a0f0c0503), CONST64(0x7d1846bce2235ec1), CONST64(0xb87b82ef1641f957), CONST64(0x1899fecea97f67d6),
CONST64(0x35f086ec9a4376d9), CONST64(0x9512facd257de858), CONST64(0x32fb8eea9f4775d8), CONST64(0x2fbd1749e385aa66),
CONST64(0x1f92f6c8ac7b64d7), CONST64(0xa683cd9cd2e84e3a), CONST64(0x424b0e8acf0745c8), CONST64(0xb4b9fd88ccf0443c),
CONST64(0xdc90832635cf13fa), CONST64(0xc563c453f462a796), CONST64(0x52a551f501a6f4a7), CONST64(0xef01b477c25ab598),
CONST64(0xbe1a33527b9729ec), CONST64(0x0f7ca9b762dad5b8), CONST64(0x6f2276a8fc3b54c7), CONST64(0x6df619c32c82efae),
CONST64(0x02d46f6bd0b9bb69), CONST64(0xecbf62a77a31dd4b), CONST64(0x76d131dd3d96e0ab), CONST64(0x78c721d1379ee6a9),
CONST64(0x28b61f4fe681a967), CONST64(0x364e503c22281e0a), CONST64(0xc8cb028f4601c947), CONST64(0xe4c8c3161def0bf2),
CONST64(0x2c03c1995beec2b5), CONST64(0xee6b0dccaa886622), CONST64(0x81497b6456b332e5), CONST64(0xb00c235e719f2fee),
CONST64(0x1d4699a37cc2dfbe), CONST64(0xd13845fa87ac7d2b), CONST64(0xa0e27c21bf3e9e81), CONST64(0x7ea6906c5a483612),
CONST64(0xaef46c2db5369883), CONST64(0x41f5d85a776c2d1b), CONST64(0x2a6270243638120e), CONST64(0xe96005caaf8c6523),
CONST64(0xf1f9fb0406f302f5), CONST64(0xc6dd12834c09cf45), CONST64(0xe77615c6a5846321), CONST64(0x50713e9ed11f4fce),
CONST64(0xe2a972ab7039db49), CONST64(0xc4097de89cb0742c), CONST64(0xd58d9b2c3ac316f9), CONST64(0x8854636e59bf37e6),
CONST64(0x251ed99354e2c7b6), CONST64(0xd8255df088a07828), CONST64(0x6581b8724b5c3917), CONST64(0xa9ff642bb0329b82),
CONST64(0x46fed05c72682e1a), CONST64(0x96ac2c1d9d16808b), CONST64(0xc0bca33e21df1ffe), CONST64(0x91a7241b9812838a),
CONST64(0x3f5348362d241b09), CONST64(0x4540068cca0346c9), CONST64(0xb2d84c35a1269487), CONST64(0xf7984ab96b25d24e),
CONST64(0x9d655b7c42a33ee1), CONST64(0xca1f6de496b8722e), CONST64(0x8642736253b731e4), CONST64(0x9a6e537a47a73de0),
CONST64(0xab2b0b40608b20eb), CONST64(0xd759f447ea7aad90), CONST64(0x5bb849ff0eaaf1a4), CONST64(0x5ad2f0446678221e),
CONST64(0xbcce5c39ab2e9285), CONST64(0x3d87275dfd9da060), CONST64(0x0000000000000000), CONST64(0xfb5a35deb1946f25),
CONST64(0xf6f2f30203f701f4), CONST64(0xedd5db1c12e30ef1), CONST64(0xcb75d45ffe6aa194), CONST64(0x3145583a272c1d0b),
CONST64(0x8f5f6b685cbb34e7), CONST64(0x56108f23bcc99f75), CONST64(0xb7072b58749b2cef), CONST64(0x8ce1bdb8e4d05c34),
CONST64(0x97c695a6f5c45331), CONST64(0x168feec2a37761d4), CONST64(0x0aa3cedab7676dd0), CONST64(0xb5d34433a4229786),
CONST64(0x6755d7199be5827e), CONST64(0x64eb01c9238eeaad), CONST64(0xc9a1bb342ed31afd), CONST64(0xdf2e55f68da47b29),
CONST64(0x90cd9da0f0c05030), CONST64(0xa188c59ad7ec4d3b), CONST64(0xfa308c65d946bc9f), CONST64(0xd286932a3fc715f8),
CONST64(0x68297eaef93f57c6), CONST64(0x79ad986a5f4c3513), CONST64(0x123a30141e180a06), CONST64(0x1b27281e11140f05),
CONST64(0x613466a4f63352c5), CONST64(0x77bb886655443311), CONST64(0x58069f2fb6c19977), CONST64(0x6943c71591ed847c),
CONST64(0x7b79f7018ff58e7a), CONST64(0x756fe70d85fd8878), CONST64(0x82f7adb4eed85a36), CONST64(0x54c4e0486c70241c),
CONST64(0xaf9ed596dde44b39), CONST64(0x9219f2cb2079eb59), CONST64(0x48e8c05078602818), CONST64(0xbf708ae91345fa56),
CONST64(0x3e39f18d45f6c8b3), CONST64(0x3724e9874afacdb0), CONST64(0xfc513dd8b4906c24), CONST64(0xe07d1dc0a0806020),
CONST64(0x3932f98b40f2cbb2), CONST64(0xd94fe44be072ab92), CONST64(0x4e8971ed15b6f8a3), CONST64(0x7a134ebae7275dc0),
CONST64(0xc1d61a85490dcc44), CONST64(0x33913751f795a662), CONST64(0x70b0806050403010), CONST64(0x2b08c99f5eeac1b4),
CONST64(0xbbc5543fae2a9184), CONST64(0xd4e722975211c543), CONST64(0xde44ec4de576a893), CONST64(0x74055eb6ed2f5bc2),
CONST64(0xebb46aa17f35de4a), CONST64(0x145b81a973cedabd), CONST64(0x8a800c0589068c8f), CONST64(0xc30275ee99b4772d),
CONST64(0x135089af76cad9bc), CONST64(0xf32d946fd64ab99c), CONST64(0x0bc97761dfb5be6a), CONST64(0xddfa3a9d5d1dc040),
CONST64(0x577a3698d41b4ccf), CONST64(0x498279eb10b2fba2), CONST64(0xa7e97427ba3a9d80), CONST64(0xf09342bf6e21d14f),
CONST64(0x5dd9f842637c211f), CONST64(0x4c5d1e86c50f43ca), CONST64(0x71da39db3892e3aa), CONST64(0xd3ec2a915715c642),
};
static const ulong64 c[R + 1] = {
CONST64(0xba542f7453d3d24d),
CONST64(0x50ac8dbf70529a4c),
CONST64(0xead597d133515ba6),
CONST64(0xde48a899db32b7fc),
CONST64(0xe39e919be2bb416e),
CONST64(0xa5cb6b95a1f3b102),
CONST64(0xccc41d14c363da5d),
CONST64(0x5fdc7dcd7f5a6c5c),
CONST64(0xf726ffede89d6f8e),
};
/**
Initialize the Khazad block cipher
@param key The symmetric key you wish to pass
@param keylen The key length in bytes
@param num_rounds The number of rounds desired (0 for default)
@param skey The key in as scheduled by this function.
@return CRYPT_OK if successful
*/
int khazad_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
int r;
const ulong64 *S;
ulong64 K2, K1;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
if (keylen != 16) {
return CRYPT_INVALID_KEYSIZE;
}
if (num_rounds != 8 && num_rounds != 0) {
return CRYPT_INVALID_ROUNDS;
}
/* use 7th table */
S = T7;
/*
* map unsigned char array cipher key to initial key state (mu):
*/
K2 =
((ulong64)key[ 0] << 56) ^
((ulong64)key[ 1] << 48) ^
((ulong64)key[ 2] << 40) ^
((ulong64)key[ 3] << 32) ^
((ulong64)key[ 4] << 24) ^
((ulong64)key[ 5] << 16) ^
((ulong64)key[ 6] << 8) ^
((ulong64)key[ 7] );
K1 =
((ulong64)key[ 8] << 56) ^
((ulong64)key[ 9] << 48) ^
((ulong64)key[10] << 40) ^
((ulong64)key[11] << 32) ^
((ulong64)key[12] << 24) ^
((ulong64)key[13] << 16) ^
((ulong64)key[14] << 8) ^
((ulong64)key[15] );
/*
* compute the round keys:
*/
for (r = 0; r <= R; r++) {
/*
* K[r] = rho(c[r], K1) ^ K2;
*/
skey->khazad.roundKeyEnc[r] =
T0[(int)(K1 >> 56) ] ^
T1[(int)(K1 >> 48) & 0xff] ^
T2[(int)(K1 >> 40) & 0xff] ^
T3[(int)(K1 >> 32) & 0xff] ^
T4[(int)(K1 >> 24) & 0xff] ^
T5[(int)(K1 >> 16) & 0xff] ^
T6[(int)(K1 >> 8) & 0xff] ^
T7[(int)(K1 ) & 0xff] ^
c[r] ^ K2;
K2 = K1; K1 = skey->khazad.roundKeyEnc[r];
}
/*
* compute the inverse key schedule:
* K'^0 = K^R, K'^R = K^0, K'^r = theta(K^{R-r})
*/
skey->khazad.roundKeyDec[0] = skey->khazad.roundKeyEnc[R];
for (r = 1; r < R; r++) {
K1 = skey->khazad.roundKeyEnc[R - r];
skey->khazad.roundKeyDec[r] =
T0[(int)S[(int)(K1 >> 56) ] & 0xff] ^
T1[(int)S[(int)(K1 >> 48) & 0xff] & 0xff] ^
T2[(int)S[(int)(K1 >> 40) & 0xff] & 0xff] ^
T3[(int)S[(int)(K1 >> 32) & 0xff] & 0xff] ^
T4[(int)S[(int)(K1 >> 24) & 0xff] & 0xff] ^
T5[(int)S[(int)(K1 >> 16) & 0xff] & 0xff] ^
T6[(int)S[(int)(K1 >> 8) & 0xff] & 0xff] ^
T7[(int)S[(int)(K1 ) & 0xff] & 0xff];
}
skey->khazad.roundKeyDec[R] = skey->khazad.roundKeyEnc[0];
return CRYPT_OK;
}
static void khazad_crypt(const unsigned char *plaintext, unsigned char *ciphertext,
const ulong64 *roundKey) {
int r;
ulong64 state;
/*
* map plaintext block to cipher state (mu)
* and add initial round key (sigma[K^0]):
*/
state =
((ulong64)plaintext[0] << 56) ^
((ulong64)plaintext[1] << 48) ^
((ulong64)plaintext[2] << 40) ^
((ulong64)plaintext[3] << 32) ^
((ulong64)plaintext[4] << 24) ^
((ulong64)plaintext[5] << 16) ^
((ulong64)plaintext[6] << 8) ^
((ulong64)plaintext[7] ) ^
roundKey[0];
/*
* R - 1 full rounds:
*/
for (r = 1; r < R; r++) {
state =
T0[(int)(state >> 56) ] ^
T1[(int)(state >> 48) & 0xff] ^
T2[(int)(state >> 40) & 0xff] ^
T3[(int)(state >> 32) & 0xff] ^
T4[(int)(state >> 24) & 0xff] ^
T5[(int)(state >> 16) & 0xff] ^
T6[(int)(state >> 8) & 0xff] ^
T7[(int)(state ) & 0xff] ^
roundKey[r];
}
/*
* last round:
*/
state =
(T0[(int)(state >> 56) ] & CONST64(0xff00000000000000)) ^
(T1[(int)(state >> 48) & 0xff] & CONST64(0x00ff000000000000)) ^
(T2[(int)(state >> 40) & 0xff] & CONST64(0x0000ff0000000000)) ^
(T3[(int)(state >> 32) & 0xff] & CONST64(0x000000ff00000000)) ^
(T4[(int)(state >> 24) & 0xff] & CONST64(0x00000000ff000000)) ^
(T5[(int)(state >> 16) & 0xff] & CONST64(0x0000000000ff0000)) ^
(T6[(int)(state >> 8) & 0xff] & CONST64(0x000000000000ff00)) ^
(T7[(int)(state ) & 0xff] & CONST64(0x00000000000000ff)) ^
roundKey[R];
/*
* map cipher state to ciphertext block (mu^{-1}):
*/
ciphertext[0] = (unsigned char)(state >> 56);
ciphertext[1] = (unsigned char)(state >> 48);
ciphertext[2] = (unsigned char)(state >> 40);
ciphertext[3] = (unsigned char)(state >> 32);
ciphertext[4] = (unsigned char)(state >> 24);
ciphertext[5] = (unsigned char)(state >> 16);
ciphertext[6] = (unsigned char)(state >> 8);
ciphertext[7] = (unsigned char)(state );
}
/**
Encrypts a block of text with Khazad
@param pt The input plaintext (8 bytes)
@param ct The output ciphertext (8 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
int khazad_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
{
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
khazad_crypt(pt, ct, skey->khazad.roundKeyEnc);
return CRYPT_OK;
}
/**
Decrypts a block of text with Khazad
@param ct The input ciphertext (8 bytes)
@param pt The output plaintext (8 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
int khazad_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
{
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
khazad_crypt(ct, pt, skey->khazad.roundKeyDec);
return CRYPT_OK;
}
/**
Performs a self-test of the Khazad block cipher
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int khazad_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct test {
unsigned char pt[8], ct[8], key[16];
} tests[] = {
{
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x49, 0xA4, 0xCE, 0x32, 0xAC, 0x19, 0x0E, 0x3F },
{ 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
}, {
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x64, 0x5D, 0x77, 0x3E, 0x40, 0xAB, 0xDD, 0x53 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 }
}, {
{ 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x9E, 0x39, 0x98, 0x64, 0xF7, 0x8E, 0xCA, 0x02 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
}, {
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 },
{ 0xA9, 0xDF, 0x3D, 0x2C, 0x64, 0xD3, 0xEA, 0x28 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
}
};
int x, y;
unsigned char buf[2][8];
symmetric_key skey;
for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) {
khazad_setup(tests[x].key, 16, 0, &skey);
khazad_ecb_encrypt(tests[x].pt, buf[0], &skey);
khazad_ecb_decrypt(buf[0], buf[1], &skey);
if (compare_testvector(buf[0], 8, tests[x].ct, 8, "Khazad Encrypt", x) ||
compare_testvector(buf[1], 8, tests[x].pt, 8, "Khazad Decrypt", x)) {
return CRYPT_FAIL_TESTVECTOR;
}
for (y = 0; y < 1000; y++) khazad_ecb_encrypt(buf[0], buf[0], &skey);
for (y = 0; y < 1000; y++) khazad_ecb_decrypt(buf[0], buf[0], &skey);
if (compare_testvector(buf[0], 8, tests[x].ct, 8, "Khazad 1000", 1000)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
/** Terminate the context
@param skey The scheduled key
*/
void khazad_done(symmetric_key *skey)
{
LTC_UNUSED_PARAM(skey);
}
/**
Gets suitable key size
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
@return CRYPT_OK if the input key size is acceptable.
*/
int khazad_keysize(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize >= 16) {
*keysize = 16;
return CRYPT_OK;
}
return CRYPT_INVALID_KEYSIZE;
}
#undef R
#endif

View File

@@ -0,0 +1,369 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file kseed.c
seed implementation of SEED derived from RFC4269
Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_KSEED
const struct ltc_cipher_descriptor kseed_desc = {
"seed",
20,
16, 16, 16, 16,
&kseed_setup,
&kseed_ecb_encrypt,
&kseed_ecb_decrypt,
&kseed_test,
&kseed_done,
&kseed_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
static const ulong32 SS0[256] = {
0x2989A1A8UL,0x05858184UL,0x16C6D2D4UL,0x13C3D3D0UL,0x14445054UL,0x1D0D111CUL,0x2C8CA0ACUL,0x25052124UL,
0x1D4D515CUL,0x03434340UL,0x18081018UL,0x1E0E121CUL,0x11415150UL,0x3CCCF0FCUL,0x0ACAC2C8UL,0x23436360UL,
0x28082028UL,0x04444044UL,0x20002020UL,0x1D8D919CUL,0x20C0E0E0UL,0x22C2E2E0UL,0x08C8C0C8UL,0x17071314UL,
0x2585A1A4UL,0x0F8F838CUL,0x03030300UL,0x3B4B7378UL,0x3B8BB3B8UL,0x13031310UL,0x12C2D2D0UL,0x2ECEE2ECUL,
0x30407070UL,0x0C8C808CUL,0x3F0F333CUL,0x2888A0A8UL,0x32023230UL,0x1DCDD1DCUL,0x36C6F2F4UL,0x34447074UL,
0x2CCCE0ECUL,0x15859194UL,0x0B0B0308UL,0x17475354UL,0x1C4C505CUL,0x1B4B5358UL,0x3D8DB1BCUL,0x01010100UL,
0x24042024UL,0x1C0C101CUL,0x33437370UL,0x18889098UL,0x10001010UL,0x0CCCC0CCUL,0x32C2F2F0UL,0x19C9D1D8UL,
0x2C0C202CUL,0x27C7E3E4UL,0x32427270UL,0x03838380UL,0x1B8B9398UL,0x11C1D1D0UL,0x06868284UL,0x09C9C1C8UL,
0x20406060UL,0x10405050UL,0x2383A3A0UL,0x2BCBE3E8UL,0x0D0D010CUL,0x3686B2B4UL,0x1E8E929CUL,0x0F4F434CUL,
0x3787B3B4UL,0x1A4A5258UL,0x06C6C2C4UL,0x38487078UL,0x2686A2A4UL,0x12021210UL,0x2F8FA3ACUL,0x15C5D1D4UL,
0x21416160UL,0x03C3C3C0UL,0x3484B0B4UL,0x01414140UL,0x12425250UL,0x3D4D717CUL,0x0D8D818CUL,0x08080008UL,
0x1F0F131CUL,0x19899198UL,0x00000000UL,0x19091118UL,0x04040004UL,0x13435350UL,0x37C7F3F4UL,0x21C1E1E0UL,
0x3DCDF1FCUL,0x36467274UL,0x2F0F232CUL,0x27072324UL,0x3080B0B0UL,0x0B8B8388UL,0x0E0E020CUL,0x2B8BA3A8UL,
0x2282A2A0UL,0x2E4E626CUL,0x13839390UL,0x0D4D414CUL,0x29496168UL,0x3C4C707CUL,0x09090108UL,0x0A0A0208UL,
0x3F8FB3BCUL,0x2FCFE3ECUL,0x33C3F3F0UL,0x05C5C1C4UL,0x07878384UL,0x14041014UL,0x3ECEF2FCUL,0x24446064UL,
0x1ECED2DCUL,0x2E0E222CUL,0x0B4B4348UL,0x1A0A1218UL,0x06060204UL,0x21012120UL,0x2B4B6368UL,0x26466264UL,
0x02020200UL,0x35C5F1F4UL,0x12829290UL,0x0A8A8288UL,0x0C0C000CUL,0x3383B3B0UL,0x3E4E727CUL,0x10C0D0D0UL,
0x3A4A7278UL,0x07474344UL,0x16869294UL,0x25C5E1E4UL,0x26062224UL,0x00808080UL,0x2D8DA1ACUL,0x1FCFD3DCUL,
0x2181A1A0UL,0x30003030UL,0x37073334UL,0x2E8EA2ACUL,0x36063234UL,0x15051114UL,0x22022220UL,0x38083038UL,
0x34C4F0F4UL,0x2787A3A4UL,0x05454144UL,0x0C4C404CUL,0x01818180UL,0x29C9E1E8UL,0x04848084UL,0x17879394UL,
0x35053134UL,0x0BCBC3C8UL,0x0ECEC2CCUL,0x3C0C303CUL,0x31417170UL,0x11011110UL,0x07C7C3C4UL,0x09898188UL,
0x35457174UL,0x3BCBF3F8UL,0x1ACAD2D8UL,0x38C8F0F8UL,0x14849094UL,0x19495158UL,0x02828280UL,0x04C4C0C4UL,
0x3FCFF3FCUL,0x09494148UL,0x39093138UL,0x27476364UL,0x00C0C0C0UL,0x0FCFC3CCUL,0x17C7D3D4UL,0x3888B0B8UL,
0x0F0F030CUL,0x0E8E828CUL,0x02424240UL,0x23032320UL,0x11819190UL,0x2C4C606CUL,0x1BCBD3D8UL,0x2484A0A4UL,
0x34043034UL,0x31C1F1F0UL,0x08484048UL,0x02C2C2C0UL,0x2F4F636CUL,0x3D0D313CUL,0x2D0D212CUL,0x00404040UL,
0x3E8EB2BCUL,0x3E0E323CUL,0x3C8CB0BCUL,0x01C1C1C0UL,0x2A8AA2A8UL,0x3A8AB2B8UL,0x0E4E424CUL,0x15455154UL,
0x3B0B3338UL,0x1CCCD0DCUL,0x28486068UL,0x3F4F737CUL,0x1C8C909CUL,0x18C8D0D8UL,0x0A4A4248UL,0x16465254UL,
0x37477374UL,0x2080A0A0UL,0x2DCDE1ECUL,0x06464244UL,0x3585B1B4UL,0x2B0B2328UL,0x25456164UL,0x3ACAF2F8UL,
0x23C3E3E0UL,0x3989B1B8UL,0x3181B1B0UL,0x1F8F939CUL,0x1E4E525CUL,0x39C9F1F8UL,0x26C6E2E4UL,0x3282B2B0UL,
0x31013130UL,0x2ACAE2E8UL,0x2D4D616CUL,0x1F4F535CUL,0x24C4E0E4UL,0x30C0F0F0UL,0x0DCDC1CCUL,0x08888088UL,
0x16061214UL,0x3A0A3238UL,0x18485058UL,0x14C4D0D4UL,0x22426260UL,0x29092128UL,0x07070304UL,0x33033330UL,
0x28C8E0E8UL,0x1B0B1318UL,0x05050104UL,0x39497178UL,0x10809090UL,0x2A4A6268UL,0x2A0A2228UL,0x1A8A9298UL
};
static const ulong32 SS1[256] = {
0x38380830UL,0xE828C8E0UL,0x2C2D0D21UL,0xA42686A2UL,0xCC0FCFC3UL,0xDC1ECED2UL,0xB03383B3UL,0xB83888B0UL,
0xAC2F8FA3UL,0x60204060UL,0x54154551UL,0xC407C7C3UL,0x44044440UL,0x6C2F4F63UL,0x682B4B63UL,0x581B4B53UL,
0xC003C3C3UL,0x60224262UL,0x30330333UL,0xB43585B1UL,0x28290921UL,0xA02080A0UL,0xE022C2E2UL,0xA42787A3UL,
0xD013C3D3UL,0x90118191UL,0x10110111UL,0x04060602UL,0x1C1C0C10UL,0xBC3C8CB0UL,0x34360632UL,0x480B4B43UL,
0xEC2FCFE3UL,0x88088880UL,0x6C2C4C60UL,0xA82888A0UL,0x14170713UL,0xC404C4C0UL,0x14160612UL,0xF434C4F0UL,
0xC002C2C2UL,0x44054541UL,0xE021C1E1UL,0xD416C6D2UL,0x3C3F0F33UL,0x3C3D0D31UL,0x8C0E8E82UL,0x98188890UL,
0x28280820UL,0x4C0E4E42UL,0xF436C6F2UL,0x3C3E0E32UL,0xA42585A1UL,0xF839C9F1UL,0x0C0D0D01UL,0xDC1FCFD3UL,
0xD818C8D0UL,0x282B0B23UL,0x64264662UL,0x783A4A72UL,0x24270723UL,0x2C2F0F23UL,0xF031C1F1UL,0x70324272UL,
0x40024242UL,0xD414C4D0UL,0x40014141UL,0xC000C0C0UL,0x70334373UL,0x64274763UL,0xAC2C8CA0UL,0x880B8B83UL,
0xF437C7F3UL,0xAC2D8DA1UL,0x80008080UL,0x1C1F0F13UL,0xC80ACAC2UL,0x2C2C0C20UL,0xA82A8AA2UL,0x34340430UL,
0xD012C2D2UL,0x080B0B03UL,0xEC2ECEE2UL,0xE829C9E1UL,0x5C1D4D51UL,0x94148490UL,0x18180810UL,0xF838C8F0UL,
0x54174753UL,0xAC2E8EA2UL,0x08080800UL,0xC405C5C1UL,0x10130313UL,0xCC0DCDC1UL,0x84068682UL,0xB83989B1UL,
0xFC3FCFF3UL,0x7C3D4D71UL,0xC001C1C1UL,0x30310131UL,0xF435C5F1UL,0x880A8A82UL,0x682A4A62UL,0xB03181B1UL,
0xD011C1D1UL,0x20200020UL,0xD417C7D3UL,0x00020202UL,0x20220222UL,0x04040400UL,0x68284860UL,0x70314171UL,
0x04070703UL,0xD81BCBD3UL,0x9C1D8D91UL,0x98198991UL,0x60214161UL,0xBC3E8EB2UL,0xE426C6E2UL,0x58194951UL,
0xDC1DCDD1UL,0x50114151UL,0x90108090UL,0xDC1CCCD0UL,0x981A8A92UL,0xA02383A3UL,0xA82B8BA3UL,0xD010C0D0UL,
0x80018181UL,0x0C0F0F03UL,0x44074743UL,0x181A0A12UL,0xE023C3E3UL,0xEC2CCCE0UL,0x8C0D8D81UL,0xBC3F8FB3UL,
0x94168692UL,0x783B4B73UL,0x5C1C4C50UL,0xA02282A2UL,0xA02181A1UL,0x60234363UL,0x20230323UL,0x4C0D4D41UL,
0xC808C8C0UL,0x9C1E8E92UL,0x9C1C8C90UL,0x383A0A32UL,0x0C0C0C00UL,0x2C2E0E22UL,0xB83A8AB2UL,0x6C2E4E62UL,
0x9C1F8F93UL,0x581A4A52UL,0xF032C2F2UL,0x90128292UL,0xF033C3F3UL,0x48094941UL,0x78384870UL,0xCC0CCCC0UL,
0x14150511UL,0xF83BCBF3UL,0x70304070UL,0x74354571UL,0x7C3F4F73UL,0x34350531UL,0x10100010UL,0x00030303UL,
0x64244460UL,0x6C2D4D61UL,0xC406C6C2UL,0x74344470UL,0xD415C5D1UL,0xB43484B0UL,0xE82ACAE2UL,0x08090901UL,
0x74364672UL,0x18190911UL,0xFC3ECEF2UL,0x40004040UL,0x10120212UL,0xE020C0E0UL,0xBC3D8DB1UL,0x04050501UL,
0xF83ACAF2UL,0x00010101UL,0xF030C0F0UL,0x282A0A22UL,0x5C1E4E52UL,0xA82989A1UL,0x54164652UL,0x40034343UL,
0x84058581UL,0x14140410UL,0x88098981UL,0x981B8B93UL,0xB03080B0UL,0xE425C5E1UL,0x48084840UL,0x78394971UL,
0x94178793UL,0xFC3CCCF0UL,0x1C1E0E12UL,0x80028282UL,0x20210121UL,0x8C0C8C80UL,0x181B0B13UL,0x5C1F4F53UL,
0x74374773UL,0x54144450UL,0xB03282B2UL,0x1C1D0D11UL,0x24250521UL,0x4C0F4F43UL,0x00000000UL,0x44064642UL,
0xEC2DCDE1UL,0x58184850UL,0x50124252UL,0xE82BCBE3UL,0x7C3E4E72UL,0xD81ACAD2UL,0xC809C9C1UL,0xFC3DCDF1UL,
0x30300030UL,0x94158591UL,0x64254561UL,0x3C3C0C30UL,0xB43686B2UL,0xE424C4E0UL,0xB83B8BB3UL,0x7C3C4C70UL,
0x0C0E0E02UL,0x50104050UL,0x38390931UL,0x24260622UL,0x30320232UL,0x84048480UL,0x68294961UL,0x90138393UL,
0x34370733UL,0xE427C7E3UL,0x24240420UL,0xA42484A0UL,0xC80BCBC3UL,0x50134353UL,0x080A0A02UL,0x84078783UL,
0xD819C9D1UL,0x4C0C4C40UL,0x80038383UL,0x8C0F8F83UL,0xCC0ECEC2UL,0x383B0B33UL,0x480A4A42UL,0xB43787B3UL
};
static const ulong32 SS2[256] = {
0xA1A82989UL,0x81840585UL,0xD2D416C6UL,0xD3D013C3UL,0x50541444UL,0x111C1D0DUL,0xA0AC2C8CUL,0x21242505UL,
0x515C1D4DUL,0x43400343UL,0x10181808UL,0x121C1E0EUL,0x51501141UL,0xF0FC3CCCUL,0xC2C80ACAUL,0x63602343UL,
0x20282808UL,0x40440444UL,0x20202000UL,0x919C1D8DUL,0xE0E020C0UL,0xE2E022C2UL,0xC0C808C8UL,0x13141707UL,
0xA1A42585UL,0x838C0F8FUL,0x03000303UL,0x73783B4BUL,0xB3B83B8BUL,0x13101303UL,0xD2D012C2UL,0xE2EC2ECEUL,
0x70703040UL,0x808C0C8CUL,0x333C3F0FUL,0xA0A82888UL,0x32303202UL,0xD1DC1DCDUL,0xF2F436C6UL,0x70743444UL,
0xE0EC2CCCUL,0x91941585UL,0x03080B0BUL,0x53541747UL,0x505C1C4CUL,0x53581B4BUL,0xB1BC3D8DUL,0x01000101UL,
0x20242404UL,0x101C1C0CUL,0x73703343UL,0x90981888UL,0x10101000UL,0xC0CC0CCCUL,0xF2F032C2UL,0xD1D819C9UL,
0x202C2C0CUL,0xE3E427C7UL,0x72703242UL,0x83800383UL,0x93981B8BUL,0xD1D011C1UL,0x82840686UL,0xC1C809C9UL,
0x60602040UL,0x50501040UL,0xA3A02383UL,0xE3E82BCBUL,0x010C0D0DUL,0xB2B43686UL,0x929C1E8EUL,0x434C0F4FUL,
0xB3B43787UL,0x52581A4AUL,0xC2C406C6UL,0x70783848UL,0xA2A42686UL,0x12101202UL,0xA3AC2F8FUL,0xD1D415C5UL,
0x61602141UL,0xC3C003C3UL,0xB0B43484UL,0x41400141UL,0x52501242UL,0x717C3D4DUL,0x818C0D8DUL,0x00080808UL,
0x131C1F0FUL,0x91981989UL,0x00000000UL,0x11181909UL,0x00040404UL,0x53501343UL,0xF3F437C7UL,0xE1E021C1UL,
0xF1FC3DCDUL,0x72743646UL,0x232C2F0FUL,0x23242707UL,0xB0B03080UL,0x83880B8BUL,0x020C0E0EUL,0xA3A82B8BUL,
0xA2A02282UL,0x626C2E4EUL,0x93901383UL,0x414C0D4DUL,0x61682949UL,0x707C3C4CUL,0x01080909UL,0x02080A0AUL,
0xB3BC3F8FUL,0xE3EC2FCFUL,0xF3F033C3UL,0xC1C405C5UL,0x83840787UL,0x10141404UL,0xF2FC3ECEUL,0x60642444UL,
0xD2DC1ECEUL,0x222C2E0EUL,0x43480B4BUL,0x12181A0AUL,0x02040606UL,0x21202101UL,0x63682B4BUL,0x62642646UL,
0x02000202UL,0xF1F435C5UL,0x92901282UL,0x82880A8AUL,0x000C0C0CUL,0xB3B03383UL,0x727C3E4EUL,0xD0D010C0UL,
0x72783A4AUL,0x43440747UL,0x92941686UL,0xE1E425C5UL,0x22242606UL,0x80800080UL,0xA1AC2D8DUL,0xD3DC1FCFUL,
0xA1A02181UL,0x30303000UL,0x33343707UL,0xA2AC2E8EUL,0x32343606UL,0x11141505UL,0x22202202UL,0x30383808UL,
0xF0F434C4UL,0xA3A42787UL,0x41440545UL,0x404C0C4CUL,0x81800181UL,0xE1E829C9UL,0x80840484UL,0x93941787UL,
0x31343505UL,0xC3C80BCBUL,0xC2CC0ECEUL,0x303C3C0CUL,0x71703141UL,0x11101101UL,0xC3C407C7UL,0x81880989UL,
0x71743545UL,0xF3F83BCBUL,0xD2D81ACAUL,0xF0F838C8UL,0x90941484UL,0x51581949UL,0x82800282UL,0xC0C404C4UL,
0xF3FC3FCFUL,0x41480949UL,0x31383909UL,0x63642747UL,0xC0C000C0UL,0xC3CC0FCFUL,0xD3D417C7UL,0xB0B83888UL,
0x030C0F0FUL,0x828C0E8EUL,0x42400242UL,0x23202303UL,0x91901181UL,0x606C2C4CUL,0xD3D81BCBUL,0xA0A42484UL,
0x30343404UL,0xF1F031C1UL,0x40480848UL,0xC2C002C2UL,0x636C2F4FUL,0x313C3D0DUL,0x212C2D0DUL,0x40400040UL,
0xB2BC3E8EUL,0x323C3E0EUL,0xB0BC3C8CUL,0xC1C001C1UL,0xA2A82A8AUL,0xB2B83A8AUL,0x424C0E4EUL,0x51541545UL,
0x33383B0BUL,0xD0DC1CCCUL,0x60682848UL,0x737C3F4FUL,0x909C1C8CUL,0xD0D818C8UL,0x42480A4AUL,0x52541646UL,
0x73743747UL,0xA0A02080UL,0xE1EC2DCDUL,0x42440646UL,0xB1B43585UL,0x23282B0BUL,0x61642545UL,0xF2F83ACAUL,
0xE3E023C3UL,0xB1B83989UL,0xB1B03181UL,0x939C1F8FUL,0x525C1E4EUL,0xF1F839C9UL,0xE2E426C6UL,0xB2B03282UL,
0x31303101UL,0xE2E82ACAUL,0x616C2D4DUL,0x535C1F4FUL,0xE0E424C4UL,0xF0F030C0UL,0xC1CC0DCDUL,0x80880888UL,
0x12141606UL,0x32383A0AUL,0x50581848UL,0xD0D414C4UL,0x62602242UL,0x21282909UL,0x03040707UL,0x33303303UL,
0xE0E828C8UL,0x13181B0BUL,0x01040505UL,0x71783949UL,0x90901080UL,0x62682A4AUL,0x22282A0AUL,0x92981A8AUL
};
static const ulong32 SS3[256] = {
0x08303838UL,0xC8E0E828UL,0x0D212C2DUL,0x86A2A426UL,0xCFC3CC0FUL,0xCED2DC1EUL,0x83B3B033UL,0x88B0B838UL,
0x8FA3AC2FUL,0x40606020UL,0x45515415UL,0xC7C3C407UL,0x44404404UL,0x4F636C2FUL,0x4B63682BUL,0x4B53581BUL,
0xC3C3C003UL,0x42626022UL,0x03333033UL,0x85B1B435UL,0x09212829UL,0x80A0A020UL,0xC2E2E022UL,0x87A3A427UL,
0xC3D3D013UL,0x81919011UL,0x01111011UL,0x06020406UL,0x0C101C1CUL,0x8CB0BC3CUL,0x06323436UL,0x4B43480BUL,
0xCFE3EC2FUL,0x88808808UL,0x4C606C2CUL,0x88A0A828UL,0x07131417UL,0xC4C0C404UL,0x06121416UL,0xC4F0F434UL,
0xC2C2C002UL,0x45414405UL,0xC1E1E021UL,0xC6D2D416UL,0x0F333C3FUL,0x0D313C3DUL,0x8E828C0EUL,0x88909818UL,
0x08202828UL,0x4E424C0EUL,0xC6F2F436UL,0x0E323C3EUL,0x85A1A425UL,0xC9F1F839UL,0x0D010C0DUL,0xCFD3DC1FUL,
0xC8D0D818UL,0x0B23282BUL,0x46626426UL,0x4A72783AUL,0x07232427UL,0x0F232C2FUL,0xC1F1F031UL,0x42727032UL,
0x42424002UL,0xC4D0D414UL,0x41414001UL,0xC0C0C000UL,0x43737033UL,0x47636427UL,0x8CA0AC2CUL,0x8B83880BUL,
0xC7F3F437UL,0x8DA1AC2DUL,0x80808000UL,0x0F131C1FUL,0xCAC2C80AUL,0x0C202C2CUL,0x8AA2A82AUL,0x04303434UL,
0xC2D2D012UL,0x0B03080BUL,0xCEE2EC2EUL,0xC9E1E829UL,0x4D515C1DUL,0x84909414UL,0x08101818UL,0xC8F0F838UL,
0x47535417UL,0x8EA2AC2EUL,0x08000808UL,0xC5C1C405UL,0x03131013UL,0xCDC1CC0DUL,0x86828406UL,0x89B1B839UL,
0xCFF3FC3FUL,0x4D717C3DUL,0xC1C1C001UL,0x01313031UL,0xC5F1F435UL,0x8A82880AUL,0x4A62682AUL,0x81B1B031UL,
0xC1D1D011UL,0x00202020UL,0xC7D3D417UL,0x02020002UL,0x02222022UL,0x04000404UL,0x48606828UL,0x41717031UL,
0x07030407UL,0xCBD3D81BUL,0x8D919C1DUL,0x89919819UL,0x41616021UL,0x8EB2BC3EUL,0xC6E2E426UL,0x49515819UL,
0xCDD1DC1DUL,0x41515011UL,0x80909010UL,0xCCD0DC1CUL,0x8A92981AUL,0x83A3A023UL,0x8BA3A82BUL,0xC0D0D010UL,
0x81818001UL,0x0F030C0FUL,0x47434407UL,0x0A12181AUL,0xC3E3E023UL,0xCCE0EC2CUL,0x8D818C0DUL,0x8FB3BC3FUL,
0x86929416UL,0x4B73783BUL,0x4C505C1CUL,0x82A2A022UL,0x81A1A021UL,0x43636023UL,0x03232023UL,0x4D414C0DUL,
0xC8C0C808UL,0x8E929C1EUL,0x8C909C1CUL,0x0A32383AUL,0x0C000C0CUL,0x0E222C2EUL,0x8AB2B83AUL,0x4E626C2EUL,
0x8F939C1FUL,0x4A52581AUL,0xC2F2F032UL,0x82929012UL,0xC3F3F033UL,0x49414809UL,0x48707838UL,0xCCC0CC0CUL,
0x05111415UL,0xCBF3F83BUL,0x40707030UL,0x45717435UL,0x4F737C3FUL,0x05313435UL,0x00101010UL,0x03030003UL,
0x44606424UL,0x4D616C2DUL,0xC6C2C406UL,0x44707434UL,0xC5D1D415UL,0x84B0B434UL,0xCAE2E82AUL,0x09010809UL,
0x46727436UL,0x09111819UL,0xCEF2FC3EUL,0x40404000UL,0x02121012UL,0xC0E0E020UL,0x8DB1BC3DUL,0x05010405UL,
0xCAF2F83AUL,0x01010001UL,0xC0F0F030UL,0x0A22282AUL,0x4E525C1EUL,0x89A1A829UL,0x46525416UL,0x43434003UL,
0x85818405UL,0x04101414UL,0x89818809UL,0x8B93981BUL,0x80B0B030UL,0xC5E1E425UL,0x48404808UL,0x49717839UL,
0x87939417UL,0xCCF0FC3CUL,0x0E121C1EUL,0x82828002UL,0x01212021UL,0x8C808C0CUL,0x0B13181BUL,0x4F535C1FUL,
0x47737437UL,0x44505414UL,0x82B2B032UL,0x0D111C1DUL,0x05212425UL,0x4F434C0FUL,0x00000000UL,0x46424406UL,
0xCDE1EC2DUL,0x48505818UL,0x42525012UL,0xCBE3E82BUL,0x4E727C3EUL,0xCAD2D81AUL,0xC9C1C809UL,0xCDF1FC3DUL,
0x00303030UL,0x85919415UL,0x45616425UL,0x0C303C3CUL,0x86B2B436UL,0xC4E0E424UL,0x8BB3B83BUL,0x4C707C3CUL,
0x0E020C0EUL,0x40505010UL,0x09313839UL,0x06222426UL,0x02323032UL,0x84808404UL,0x49616829UL,0x83939013UL,
0x07333437UL,0xC7E3E427UL,0x04202424UL,0x84A0A424UL,0xCBC3C80BUL,0x43535013UL,0x0A02080AUL,0x87838407UL,
0xC9D1D819UL,0x4C404C0CUL,0x83838003UL,0x8F838C0FUL,0xCEC2CC0EUL,0x0B33383BUL,0x4A42480AUL,0x87B3B437UL
};
static const ulong32 KCi[16] = {
0x9E3779B9,0x3C6EF373,
0x78DDE6E6,0xF1BBCDCC,
0xE3779B99,0xC6EF3733,
0x8DDE6E67,0x1BBCDCCF,
0x3779B99E,0x6EF3733C,
0xDDE6E678,0xBBCDCCF1,
0x779B99E3,0xEF3733C6,
0xDE6E678D,0xBCDCCF1B
};
#define G(x) (SS3[((x)>>24)&255] ^ SS2[((x)>>16)&255] ^ SS1[((x)>>8)&255] ^ SS0[(x)&255])
#define F(L1, L2, R1, R2, K1, K2) \
T2 = G((R1 ^ K1) ^ (R2 ^ K2)); \
T = G( G(T2 + (R1 ^ K1)) + T2); \
L2 ^= T; \
L1 ^= (T + G(T2 + (R1 ^ K1))); \
/**
Initialize the SEED block cipher
@param key The symmetric key you wish to pass
@param keylen The key length in bytes
@param num_rounds The number of rounds desired (0 for default)
@param skey The key in as scheduled by this function.
@return CRYPT_OK if successful
*/
int kseed_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
int i;
ulong32 tmp, k1, k2, k3, k4;
if (keylen != 16) {
return CRYPT_INVALID_KEYSIZE;
}
if (num_rounds != 16 && num_rounds != 0) {
return CRYPT_INVALID_ROUNDS;
}
/* load key */
LOAD32H(k1, key);
LOAD32H(k2, key+4);
LOAD32H(k3, key+8);
LOAD32H(k4, key+12);
for (i = 0; i < 16; i++) {
skey->kseed.K[2*i+0] = G(k1 + k3 - KCi[i]);
skey->kseed.K[2*i+1] = G(k2 - k4 + KCi[i]);
if (i&1) {
tmp = k3;
k3 = ((k3 << 8) | (k4 >> 24)) & 0xFFFFFFFF;
k4 = ((k4 << 8) | (tmp >> 24)) & 0xFFFFFFFF;
} else {
tmp = k1;
k1 = ((k1 >> 8) | (k2 << 24)) & 0xFFFFFFFF;
k2 = ((k2 >> 8) | (tmp << 24)) & 0xFFFFFFFF;
}
/* reverse keys for decrypt */
skey->kseed.dK[2*(15-i)+0] = skey->kseed.K[2*i+0];
skey->kseed.dK[2*(15-i)+1] = skey->kseed.K[2*i+1];
}
return CRYPT_OK;
}
static void rounds(ulong32 *P, const ulong32 *K)
{
ulong32 T, T2;
int i;
for (i = 0; i < 16; i += 2) {
F(P[0], P[1], P[2], P[3], K[0], K[1]);
F(P[2], P[3], P[0], P[1], K[2], K[3]);
K += 4;
}
}
/**
Encrypts a block of text with SEED
@param pt The input plaintext (16 bytes)
@param ct The output ciphertext (16 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
int kseed_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
{
ulong32 P[4];
LOAD32H(P[0], pt);
LOAD32H(P[1], pt+4);
LOAD32H(P[2], pt+8);
LOAD32H(P[3], pt+12);
rounds(P, skey->kseed.K);
STORE32H(P[2], ct);
STORE32H(P[3], ct+4);
STORE32H(P[0], ct+8);
STORE32H(P[1], ct+12);
return CRYPT_OK;
}
/**
Decrypts a block of text with SEED
@param ct The input ciphertext (16 bytes)
@param pt The output plaintext (16 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
int kseed_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
{
ulong32 P[4];
LOAD32H(P[0], ct);
LOAD32H(P[1], ct+4);
LOAD32H(P[2], ct+8);
LOAD32H(P[3], ct+12);
rounds(P, skey->kseed.dK);
STORE32H(P[2], pt);
STORE32H(P[3], pt+4);
STORE32H(P[0], pt+8);
STORE32H(P[1], pt+12);
return CRYPT_OK;
}
/** Terminate the context
@param skey The scheduled key
*/
void kseed_done(symmetric_key *skey)
{
LTC_UNUSED_PARAM(skey);
}
/**
Performs a self-test of the SEED block cipher
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int kseed_test(void)
{
#if !defined(LTC_TEST)
return CRYPT_NOP;
#else
static const struct test {
unsigned char pt[16], ct[16], key[16];
} tests[] = {
{
{ 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F },
{ 0x5E,0xBA,0xC6,0xE0,0x05,0x4E,0x16,0x68,0x19,0xAF,0xF1,0xCC,0x6D,0x34,0x6C,0xDB },
{ 0 },
},
{
{ 0 },
{ 0xC1,0x1F,0x22,0xF2,0x01,0x40,0x50,0x50,0x84,0x48,0x35,0x97,0xE4,0x37,0x0F,0x43 },
{ 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F },
},
{
{ 0x83,0xA2,0xF8,0xA2,0x88,0x64,0x1F,0xB9,0xA4,0xE9,0xA5,0xCC,0x2F,0x13,0x1C,0x7D },
{ 0xEE,0x54,0xD1,0x3E,0xBC,0xAE,0x70,0x6D,0x22,0x6B,0xC3,0x14,0x2C,0xD4,0x0D,0x4A },
{ 0x47,0x06,0x48,0x08,0x51,0xE6,0x1B,0xE8,0x5D,0x74,0xBF,0xB3,0xFD,0x95,0x61,0x85 },
},
{
{ 0xB4,0x1E,0x6B,0xE2,0xEB,0xA8,0x4A,0x14,0x8E,0x2E,0xED,0x84,0x59,0x3C,0x5E,0xC7 },
{ 0x9B,0x9B,0x7B,0xFC,0xD1,0x81,0x3C,0xB9,0x5D,0x0B,0x36,0x18,0xF4,0x0F,0x51,0x22 },
{ 0x28,0xDB,0xC3,0xBC,0x49,0xFF,0xD8,0x7D,0xCF,0xA5,0x09,0xB1,0x1D,0x42,0x2B,0xE7 },
}
};
int x;
unsigned char buf[2][16];
symmetric_key skey;
for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) {
kseed_setup(tests[x].key, 16, 0, &skey);
kseed_ecb_encrypt(tests[x].pt, buf[0], &skey);
kseed_ecb_decrypt(buf[0], buf[1], &skey);
if (compare_testvector(buf[0], 16, tests[x].ct, 16, "KSEED Encrypt", x) ||
compare_testvector(buf[1], 16, tests[x].pt, 16, "KSEED Decrypt", x)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
/**
Gets suitable key size
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
@return CRYPT_OK if the input key size is acceptable.
*/
int kseed_keysize(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize >= 16) {
*keysize = 16;
} else {
return CRYPT_INVALID_KEYSIZE;
}
return CRYPT_OK;
}
#undef G
#undef F
#endif

View File

@@ -0,0 +1,309 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file multi2.c
Multi-2 implementation (not public domain, hence the default disable)
*/
#include "tomcrypt_private.h"
#ifdef LTC_MULTI2
static void s_pi1(ulong32 *p)
{
p[1] ^= p[0];
}
static void s_pi2(ulong32 *p, const ulong32 *k)
{
ulong32 t;
t = (p[1] + k[0]) & 0xFFFFFFFFUL;
t = (ROL(t, 1) + t - 1) & 0xFFFFFFFFUL;
t = (ROL(t, 4) ^ t) & 0xFFFFFFFFUL;
p[0] ^= t;
}
static void s_pi3(ulong32 *p, const ulong32 *k)
{
ulong32 t;
t = p[0] + k[1];
t = (ROL(t, 2) + t + 1) & 0xFFFFFFFFUL;
t = (ROL(t, 8) ^ t) & 0xFFFFFFFFUL;
t = (t + k[2]) & 0xFFFFFFFFUL;
t = (ROL(t, 1) - t) & 0xFFFFFFFFUL;
t = ROL(t, 16) ^ (p[0] | t);
p[1] ^= t;
}
static void s_pi4(ulong32 *p, const ulong32 *k)
{
ulong32 t;
t = (p[1] + k[3]) & 0xFFFFFFFFUL;
t = (ROL(t, 2) + t + 1) & 0xFFFFFFFFUL;
p[0] ^= t;
}
static void s_setup(const ulong32 *dk, const ulong32 *k, ulong32 *uk)
{
int n, t;
ulong32 p[2];
p[0] = dk[0]; p[1] = dk[1];
t = 4;
n = 0;
s_pi1(p);
s_pi2(p, k);
uk[n++] = p[0];
s_pi3(p, k);
uk[n++] = p[1];
s_pi4(p, k);
uk[n++] = p[0];
s_pi1(p);
uk[n++] = p[1];
s_pi2(p, k+t);
uk[n++] = p[0];
s_pi3(p, k+t);
uk[n++] = p[1];
s_pi4(p, k+t);
uk[n++] = p[0];
s_pi1(p);
uk[n++] = p[1];
}
static void s_encrypt(ulong32 *p, int N, const ulong32 *uk)
{
int n, t;
for (t = n = 0; ; ) {
s_pi1(p); if (++n == N) break;
s_pi2(p, uk+t); if (++n == N) break;
s_pi3(p, uk+t); if (++n == N) break;
s_pi4(p, uk+t); if (++n == N) break;
t ^= 4;
}
}
static void s_decrypt(ulong32 *p, int N, const ulong32 *uk)
{
int n, t;
for (t = 4*(((N-1)>>2)&1), n = N; ; ) {
switch (n<=4 ? n : ((n-1)%4)+1) {
case 4: s_pi4(p, uk+t); --n; /* FALLTHROUGH */
case 3: s_pi3(p, uk+t); --n; /* FALLTHROUGH */
case 2: s_pi2(p, uk+t); --n; /* FALLTHROUGH */
case 1: s_pi1(p); --n; break;
case 0: return;
}
t ^= 4;
}
}
const struct ltc_cipher_descriptor multi2_desc = {
"multi2",
22,
40, 40, 8, 128,
&multi2_setup,
&multi2_ecb_encrypt,
&multi2_ecb_decrypt,
&multi2_test,
&multi2_done,
&multi2_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
int multi2_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
ulong32 sk[8], dk[2];
int x;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
if (keylen != 40) return CRYPT_INVALID_KEYSIZE;
if (num_rounds == 0) num_rounds = 128;
skey->multi2.N = num_rounds;
for (x = 0; x < 8; x++) {
LOAD32H(sk[x], key + x*4);
}
LOAD32H(dk[0], key + 32);
LOAD32H(dk[1], key + 36);
s_setup(dk, sk, skey->multi2.uk);
zeromem(sk, sizeof(sk));
zeromem(dk, sizeof(dk));
return CRYPT_OK;
}
/**
Encrypts a block of text with multi2
@param pt The input plaintext (8 bytes)
@param ct The output ciphertext (8 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
int multi2_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
{
ulong32 p[2];
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
LOAD32H(p[0], pt);
LOAD32H(p[1], pt+4);
s_encrypt(p, skey->multi2.N, skey->multi2.uk);
STORE32H(p[0], ct);
STORE32H(p[1], ct+4);
return CRYPT_OK;
}
/**
Decrypts a block of text with multi2
@param ct The input ciphertext (8 bytes)
@param pt The output plaintext (8 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
int multi2_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
{
ulong32 p[2];
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
LOAD32H(p[0], ct);
LOAD32H(p[1], ct+4);
s_decrypt(p, skey->multi2.N, skey->multi2.uk);
STORE32H(p[0], pt);
STORE32H(p[1], pt+4);
return CRYPT_OK;
}
/**
Performs a self-test of the multi2 block cipher
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int multi2_test(void)
{
static const struct {
unsigned char key[40];
unsigned char pt[8], ct[8];
int rounds;
} tests[] = {
{
{
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x01, 0x23, 0x45, 0x67,
0x89, 0xAB, 0xCD, 0xEF
},
{
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x01,
},
{
0xf8, 0x94, 0x40, 0x84,
0x5e, 0x11, 0xcf, 0x89
},
128,
},
{
{
0x35, 0x91, 0x9d, 0x96,
0x07, 0x02, 0xe2, 0xce,
0x8d, 0x0b, 0x58, 0x3c,
0xc9, 0xc8, 0x9d, 0x59,
0xa2, 0xae, 0x96, 0x4e,
0x87, 0x82, 0x45, 0xed,
0x3f, 0x2e, 0x62, 0xd6,
0x36, 0x35, 0xd0, 0x67,
0xb1, 0x27, 0xb9, 0x06,
0xe7, 0x56, 0x22, 0x38,
},
{
0x1f, 0xb4, 0x60, 0x60,
0xd0, 0xb3, 0x4f, 0xa5
},
{
0xca, 0x84, 0xa9, 0x34,
0x75, 0xc8, 0x60, 0xe5
},
216,
}
};
unsigned char buf[8];
symmetric_key skey;
int err, x;
for (x = 1; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) {
if ((err = multi2_setup(tests[x].key, 40, tests[x].rounds, &skey)) != CRYPT_OK) {
return err;
}
if ((err = multi2_ecb_encrypt(tests[x].pt, buf, &skey)) != CRYPT_OK) {
return err;
}
if (compare_testvector(buf, 8, tests[x].ct, 8, "Multi2 Encrypt", x)) {
return CRYPT_FAIL_TESTVECTOR;
}
if ((err = multi2_ecb_decrypt(buf, buf, &skey)) != CRYPT_OK) {
return err;
}
if (compare_testvector(buf, 8, tests[x].pt, 8, "Multi2 Decrypt", x)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
for (x = 128; x < 256; ++x) {
unsigned char ct[8];
if ((err = multi2_setup(tests[0].key, 40, x, &skey)) != CRYPT_OK) {
return err;
}
if ((err = multi2_ecb_encrypt(tests[0].pt, ct, &skey)) != CRYPT_OK) {
return err;
}
if ((err = multi2_ecb_decrypt(ct, buf, &skey)) != CRYPT_OK) {
return err;
}
if (compare_testvector(buf, 8, tests[0].pt, 8, "Multi2 Rounds", x)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
}
/** Terminate the context
@param skey The scheduled key
*/
void multi2_done(symmetric_key *skey)
{
LTC_UNUSED_PARAM(skey);
}
/**
Gets suitable key size
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
@return CRYPT_OK if the input key size is acceptable.
*/
int multi2_keysize(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize >= 40) {
*keysize = 40;
} else {
return CRYPT_INVALID_KEYSIZE;
}
return CRYPT_OK;
}
#endif

View File

@@ -0,0 +1,324 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file noekeon.c
Implementation of the Noekeon block cipher by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_NOEKEON
const struct ltc_cipher_descriptor noekeon_desc =
{
"noekeon",
16,
16, 16, 16, 16,
&noekeon_setup,
&noekeon_ecb_encrypt,
&noekeon_ecb_decrypt,
&noekeon_test,
&noekeon_done,
&noekeon_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
static const ulong32 RC[] = {
0x00000080UL, 0x0000001bUL, 0x00000036UL, 0x0000006cUL,
0x000000d8UL, 0x000000abUL, 0x0000004dUL, 0x0000009aUL,
0x0000002fUL, 0x0000005eUL, 0x000000bcUL, 0x00000063UL,
0x000000c6UL, 0x00000097UL, 0x00000035UL, 0x0000006aUL,
0x000000d4UL
};
#define kTHETA(a, b, c, d) \
temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
b ^= temp; d ^= temp; \
temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
a ^= temp; c ^= temp;
#define THETA(k, a, b, c, d) \
temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
b ^= temp ^ k[1]; d ^= temp ^ k[3]; \
temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
a ^= temp ^ k[0]; c ^= temp ^ k[2];
#define GAMMA(a, b, c, d) \
b ^= ~(d|c); \
a ^= c&b; \
temp = d; d = a; a = temp;\
c ^= a ^ b ^ d; \
b ^= ~(d|c); \
a ^= c&b;
#define PI1(a, b, c, d) \
b = ROLc(b, 1); c = ROLc(c, 5); d = ROLc(d, 2);
#define PI2(a, b, c, d) \
b = RORc(b, 1); c = RORc(c, 5); d = RORc(d, 2);
/**
Initialize the Noekeon block cipher
@param key The symmetric key you wish to pass
@param keylen The key length in bytes
@param num_rounds The number of rounds desired (0 for default)
@param skey The key in as scheduled by this function.
@return CRYPT_OK if successful
*/
int noekeon_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
ulong32 temp;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
if (keylen != 16) {
return CRYPT_INVALID_KEYSIZE;
}
if (num_rounds != 16 && num_rounds != 0) {
return CRYPT_INVALID_ROUNDS;
}
LOAD32H(skey->noekeon.K[0],&key[0]);
LOAD32H(skey->noekeon.K[1],&key[4]);
LOAD32H(skey->noekeon.K[2],&key[8]);
LOAD32H(skey->noekeon.K[3],&key[12]);
LOAD32H(skey->noekeon.dK[0],&key[0]);
LOAD32H(skey->noekeon.dK[1],&key[4]);
LOAD32H(skey->noekeon.dK[2],&key[8]);
LOAD32H(skey->noekeon.dK[3],&key[12]);
kTHETA(skey->noekeon.dK[0], skey->noekeon.dK[1], skey->noekeon.dK[2], skey->noekeon.dK[3]);
return CRYPT_OK;
}
/**
Encrypts a block of text with Noekeon
@param pt The input plaintext (16 bytes)
@param ct The output ciphertext (16 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#else
int noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#endif
{
ulong32 a,b,c,d,temp;
int r;
LTC_ARGCHK(skey != NULL);
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LOAD32H(a,&pt[0]); LOAD32H(b,&pt[4]);
LOAD32H(c,&pt[8]); LOAD32H(d,&pt[12]);
#define ROUND(i) \
a ^= RC[i]; \
THETA(skey->noekeon.K, a,b,c,d); \
PI1(a,b,c,d); \
GAMMA(a,b,c,d); \
PI2(a,b,c,d);
for (r = 0; r < 16; ++r) {
ROUND(r);
}
#undef ROUND
a ^= RC[16];
THETA(skey->noekeon.K, a, b, c, d);
STORE32H(a,&ct[0]); STORE32H(b,&ct[4]);
STORE32H(c,&ct[8]); STORE32H(d,&ct[12]);
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
{
int err = s_noekeon_ecb_encrypt(pt, ct, skey);
burn_stack(sizeof(ulong32) * 5 + sizeof(int));
return err;
}
#endif
/**
Decrypts a block of text with Noekeon
@param ct The input ciphertext (16 bytes)
@param pt The output plaintext (16 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#else
int noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#endif
{
ulong32 a,b,c,d, temp;
int r;
LTC_ARGCHK(skey != NULL);
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LOAD32H(a,&ct[0]); LOAD32H(b,&ct[4]);
LOAD32H(c,&ct[8]); LOAD32H(d,&ct[12]);
#define ROUND(i) \
THETA(skey->noekeon.dK, a,b,c,d); \
a ^= RC[i]; \
PI1(a,b,c,d); \
GAMMA(a,b,c,d); \
PI2(a,b,c,d);
for (r = 16; r > 0; --r) {
ROUND(r);
}
#undef ROUND
THETA(skey->noekeon.dK, a,b,c,d);
a ^= RC[0];
STORE32H(a,&pt[0]); STORE32H(b, &pt[4]);
STORE32H(c,&pt[8]); STORE32H(d, &pt[12]);
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
{
int err = s_noekeon_ecb_decrypt(ct, pt, skey);
burn_stack(sizeof(ulong32) * 5 + sizeof(int));
return err;
}
#endif
/**
Performs a self-test of the Noekeon block cipher
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int noekeon_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
int keylen;
unsigned char key[16], pt[16], ct[16];
} tests[] = {
{
16,
{ 0xAA, 0x3C, 0x8C, 0x86, 0xD9, 0x8B, 0xF8, 0xBE, 0x21, 0xE0, 0x36, 0x09, 0x78, 0xFB, 0xE4, 0x90 },
{ 0xE4, 0x96, 0x6C, 0xD3, 0x13, 0xA0, 0x6C, 0xAF, 0xD0, 0x23, 0xC9, 0xFD, 0x45, 0x32, 0x23, 0x16 },
{ 0xA6, 0xEC, 0xB8, 0xA8, 0x61, 0xFD, 0x62, 0xD9, 0x13, 0x02, 0xFE, 0x9E, 0x47, 0x01, 0x3F, 0xC3 }
},
{
16,
{ 0xED, 0x43, 0xD1, 0x87, 0x21, 0x7E, 0xE0, 0x97, 0x3D, 0x76, 0xC3, 0x37, 0x2E, 0x7D, 0xAE, 0xD3 },
{ 0xE3, 0x38, 0x32, 0xCC, 0xF2, 0x2F, 0x2F, 0x0A, 0x4A, 0x8B, 0x8F, 0x18, 0x12, 0x20, 0x17, 0xD3 },
{ 0x94, 0xA5, 0xDF, 0xF5, 0xAE, 0x1C, 0xBB, 0x22, 0xAD, 0xEB, 0xA7, 0x0D, 0xB7, 0x82, 0x90, 0xA0 }
},
{
16,
{ 0x6F, 0xDC, 0x23, 0x38, 0xF2, 0x10, 0xFB, 0xD3, 0xC1, 0x8C, 0x02, 0xF6, 0xB4, 0x6A, 0xD5, 0xA8 },
{ 0xDB, 0x29, 0xED, 0xB5, 0x5F, 0xB3, 0x60, 0x3A, 0x92, 0xA8, 0xEB, 0x9C, 0x6D, 0x9D, 0x3E, 0x8F },
{ 0x78, 0xF3, 0x6F, 0xF8, 0x9E, 0xBB, 0x8C, 0x6A, 0xE8, 0x10, 0xF7, 0x00, 0x22, 0x15, 0x30, 0x3D }
},
{
16,
{ 0x2C, 0x0C, 0x02, 0xEF, 0x6B, 0xC4, 0xF2, 0x0B, 0x2E, 0xB9, 0xE0, 0xBF, 0xD9, 0x36, 0xC2, 0x4E },
{ 0x84, 0xE2, 0xFE, 0x64, 0xB1, 0xB9, 0xFE, 0x76, 0xA8, 0x3F, 0x45, 0xC7, 0x40, 0x7A, 0xAF, 0xEE },
{ 0x2A, 0x08, 0xD6, 0xA2, 0x1C, 0x63, 0x08, 0xB0, 0xF8, 0xBC, 0xB3, 0xA1, 0x66, 0xF7, 0xAE, 0xCF }
},
{
16,
{ 0x6F, 0x30, 0xF8, 0x9F, 0xDA, 0x6E, 0xA0, 0x91, 0x04, 0x0F, 0x6C, 0x8B, 0x7D, 0xF7, 0x2A, 0x4B },
{ 0x65, 0xB6, 0xA6, 0xD0, 0x42, 0x14, 0x08, 0x60, 0x34, 0x8D, 0x37, 0x2F, 0x01, 0xF0, 0x46, 0xBE },
{ 0x66, 0xAC, 0x0B, 0x62, 0x1D, 0x68, 0x11, 0xF5, 0x27, 0xB1, 0x13, 0x5D, 0xF3, 0x2A, 0xE9, 0x18 }
},
{
16,
{ 0xCA, 0xA4, 0x16, 0xB7, 0x1C, 0x92, 0x2E, 0xAD, 0xEB, 0xA7, 0xDB, 0x69, 0x92, 0xCB, 0x35, 0xEF },
{ 0x81, 0x6F, 0x8E, 0x4D, 0x96, 0xC6, 0xB3, 0x67, 0x83, 0xF5, 0x63, 0xC7, 0x20, 0x6D, 0x40, 0x23 },
{ 0x44, 0xF7, 0x63, 0x62, 0xF0, 0x43, 0xBB, 0x67, 0x4A, 0x75, 0x12, 0x42, 0x46, 0x29, 0x28, 0x19 }
},
{
16,
{ 0x6B, 0xCF, 0x22, 0x2F, 0xE0, 0x1B, 0xB0, 0xAA, 0xD8, 0x3C, 0x91, 0x99, 0x18, 0xB2, 0x28, 0xE8 },
{ 0x7C, 0x37, 0xC7, 0xD0, 0xAC, 0x92, 0x29, 0xF1, 0x60, 0x82, 0x93, 0x89, 0xAA, 0x61, 0xAA, 0xA9 },
{ 0xE5, 0x89, 0x1B, 0xB3, 0xFE, 0x8B, 0x0C, 0xA1, 0xA6, 0xC7, 0xBE, 0x12, 0x73, 0x0F, 0xC1, 0x19 }
},
{
16,
{ 0xE6, 0xD0, 0xF1, 0x03, 0x2E, 0xDE, 0x70, 0x8D, 0xD8, 0x9E, 0x36, 0x5C, 0x05, 0x52, 0xE7, 0x0D },
{ 0xE2, 0x42, 0xE7, 0x92, 0x0E, 0xF7, 0x82, 0xA2, 0xB8, 0x21, 0x8D, 0x26, 0xBA, 0x2D, 0xE6, 0x32 },
{ 0x1E, 0xDD, 0x75, 0x22, 0xB9, 0x36, 0x8A, 0x0F, 0x32, 0xFD, 0xD4, 0x48, 0x65, 0x12, 0x5A, 0x2F }
}
};
symmetric_key key;
unsigned char tmp[2][16];
int err, i, y;
for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
zeromem(&key, sizeof(key));
if ((err = noekeon_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
return err;
}
noekeon_ecb_encrypt(tests[i].pt, tmp[0], &key);
noekeon_ecb_decrypt(tmp[0], tmp[1], &key);
if (compare_testvector(tmp[0], 16, tests[i].ct, 16, "Noekeon Encrypt", i) ||
compare_testvector(tmp[1], 16, tests[i].pt, 16, "Noekeon Decrypt", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
for (y = 0; y < 16; y++) tmp[0][y] = 0;
for (y = 0; y < 1000; y++) noekeon_ecb_encrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 1000; y++) noekeon_ecb_decrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
}
return CRYPT_OK;
#endif
}
/** Terminate the context
@param skey The scheduled key
*/
void noekeon_done(symmetric_key *skey)
{
LTC_UNUSED_PARAM(skey);
}
/**
Gets suitable key size
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
@return CRYPT_OK if the input key size is acceptable.
*/
int noekeon_keysize(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize < 16) {
return CRYPT_INVALID_KEYSIZE;
}
*keysize = 16;
return CRYPT_OK;
}
#undef kTHETA
#undef THETA
#undef GAMMA
#undef PI1
#undef PI2
#undef ROUND
#endif

View File

@@ -0,0 +1,408 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**********************************************************************\
* To commemorate the 1996 RSA Data Security Conference, the following *
* code is released into the public domain by its author. Prost! *
* *
* This cipher uses 16-bit words and little-endian byte ordering. *
* I wonder which processor it was optimized for? *
* *
* Thanks to CodeView, SoftIce, and D86 for helping bring this code to *
* the public. *
\**********************************************************************/
#include "tomcrypt_private.h"
/**
@file rc2.c
Implementation of RC2 with fixed effective key length of 64bits
*/
#ifdef LTC_RC2
const struct ltc_cipher_descriptor rc2_desc = {
"rc2",
12, 8, 128, 8, 16,
&rc2_setup,
&rc2_ecb_encrypt,
&rc2_ecb_decrypt,
&rc2_test,
&rc2_done,
&rc2_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
/* 256-entry permutation table, probably derived somehow from pi */
static const unsigned char permute[256] = {
217,120,249,196, 25,221,181,237, 40,233,253,121, 74,160,216,157,
198,126, 55,131, 43,118, 83,142, 98, 76,100,136, 68,139,251,162,
23,154, 89,245,135,179, 79, 19, 97, 69,109,141, 9,129,125, 50,
189,143, 64,235,134,183,123, 11,240,149, 33, 34, 92,107, 78,130,
84,214,101,147,206, 96,178, 28,115, 86,192, 20,167,140,241,220,
18,117,202, 31, 59,190,228,209, 66, 61,212, 48,163, 60,182, 38,
111,191, 14,218, 70,105, 7, 87, 39,242, 29,155,188,148, 67, 3,
248, 17,199,246,144,239, 62,231, 6,195,213, 47,200,102, 30,215,
8,232,234,222,128, 82,238,247,132,170,114,172, 53, 77,106, 42,
150, 26,210,113, 90, 21, 73,116, 75,159,208, 94, 4, 24,164,236,
194,224, 65,110, 15, 81,203,204, 36,145,175, 80,161,244,112, 57,
153,124, 58,133, 35,184,180,122,252, 2, 54, 91, 37, 85,151, 49,
45, 93,250,152,227,138,146,174, 5,223, 41, 16,103,108,186,201,
211, 0,230,207,225,158,168, 44, 99, 22, 1, 63, 88,226,137,169,
13, 56, 52, 27,171, 51,255,176,187, 72, 12, 95,185,177,205, 46,
197,243,219, 71,229,165,156,119, 10,166, 32,104,254,127,193,173
};
/**
Initialize the RC2 block cipher
@param key The symmetric key you wish to pass
@param keylen The key length in bytes
@param bits The effective key length in bits
@param num_rounds The number of rounds desired (0 for default)
@param skey The key in as scheduled by this function.
@return CRYPT_OK if successful
*/
int rc2_setup_ex(const unsigned char *key, int keylen, int bits, int num_rounds, symmetric_key *skey)
{
unsigned *xkey = skey->rc2.xkey;
unsigned char tmp[128];
unsigned T8, TM;
int i;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
if (keylen == 0 || keylen > 128 || bits > 1024) {
return CRYPT_INVALID_KEYSIZE;
}
if (bits == 0) {
bits = 1024;
}
if (num_rounds != 0 && num_rounds != 16) {
return CRYPT_INVALID_ROUNDS;
}
for (i = 0; i < keylen; i++) {
tmp[i] = key[i] & 255;
}
/* Phase 1: Expand input key to 128 bytes */
if (keylen < 128) {
for (i = keylen; i < 128; i++) {
tmp[i] = permute[(tmp[i - 1] + tmp[i - keylen]) & 255];
}
}
/* Phase 2 - reduce effective key size to "bits" */
T8 = (unsigned)(bits+7)>>3;
TM = (255 >> (unsigned)(7 & -bits));
tmp[128 - T8] = permute[tmp[128 - T8] & TM];
for (i = 127 - T8; i >= 0; i--) {
tmp[i] = permute[tmp[i + 1] ^ tmp[i + T8]];
}
/* Phase 3 - copy to xkey in little-endian order */
for (i = 0; i < 64; i++) {
xkey[i] = (unsigned)tmp[2*i] + ((unsigned)tmp[2*i+1] << 8);
}
#ifdef LTC_CLEAN_STACK
zeromem(tmp, sizeof(tmp));
#endif
return CRYPT_OK;
}
/**
Initialize the RC2 block cipher
The effective key length is here always keylen * 8
@param key The symmetric key you wish to pass
@param keylen The key length in bytes
@param num_rounds The number of rounds desired (0 for default)
@param skey The key in as scheduled by this function.
@return CRYPT_OK if successful
*/
int rc2_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
return rc2_setup_ex(key, keylen, keylen * 8, num_rounds, skey);
}
/**********************************************************************\
* Encrypt an 8-byte block of plaintext using the given key. *
\**********************************************************************/
/**
Encrypts a block of text with RC2
@param pt The input plaintext (8 bytes)
@param ct The output ciphertext (8 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_rc2_ecb_encrypt( const unsigned char *pt,
unsigned char *ct,
const symmetric_key *skey)
#else
int rc2_ecb_encrypt( const unsigned char *pt,
unsigned char *ct,
const symmetric_key *skey)
#endif
{
const unsigned *xkey;
unsigned x76, x54, x32, x10, i;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
xkey = skey->rc2.xkey;
x76 = ((unsigned)pt[7] << 8) + (unsigned)pt[6];
x54 = ((unsigned)pt[5] << 8) + (unsigned)pt[4];
x32 = ((unsigned)pt[3] << 8) + (unsigned)pt[2];
x10 = ((unsigned)pt[1] << 8) + (unsigned)pt[0];
for (i = 0; i < 16; i++) {
x10 = (x10 + (x32 & ~x76) + (x54 & x76) + xkey[4*i+0]) & 0xFFFF;
x10 = ((x10 << 1) | (x10 >> 15));
x32 = (x32 + (x54 & ~x10) + (x76 & x10) + xkey[4*i+1]) & 0xFFFF;
x32 = ((x32 << 2) | (x32 >> 14));
x54 = (x54 + (x76 & ~x32) + (x10 & x32) + xkey[4*i+2]) & 0xFFFF;
x54 = ((x54 << 3) | (x54 >> 13));
x76 = (x76 + (x10 & ~x54) + (x32 & x54) + xkey[4*i+3]) & 0xFFFF;
x76 = ((x76 << 5) | (x76 >> 11));
if (i == 4 || i == 10) {
x10 = (x10 + xkey[x76 & 63]) & 0xFFFF;
x32 = (x32 + xkey[x10 & 63]) & 0xFFFF;
x54 = (x54 + xkey[x32 & 63]) & 0xFFFF;
x76 = (x76 + xkey[x54 & 63]) & 0xFFFF;
}
}
ct[0] = (unsigned char)x10;
ct[1] = (unsigned char)(x10 >> 8);
ct[2] = (unsigned char)x32;
ct[3] = (unsigned char)(x32 >> 8);
ct[4] = (unsigned char)x54;
ct[5] = (unsigned char)(x54 >> 8);
ct[6] = (unsigned char)x76;
ct[7] = (unsigned char)(x76 >> 8);
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int rc2_ecb_encrypt( const unsigned char *pt,
unsigned char *ct,
const symmetric_key *skey)
{
int err = s_rc2_ecb_encrypt(pt, ct, skey);
burn_stack(sizeof(unsigned *) + sizeof(unsigned) * 5);
return err;
}
#endif
/**********************************************************************\
* Decrypt an 8-byte block of ciphertext using the given key. *
\**********************************************************************/
/**
Decrypts a block of text with RC2
@param ct The input ciphertext (8 bytes)
@param pt The output plaintext (8 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_rc2_ecb_decrypt( const unsigned char *ct,
unsigned char *pt,
const symmetric_key *skey)
#else
int rc2_ecb_decrypt( const unsigned char *ct,
unsigned char *pt,
const symmetric_key *skey)
#endif
{
unsigned x76, x54, x32, x10;
const unsigned *xkey;
int i;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
xkey = skey->rc2.xkey;
x76 = ((unsigned)ct[7] << 8) + (unsigned)ct[6];
x54 = ((unsigned)ct[5] << 8) + (unsigned)ct[4];
x32 = ((unsigned)ct[3] << 8) + (unsigned)ct[2];
x10 = ((unsigned)ct[1] << 8) + (unsigned)ct[0];
for (i = 15; i >= 0; i--) {
if (i == 4 || i == 10) {
x76 = (x76 - xkey[x54 & 63]) & 0xFFFF;
x54 = (x54 - xkey[x32 & 63]) & 0xFFFF;
x32 = (x32 - xkey[x10 & 63]) & 0xFFFF;
x10 = (x10 - xkey[x76 & 63]) & 0xFFFF;
}
x76 = ((x76 << 11) | (x76 >> 5));
x76 = (x76 - ((x10 & ~x54) + (x32 & x54) + xkey[4*i+3])) & 0xFFFF;
x54 = ((x54 << 13) | (x54 >> 3));
x54 = (x54 - ((x76 & ~x32) + (x10 & x32) + xkey[4*i+2])) & 0xFFFF;
x32 = ((x32 << 14) | (x32 >> 2));
x32 = (x32 - ((x54 & ~x10) + (x76 & x10) + xkey[4*i+1])) & 0xFFFF;
x10 = ((x10 << 15) | (x10 >> 1));
x10 = (x10 - ((x32 & ~x76) + (x54 & x76) + xkey[4*i+0])) & 0xFFFF;
}
pt[0] = (unsigned char)x10;
pt[1] = (unsigned char)(x10 >> 8);
pt[2] = (unsigned char)x32;
pt[3] = (unsigned char)(x32 >> 8);
pt[4] = (unsigned char)x54;
pt[5] = (unsigned char)(x54 >> 8);
pt[6] = (unsigned char)x76;
pt[7] = (unsigned char)(x76 >> 8);
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int rc2_ecb_decrypt( const unsigned char *ct,
unsigned char *pt,
const symmetric_key *skey)
{
int err = s_rc2_ecb_decrypt(ct, pt, skey);
burn_stack(sizeof(unsigned *) + sizeof(unsigned) * 4 + sizeof(int));
return err;
}
#endif
/**
Performs a self-test of the RC2 block cipher
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int rc2_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
int keylen, bits;
unsigned char key[16], pt[8], ct[8];
} tests[] = {
{ 8, 63,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xeb, 0xb7, 0x73, 0xf9, 0x93, 0x27, 0x8e, 0xff }
},
{ 8, 64,
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
{ 0x27, 0x8b, 0x27, 0xe4, 0x2e, 0x2f, 0x0d, 0x49 }
},
{ 8, 64,
{ 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 },
{ 0x30, 0x64, 0x9e, 0xdf, 0x9b, 0xe7, 0xd2, 0xc2 }
},
{ 1, 64,
{ 0x88, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x61, 0xa8, 0xa2, 0x44, 0xad, 0xac, 0xcc, 0xf0 }
},
{ 7, 64,
{ 0x88, 0xbc, 0xa9, 0x0e, 0x90, 0x87, 0x5a, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x6c, 0xcf, 0x43, 0x08, 0x97, 0x4c, 0x26, 0x7f }
},
{ 16, 64,
{ 0x88, 0xbc, 0xa9, 0x0e, 0x90, 0x87, 0x5a, 0x7f,
0x0f, 0x79, 0xc3, 0x84, 0x62, 0x7b, 0xaf, 0xb2 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x1a, 0x80, 0x7d, 0x27, 0x2b, 0xbe, 0x5d, 0xb1 }
},
{ 16, 128,
{ 0x88, 0xbc, 0xa9, 0x0e, 0x90, 0x87, 0x5a, 0x7f,
0x0f, 0x79, 0xc3, 0x84, 0x62, 0x7b, 0xaf, 0xb2 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x22, 0x69, 0x55, 0x2a, 0xb0, 0xf8, 0x5c, 0xa6 }
}
};
int x, y, err;
symmetric_key skey;
unsigned char tmp[2][8];
for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
zeromem(tmp, sizeof(tmp));
if (tests[x].bits == (tests[x].keylen * 8)) {
if ((err = rc2_setup(tests[x].key, tests[x].keylen, 0, &skey)) != CRYPT_OK) {
return err;
}
}
else {
if ((err = rc2_setup_ex(tests[x].key, tests[x].keylen, tests[x].bits, 0, &skey)) != CRYPT_OK) {
return err;
}
}
rc2_ecb_encrypt(tests[x].pt, tmp[0], &skey);
rc2_ecb_decrypt(tmp[0], tmp[1], &skey);
if (compare_testvector(tmp[0], 8, tests[x].ct, 8, "RC2 CT", x) ||
compare_testvector(tmp[1], 8, tests[x].pt, 8, "RC2 PT", x)) {
return CRYPT_FAIL_TESTVECTOR;
}
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
for (y = 0; y < 8; y++) tmp[0][y] = 0;
for (y = 0; y < 1000; y++) rc2_ecb_encrypt(tmp[0], tmp[0], &skey);
for (y = 0; y < 1000; y++) rc2_ecb_decrypt(tmp[0], tmp[0], &skey);
for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
}
return CRYPT_OK;
#endif
}
/** Terminate the context
@param skey The scheduled key
*/
void rc2_done(symmetric_key *skey)
{
LTC_UNUSED_PARAM(skey);
}
/**
Gets suitable key size
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
@return CRYPT_OK if the input key size is acceptable.
*/
int rc2_keysize(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize < 1) {
return CRYPT_INVALID_KEYSIZE;
}
if (*keysize > 128) {
*keysize = 128;
}
return CRYPT_OK;
}
#endif

View File

@@ -0,0 +1,326 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file rc5.c
LTC_RC5 code by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_RC5
const struct ltc_cipher_descriptor rc5_desc =
{
"rc5",
2,
8, 128, 8, 12,
&rc5_setup,
&rc5_ecb_encrypt,
&rc5_ecb_decrypt,
&rc5_test,
&rc5_done,
&rc5_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
#define stab rc5_stab
static const ulong32 stab[50] = {
0xb7e15163UL, 0x5618cb1cUL, 0xf45044d5UL, 0x9287be8eUL, 0x30bf3847UL, 0xcef6b200UL, 0x6d2e2bb9UL, 0x0b65a572UL,
0xa99d1f2bUL, 0x47d498e4UL, 0xe60c129dUL, 0x84438c56UL, 0x227b060fUL, 0xc0b27fc8UL, 0x5ee9f981UL, 0xfd21733aUL,
0x9b58ecf3UL, 0x399066acUL, 0xd7c7e065UL, 0x75ff5a1eUL, 0x1436d3d7UL, 0xb26e4d90UL, 0x50a5c749UL, 0xeedd4102UL,
0x8d14babbUL, 0x2b4c3474UL, 0xc983ae2dUL, 0x67bb27e6UL, 0x05f2a19fUL, 0xa42a1b58UL, 0x42619511UL, 0xe0990ecaUL,
0x7ed08883UL, 0x1d08023cUL, 0xbb3f7bf5UL, 0x5976f5aeUL, 0xf7ae6f67UL, 0x95e5e920UL, 0x341d62d9UL, 0xd254dc92UL,
0x708c564bUL, 0x0ec3d004UL, 0xacfb49bdUL, 0x4b32c376UL, 0xe96a3d2fUL, 0x87a1b6e8UL, 0x25d930a1UL, 0xc410aa5aUL,
0x62482413UL, 0x007f9dccUL
};
/**
Initialize the LTC_RC5 block cipher
@param key The symmetric key you wish to pass
@param keylen The key length in bytes
@param num_rounds The number of rounds desired (0 for default)
@param skey The key in as scheduled by this function.
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_rc5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
#else
int rc5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
#endif
{
ulong32 L[64], *S, A, B, i, j, v, s, t, l;
LTC_ARGCHK(skey != NULL);
LTC_ARGCHK(key != NULL);
/* test parameters */
if (num_rounds == 0) {
num_rounds = rc5_desc.default_rounds;
}
if (num_rounds < 12 || num_rounds > 24) {
return CRYPT_INVALID_ROUNDS;
}
/* key must be between 64 and 1024 bits */
if (keylen < 8 || keylen > 128) {
return CRYPT_INVALID_KEYSIZE;
}
skey->rc5.rounds = num_rounds;
S = skey->rc5.K;
/* copy the key into the L array */
for (A = i = j = 0; i < (ulong32)keylen; ) {
A = (A << 8) | ((ulong32)(key[i++] & 255));
if ((i & 3) == 0) {
L[j++] = BSWAP(A);
A = 0;
}
}
if ((keylen & 3) != 0) {
A <<= (ulong32)((8 * (4 - (keylen&3))));
L[j++] = BSWAP(A);
}
/* setup the S array */
t = (ulong32)(2 * (num_rounds + 1));
XMEMCPY(S, stab, t * sizeof(*S));
/* mix buffer */
s = 3 * MAX(t, j);
l = j;
for (A = B = i = j = v = 0; v < s; v++) {
A = S[i] = ROLc(S[i] + A + B, 3);
B = L[j] = ROL(L[j] + A + B, (A+B));
if (++i == t) { i = 0; }
if (++j == l) { j = 0; }
}
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int rc5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
int x;
x = s_rc5_setup(key, keylen, num_rounds, skey);
burn_stack(sizeof(ulong32) * 122 + sizeof(int));
return x;
}
#endif
/**
Encrypts a block of text with LTC_RC5
@param pt The input plaintext (8 bytes)
@param ct The output ciphertext (8 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_rc5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#else
int rc5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#endif
{
ulong32 A, B;
const ulong32 *K;
int r;
LTC_ARGCHK(skey != NULL);
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
if (skey->rc5.rounds < 12 || skey->rc5.rounds > 24) {
return CRYPT_INVALID_ROUNDS;
}
LOAD32L(A, &pt[0]);
LOAD32L(B, &pt[4]);
A += skey->rc5.K[0];
B += skey->rc5.K[1];
K = skey->rc5.K + 2;
if ((skey->rc5.rounds & 1) == 0) {
for (r = 0; r < skey->rc5.rounds; r += 2) {
A = ROL(A ^ B, B) + K[0];
B = ROL(B ^ A, A) + K[1];
A = ROL(A ^ B, B) + K[2];
B = ROL(B ^ A, A) + K[3];
K += 4;
}
} else {
for (r = 0; r < skey->rc5.rounds; r++) {
A = ROL(A ^ B, B) + K[0];
B = ROL(B ^ A, A) + K[1];
K += 2;
}
}
STORE32L(A, &ct[0]);
STORE32L(B, &ct[4]);
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int rc5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
{
int err = s_rc5_ecb_encrypt(pt, ct, skey);
burn_stack(sizeof(ulong32) * 2 + sizeof(int));
return err;
}
#endif
/**
Decrypts a block of text with LTC_RC5
@param ct The input ciphertext (8 bytes)
@param pt The output plaintext (8 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_rc5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#else
int rc5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#endif
{
ulong32 A, B;
const ulong32 *K;
int r;
LTC_ARGCHK(skey != NULL);
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
if (skey->rc5.rounds < 12 || skey->rc5.rounds > 24) {
return CRYPT_INVALID_ROUNDS;
}
LOAD32L(A, &ct[0]);
LOAD32L(B, &ct[4]);
K = skey->rc5.K + (skey->rc5.rounds << 1);
if ((skey->rc5.rounds & 1) == 0) {
K -= 2;
for (r = skey->rc5.rounds - 1; r >= 0; r -= 2) {
B = ROR(B - K[3], A) ^ A;
A = ROR(A - K[2], B) ^ B;
B = ROR(B - K[1], A) ^ A;
A = ROR(A - K[0], B) ^ B;
K -= 4;
}
} else {
for (r = skey->rc5.rounds - 1; r >= 0; r--) {
B = ROR(B - K[1], A) ^ A;
A = ROR(A - K[0], B) ^ B;
K -= 2;
}
}
A -= skey->rc5.K[0];
B -= skey->rc5.K[1];
STORE32L(A, &pt[0]);
STORE32L(B, &pt[4]);
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int rc5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
{
int err = s_rc5_ecb_decrypt(ct, pt, skey);
burn_stack(sizeof(ulong32) * 2 + sizeof(int));
return err;
}
#endif
/**
Performs a self-test of the LTC_RC5 block cipher
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int rc5_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
unsigned char key[16], pt[8], ct[8];
} tests[] = {
{
{ 0x91, 0x5f, 0x46, 0x19, 0xbe, 0x41, 0xb2, 0x51,
0x63, 0x55, 0xa5, 0x01, 0x10, 0xa9, 0xce, 0x91 },
{ 0x21, 0xa5, 0xdb, 0xee, 0x15, 0x4b, 0x8f, 0x6d },
{ 0xf7, 0xc0, 0x13, 0xac, 0x5b, 0x2b, 0x89, 0x52 }
},
{
{ 0x78, 0x33, 0x48, 0xe7, 0x5a, 0xeb, 0x0f, 0x2f,
0xd7, 0xb1, 0x69, 0xbb, 0x8d, 0xc1, 0x67, 0x87 },
{ 0xF7, 0xC0, 0x13, 0xAC, 0x5B, 0x2B, 0x89, 0x52 },
{ 0x2F, 0x42, 0xB3, 0xB7, 0x03, 0x69, 0xFC, 0x92 }
},
{
{ 0xDC, 0x49, 0xdb, 0x13, 0x75, 0xa5, 0x58, 0x4f,
0x64, 0x85, 0xb4, 0x13, 0xb5, 0xf1, 0x2b, 0xaf },
{ 0x2F, 0x42, 0xB3, 0xB7, 0x03, 0x69, 0xFC, 0x92 },
{ 0x65, 0xc1, 0x78, 0xb2, 0x84, 0xd1, 0x97, 0xcc }
}
};
unsigned char tmp[2][8];
int x, y, err;
symmetric_key key;
for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
/* setup key */
if ((err = rc5_setup(tests[x].key, 16, 12, &key)) != CRYPT_OK) {
return err;
}
/* encrypt and decrypt */
rc5_ecb_encrypt(tests[x].pt, tmp[0], &key);
rc5_ecb_decrypt(tmp[0], tmp[1], &key);
/* compare */
if (compare_testvector(tmp[0], 8, tests[x].ct, 8, "RC5 Encrypt", x) != 0 ||
compare_testvector(tmp[1], 8, tests[x].pt, 8, "RC5 Decrypt", x) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
for (y = 0; y < 8; y++) tmp[0][y] = 0;
for (y = 0; y < 1000; y++) rc5_ecb_encrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 1000; y++) rc5_ecb_decrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
}
return CRYPT_OK;
#endif
}
/** Terminate the context
@param skey The scheduled key
*/
void rc5_done(symmetric_key *skey)
{
LTC_UNUSED_PARAM(skey);
}
/**
Gets suitable key size
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
@return CRYPT_OK if the input key size is acceptable.
*/
int rc5_keysize(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize < 8) {
return CRYPT_INVALID_KEYSIZE;
}
if (*keysize > 128) {
*keysize = 128;
}
return CRYPT_OK;
}
#undef stab
#endif

View File

@@ -0,0 +1,326 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file rc6.c
LTC_RC6 code by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_RC6
const struct ltc_cipher_descriptor rc6_desc =
{
"rc6",
3,
8, 128, 16, 20,
&rc6_setup,
&rc6_ecb_encrypt,
&rc6_ecb_decrypt,
&rc6_test,
&rc6_done,
&rc6_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
#define stab rc6_stab
static const ulong32 stab[44] = {
0xb7e15163UL, 0x5618cb1cUL, 0xf45044d5UL, 0x9287be8eUL, 0x30bf3847UL, 0xcef6b200UL, 0x6d2e2bb9UL, 0x0b65a572UL,
0xa99d1f2bUL, 0x47d498e4UL, 0xe60c129dUL, 0x84438c56UL, 0x227b060fUL, 0xc0b27fc8UL, 0x5ee9f981UL, 0xfd21733aUL,
0x9b58ecf3UL, 0x399066acUL, 0xd7c7e065UL, 0x75ff5a1eUL, 0x1436d3d7UL, 0xb26e4d90UL, 0x50a5c749UL, 0xeedd4102UL,
0x8d14babbUL, 0x2b4c3474UL, 0xc983ae2dUL, 0x67bb27e6UL, 0x05f2a19fUL, 0xa42a1b58UL, 0x42619511UL, 0xe0990ecaUL,
0x7ed08883UL, 0x1d08023cUL, 0xbb3f7bf5UL, 0x5976f5aeUL, 0xf7ae6f67UL, 0x95e5e920UL, 0x341d62d9UL, 0xd254dc92UL,
0x708c564bUL, 0x0ec3d004UL, 0xacfb49bdUL, 0x4b32c376UL };
/**
Initialize the LTC_RC6 block cipher
@param key The symmetric key you wish to pass
@param keylen The key length in bytes
@param num_rounds The number of rounds desired (0 for default)
@param skey The key in as scheduled by this function.
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_rc6_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
#else
int rc6_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
#endif
{
ulong32 L[64], S[50], A, B, i, j, v, s, l;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
/* test parameters */
if (num_rounds != 0 && num_rounds != 20) {
return CRYPT_INVALID_ROUNDS;
}
/* key must be between 64 and 1024 bits */
if (keylen < 8 || keylen > 128) {
return CRYPT_INVALID_KEYSIZE;
}
/* copy the key into the L array */
for (A = i = j = 0; i < (ulong32)keylen; ) {
A = (A << 8) | ((ulong32)(key[i++] & 255));
if (!(i & 3)) {
L[j++] = BSWAP(A);
A = 0;
}
}
/* handle odd sized keys */
if (keylen & 3) {
A <<= (8 * (4 - (keylen&3)));
L[j++] = BSWAP(A);
}
/* setup the S array */
XMEMCPY(S, stab, 44 * sizeof(stab[0]));
/* mix buffer */
s = 3 * MAX(44, j);
l = j;
for (A = B = i = j = v = 0; v < s; v++) {
A = S[i] = ROLc(S[i] + A + B, 3);
B = L[j] = ROL(L[j] + A + B, (A+B));
if (++i == 44) { i = 0; }
if (++j == l) { j = 0; }
}
/* copy to key */
for (i = 0; i < 44; i++) {
skey->rc6.K[i] = S[i];
}
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int rc6_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
int x;
x = s_rc6_setup(key, keylen, num_rounds, skey);
burn_stack(sizeof(ulong32) * 122);
return x;
}
#endif
/**
Encrypts a block of text with LTC_RC6
@param pt The input plaintext (16 bytes)
@param ct The output ciphertext (16 bytes)
@param skey The key as scheduled
*/
#ifdef LTC_CLEAN_STACK
static int s_rc6_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#else
int rc6_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#endif
{
ulong32 a,b,c,d,t,u;
const ulong32 *K;
int r;
LTC_ARGCHK(skey != NULL);
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LOAD32L(a,&pt[0]);LOAD32L(b,&pt[4]);LOAD32L(c,&pt[8]);LOAD32L(d,&pt[12]);
b += skey->rc6.K[0];
d += skey->rc6.K[1];
#define RND(a,b,c,d) \
t = (b * (b + b + 1)); t = ROLc(t, 5); \
u = (d * (d + d + 1)); u = ROLc(u, 5); \
a = ROL(a^t,u) + K[0]; \
c = ROL(c^u,t) + K[1]; K += 2;
K = skey->rc6.K + 2;
for (r = 0; r < 20; r += 4) {
RND(a,b,c,d);
RND(b,c,d,a);
RND(c,d,a,b);
RND(d,a,b,c);
}
#undef RND
a += skey->rc6.K[42];
c += skey->rc6.K[43];
STORE32L(a,&ct[0]);STORE32L(b,&ct[4]);STORE32L(c,&ct[8]);STORE32L(d,&ct[12]);
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int rc6_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
{
int err = s_rc6_ecb_encrypt(pt, ct, skey);
burn_stack(sizeof(ulong32) * 6 + sizeof(int));
return err;
}
#endif
/**
Decrypts a block of text with LTC_RC6
@param ct The input ciphertext (16 bytes)
@param pt The output plaintext (16 bytes)
@param skey The key as scheduled
*/
#ifdef LTC_CLEAN_STACK
static int s_rc6_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#else
int rc6_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#endif
{
ulong32 a,b,c,d,t,u;
const ulong32 *K;
int r;
LTC_ARGCHK(skey != NULL);
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LOAD32L(a,&ct[0]);LOAD32L(b,&ct[4]);LOAD32L(c,&ct[8]);LOAD32L(d,&ct[12]);
a -= skey->rc6.K[42];
c -= skey->rc6.K[43];
#define RND(a,b,c,d) \
t = (b * (b + b + 1)); t = ROLc(t, 5); \
u = (d * (d + d + 1)); u = ROLc(u, 5); \
c = ROR(c - K[1], t) ^ u; \
a = ROR(a - K[0], u) ^ t; K -= 2;
K = skey->rc6.K + 40;
for (r = 0; r < 20; r += 4) {
RND(d,a,b,c);
RND(c,d,a,b);
RND(b,c,d,a);
RND(a,b,c,d);
}
#undef RND
b -= skey->rc6.K[0];
d -= skey->rc6.K[1];
STORE32L(a,&pt[0]);STORE32L(b,&pt[4]);STORE32L(c,&pt[8]);STORE32L(d,&pt[12]);
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int rc6_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
{
int err = s_rc6_ecb_decrypt(ct, pt, skey);
burn_stack(sizeof(ulong32) * 6 + sizeof(int));
return err;
}
#endif
/**
Performs a self-test of the LTC_RC6 block cipher
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int rc6_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
int keylen;
unsigned char key[32], pt[16], ct[16];
} tests[] = {
{
16,
{ 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x02, 0x13, 0x24, 0x35, 0x46, 0x57, 0x68, 0x79,
0x8a, 0x9b, 0xac, 0xbd, 0xce, 0xdf, 0xe0, 0xf1 },
{ 0x52, 0x4e, 0x19, 0x2f, 0x47, 0x15, 0xc6, 0x23,
0x1f, 0x51, 0xf6, 0x36, 0x7e, 0xa4, 0x3f, 0x18 }
},
{
24,
{ 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78,
0x89, 0x9a, 0xab, 0xbc, 0xcd, 0xde, 0xef, 0xf0,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x02, 0x13, 0x24, 0x35, 0x46, 0x57, 0x68, 0x79,
0x8a, 0x9b, 0xac, 0xbd, 0xce, 0xdf, 0xe0, 0xf1 },
{ 0x68, 0x83, 0x29, 0xd0, 0x19, 0xe5, 0x05, 0x04,
0x1e, 0x52, 0xe9, 0x2a, 0xf9, 0x52, 0x91, 0xd4 }
},
{
32,
{ 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78,
0x89, 0x9a, 0xab, 0xbc, 0xcd, 0xde, 0xef, 0xf0,
0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe },
{ 0x02, 0x13, 0x24, 0x35, 0x46, 0x57, 0x68, 0x79,
0x8a, 0x9b, 0xac, 0xbd, 0xce, 0xdf, 0xe0, 0xf1 },
{ 0xc8, 0x24, 0x18, 0x16, 0xf0, 0xd7, 0xe4, 0x89,
0x20, 0xad, 0x16, 0xa1, 0x67, 0x4e, 0x5d, 0x48 }
}
};
unsigned char tmp[2][16];
int x, y, err;
symmetric_key key;
for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
/* setup key */
if ((err = rc6_setup(tests[x].key, tests[x].keylen, 0, &key)) != CRYPT_OK) {
return err;
}
/* encrypt and decrypt */
rc6_ecb_encrypt(tests[x].pt, tmp[0], &key);
rc6_ecb_decrypt(tmp[0], tmp[1], &key);
/* compare */
if (compare_testvector(tmp[0], 16, tests[x].ct, 16, "RC6 Encrypt", x) ||
compare_testvector(tmp[1], 16, tests[x].pt, 16, "RC6 Decrypt", x)) {
return CRYPT_FAIL_TESTVECTOR;
}
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
for (y = 0; y < 16; y++) tmp[0][y] = 0;
for (y = 0; y < 1000; y++) rc6_ecb_encrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 1000; y++) rc6_ecb_decrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
}
return CRYPT_OK;
#endif
}
/** Terminate the context
@param skey The scheduled key
*/
void rc6_done(symmetric_key *skey)
{
LTC_UNUSED_PARAM(skey);
}
/**
Gets suitable key size
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
@return CRYPT_OK if the input key size is acceptable.
*/
int rc6_keysize(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize < 8) {
return CRYPT_INVALID_KEYSIZE;
}
if (*keysize > 128) {
*keysize = 128;
}
return CRYPT_OK;
}
#undef RND
#undef stab
#endif /*LTC_RC6*/

View File

@@ -0,0 +1,489 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/*******************************************************************************
*
* FILE: safer.c
*
* LTC_DESCRIPTION: block-cipher algorithm LTC_SAFER (Secure And Fast Encryption
* Routine) in its four versions: LTC_SAFER K-64, LTC_SAFER K-128,
* LTC_SAFER SK-64 and LTC_SAFER SK-128.
*
* AUTHOR: Richard De Moliner (demoliner@isi.ee.ethz.ch)
* Signal and Information Processing Laboratory
* Swiss Federal Institute of Technology
* CH-8092 Zuerich, Switzerland
*
* DATE: September 9, 1995
*
* CHANGE HISTORY:
*
*******************************************************************************/
#include "tomcrypt_private.h"
#ifdef LTC_SAFER
#ifndef LTC_SAFER_TAB_C
#define LTC_SAFER_TAB_C
#include "safer_tab.c"
#endif
const struct ltc_cipher_descriptor safer_k64_desc = {
"safer-k64",
8, 8, 8, 8, LTC_SAFER_K64_DEFAULT_NOF_ROUNDS,
&safer_k64_setup,
&safer_ecb_encrypt,
&safer_ecb_decrypt,
&safer_k64_test,
&safer_done,
&safer_64_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
},
safer_sk64_desc = {
"safer-sk64",
9, 8, 8, 8, LTC_SAFER_SK64_DEFAULT_NOF_ROUNDS,
&safer_sk64_setup,
&safer_ecb_encrypt,
&safer_ecb_decrypt,
&safer_sk64_test,
&safer_done,
&safer_64_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
},
safer_k128_desc = {
"safer-k128",
10, 16, 16, 8, LTC_SAFER_K128_DEFAULT_NOF_ROUNDS,
&safer_k128_setup,
&safer_ecb_encrypt,
&safer_ecb_decrypt,
&safer_sk128_test,
&safer_done,
&safer_128_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
},
safer_sk128_desc = {
"safer-sk128",
11, 16, 16, 8, LTC_SAFER_SK128_DEFAULT_NOF_ROUNDS,
&safer_sk128_setup,
&safer_ecb_encrypt,
&safer_ecb_decrypt,
&safer_sk128_test,
&safer_done,
&safer_128_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
/******************* Constants ************************************************/
/* #define TAB_LEN 256 */
/******************* Assertions ***********************************************/
/******************* Macros ***************************************************/
#define ROL8(x, n) ((unsigned char)((unsigned int)(x) << (n)\
|(unsigned int)((x) & 0xFF) >> (8 - (n))))
#define EXP(x) safer_ebox[(x) & 0xFF]
#define LOG(x) safer_lbox[(x) & 0xFF]
#define PHT(x, y) { y += x; x += y; }
#define IPHT(x, y) { x -= y; y -= x; }
/******************* Types ****************************************************/
#ifdef LTC_CLEAN_STACK
static void s_safer_expand_userkey(const unsigned char *userkey_1,
const unsigned char *userkey_2,
unsigned int nof_rounds,
int strengthened,
safer_key_t key)
#else
static void safer_expand_userkey(const unsigned char *userkey_1,
const unsigned char *userkey_2,
unsigned int nof_rounds,
int strengthened,
safer_key_t key)
#endif
{ unsigned int i, j, k;
unsigned char ka[LTC_SAFER_BLOCK_LEN + 1];
unsigned char kb[LTC_SAFER_BLOCK_LEN + 1];
if (LTC_SAFER_MAX_NOF_ROUNDS < nof_rounds) {
nof_rounds = LTC_SAFER_MAX_NOF_ROUNDS;
}
*key++ = (unsigned char)nof_rounds;
ka[LTC_SAFER_BLOCK_LEN] = (unsigned char)0;
kb[LTC_SAFER_BLOCK_LEN] = (unsigned char)0;
k = 0;
for (j = 0; j < LTC_SAFER_BLOCK_LEN; j++) {
ka[j] = ROL8(userkey_1[j], 5);
ka[LTC_SAFER_BLOCK_LEN] ^= ka[j];
kb[j] = *key++ = userkey_2[j];
kb[LTC_SAFER_BLOCK_LEN] ^= kb[j];
}
for (i = 1; i <= nof_rounds; i++) {
for (j = 0; j < LTC_SAFER_BLOCK_LEN + 1; j++) {
ka[j] = ROL8(ka[j], 6);
kb[j] = ROL8(kb[j], 6);
}
if (strengthened) {
k = 2 * i - 1;
while (k >= (LTC_SAFER_BLOCK_LEN + 1)) { k -= LTC_SAFER_BLOCK_LEN + 1; }
}
for (j = 0; j < LTC_SAFER_BLOCK_LEN; j++) {
if (strengthened) {
*key++ = (ka[k]
+ safer_ebox[(int)safer_ebox[(int)((18 * i + j + 1)&0xFF)]]) & 0xFF;
if (++k == (LTC_SAFER_BLOCK_LEN + 1)) { k = 0; }
} else {
*key++ = (ka[j] + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 1)&0xFF)]]) & 0xFF;
}
}
if (strengthened) {
k = 2 * i;
while (k >= (LTC_SAFER_BLOCK_LEN + 1)) { k -= LTC_SAFER_BLOCK_LEN + 1; }
}
for (j = 0; j < LTC_SAFER_BLOCK_LEN; j++) {
if (strengthened) {
*key++ = (kb[k]
+ safer_ebox[(int)safer_ebox[(int)((18 * i + j + 10)&0xFF)]]) & 0xFF;
if (++k == (LTC_SAFER_BLOCK_LEN + 1)) { k = 0; }
} else {
*key++ = (kb[j] + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 10)&0xFF)]]) & 0xFF;
}
}
}
#ifdef LTC_CLEAN_STACK
zeromem(ka, sizeof(ka));
zeromem(kb, sizeof(kb));
#endif
}
#ifdef LTC_CLEAN_STACK
static void safer_expand_userkey(const unsigned char *userkey_1,
const unsigned char *userkey_2,
unsigned int nof_rounds,
int strengthened,
safer_key_t key)
{
s_safer_expand_userkey(userkey_1, userkey_2, nof_rounds, strengthened, key);
burn_stack(sizeof(unsigned char) * (2 * (LTC_SAFER_BLOCK_LEN + 1)) + sizeof(unsigned int)*2);
}
#endif
int safer_k64_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
if (num_rounds != 0 && (num_rounds < 6 || num_rounds > LTC_SAFER_MAX_NOF_ROUNDS)) {
return CRYPT_INVALID_ROUNDS;
}
if (keylen != 8) {
return CRYPT_INVALID_KEYSIZE;
}
safer_expand_userkey(key, key, (unsigned int)(num_rounds != 0 ?num_rounds:LTC_SAFER_K64_DEFAULT_NOF_ROUNDS), 0, skey->safer.key);
return CRYPT_OK;
}
int safer_sk64_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
if (num_rounds != 0 && (num_rounds < 6 || num_rounds > LTC_SAFER_MAX_NOF_ROUNDS)) {
return CRYPT_INVALID_ROUNDS;
}
if (keylen != 8) {
return CRYPT_INVALID_KEYSIZE;
}
safer_expand_userkey(key, key, (unsigned int)(num_rounds != 0 ?num_rounds:LTC_SAFER_SK64_DEFAULT_NOF_ROUNDS), 1, skey->safer.key);
return CRYPT_OK;
}
int safer_k128_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
if (num_rounds != 0 && (num_rounds < 6 || num_rounds > LTC_SAFER_MAX_NOF_ROUNDS)) {
return CRYPT_INVALID_ROUNDS;
}
if (keylen != 16) {
return CRYPT_INVALID_KEYSIZE;
}
safer_expand_userkey(key, key+8, (unsigned int)(num_rounds != 0 ?num_rounds:LTC_SAFER_K128_DEFAULT_NOF_ROUNDS), 0, skey->safer.key);
return CRYPT_OK;
}
int safer_sk128_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
if (num_rounds != 0 && (num_rounds < 6 || num_rounds > LTC_SAFER_MAX_NOF_ROUNDS)) {
return CRYPT_INVALID_ROUNDS;
}
if (keylen != 16) {
return CRYPT_INVALID_KEYSIZE;
}
safer_expand_userkey(key, key+8, (unsigned int)(num_rounds != 0?num_rounds:LTC_SAFER_SK128_DEFAULT_NOF_ROUNDS), 1, skey->safer.key);
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
static int s_safer_ecb_encrypt(const unsigned char *pt,
unsigned char *ct,
const symmetric_key *skey)
#else
int safer_ecb_encrypt(const unsigned char *pt,
unsigned char *ct,
const symmetric_key *skey)
#endif
{ unsigned char a, b, c, d, e, f, g, h, t;
unsigned int round;
const unsigned char *key;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
key = skey->safer.key;
a = pt[0]; b = pt[1]; c = pt[2]; d = pt[3];
e = pt[4]; f = pt[5]; g = pt[6]; h = pt[7];
if (LTC_SAFER_MAX_NOF_ROUNDS < (round = *key)) round = LTC_SAFER_MAX_NOF_ROUNDS;
while(round-- > 0)
{
a ^= *++key; b += *++key; c += *++key; d ^= *++key;
e ^= *++key; f += *++key; g += *++key; h ^= *++key;
a = EXP(a) + *++key; b = LOG(b) ^ *++key;
c = LOG(c) ^ *++key; d = EXP(d) + *++key;
e = EXP(e) + *++key; f = LOG(f) ^ *++key;
g = LOG(g) ^ *++key; h = EXP(h) + *++key;
PHT(a, b); PHT(c, d); PHT(e, f); PHT(g, h);
PHT(a, c); PHT(e, g); PHT(b, d); PHT(f, h);
PHT(a, e); PHT(b, f); PHT(c, g); PHT(d, h);
t = b; b = e; e = c; c = t; t = d; d = f; f = g; g = t;
}
a ^= *++key; b += *++key; c += *++key; d ^= *++key;
e ^= *++key; f += *++key; g += *++key; h ^= *++key;
ct[0] = a & 0xFF; ct[1] = b & 0xFF;
ct[2] = c & 0xFF; ct[3] = d & 0xFF;
ct[4] = e & 0xFF; ct[5] = f & 0xFF;
ct[6] = g & 0xFF; ct[7] = h & 0xFF;
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int safer_ecb_encrypt(const unsigned char *pt,
unsigned char *ct,
const symmetric_key *skey)
{
int err = s_safer_ecb_encrypt(pt, ct, skey);
burn_stack(sizeof(unsigned char) * 9 + sizeof(unsigned int) + sizeof(unsigned char *));
return err;
}
#endif
#ifdef LTC_CLEAN_STACK
static int s_safer_ecb_decrypt(const unsigned char *ct,
unsigned char *pt,
const symmetric_key *skey)
#else
int safer_ecb_decrypt(const unsigned char *ct,
unsigned char *pt,
const symmetric_key *skey)
#endif
{ unsigned char a, b, c, d, e, f, g, h, t;
unsigned int round;
const unsigned char *key;
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(skey != NULL);
key = skey->safer.key;
a = ct[0]; b = ct[1]; c = ct[2]; d = ct[3];
e = ct[4]; f = ct[5]; g = ct[6]; h = ct[7];
if (LTC_SAFER_MAX_NOF_ROUNDS < (round = *key)) round = LTC_SAFER_MAX_NOF_ROUNDS;
key += LTC_SAFER_BLOCK_LEN * (1 + 2 * round);
h ^= *key; g -= *--key; f -= *--key; e ^= *--key;
d ^= *--key; c -= *--key; b -= *--key; a ^= *--key;
while (round--)
{
t = e; e = b; b = c; c = t; t = f; f = d; d = g; g = t;
IPHT(a, e); IPHT(b, f); IPHT(c, g); IPHT(d, h);
IPHT(a, c); IPHT(e, g); IPHT(b, d); IPHT(f, h);
IPHT(a, b); IPHT(c, d); IPHT(e, f); IPHT(g, h);
h -= *--key; g ^= *--key; f ^= *--key; e -= *--key;
d -= *--key; c ^= *--key; b ^= *--key; a -= *--key;
h = LOG(h) ^ *--key; g = EXP(g) - *--key;
f = EXP(f) - *--key; e = LOG(e) ^ *--key;
d = LOG(d) ^ *--key; c = EXP(c) - *--key;
b = EXP(b) - *--key; a = LOG(a) ^ *--key;
}
pt[0] = a & 0xFF; pt[1] = b & 0xFF;
pt[2] = c & 0xFF; pt[3] = d & 0xFF;
pt[4] = e & 0xFF; pt[5] = f & 0xFF;
pt[6] = g & 0xFF; pt[7] = h & 0xFF;
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int safer_ecb_decrypt(const unsigned char *ct,
unsigned char *pt,
const symmetric_key *skey)
{
int err = s_safer_ecb_decrypt(ct, pt, skey);
burn_stack(sizeof(unsigned char) * 9 + sizeof(unsigned int) + sizeof(unsigned char *));
return err;
}
#endif
int safer_64_keysize(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize < 8) {
return CRYPT_INVALID_KEYSIZE;
}
*keysize = 8;
return CRYPT_OK;
}
int safer_128_keysize(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize < 16) {
return CRYPT_INVALID_KEYSIZE;
}
*keysize = 16;
return CRYPT_OK;
}
int safer_k64_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const unsigned char k64_pt[] = { 1, 2, 3, 4, 5, 6, 7, 8 },
k64_key[] = { 8, 7, 6, 5, 4, 3, 2, 1 },
k64_ct[] = { 200, 242, 156, 221, 135, 120, 62, 217 };
symmetric_key skey;
unsigned char buf[2][8];
int err;
/* test K64 */
if ((err = safer_k64_setup(k64_key, 8, 6, &skey)) != CRYPT_OK) {
return err;
}
safer_ecb_encrypt(k64_pt, buf[0], &skey);
safer_ecb_decrypt(buf[0], buf[1], &skey);
if (compare_testvector(buf[0], 8, k64_ct, 8, "Safer K64 Encrypt", 0) != 0 ||
compare_testvector(buf[1], 8, k64_pt, 8, "Safer K64 Decrypt", 0) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
return CRYPT_OK;
#endif
}
int safer_sk64_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const unsigned char sk64_pt[] = { 1, 2, 3, 4, 5, 6, 7, 8 },
sk64_key[] = { 1, 2, 3, 4, 5, 6, 7, 8 },
sk64_ct[] = { 95, 206, 155, 162, 5, 132, 56, 199 };
symmetric_key skey;
unsigned char buf[2][8];
int err, y;
/* test SK64 */
if ((err = safer_sk64_setup(sk64_key, 8, 6, &skey)) != CRYPT_OK) {
return err;
}
safer_ecb_encrypt(sk64_pt, buf[0], &skey);
safer_ecb_decrypt(buf[0], buf[1], &skey);
if (compare_testvector(buf[0], 8, sk64_ct, 8, "Safer SK64 Encrypt", 0) != 0 ||
compare_testvector(buf[1], 8, sk64_pt, 8, "Safer SK64 Decrypt", 0) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
for (y = 0; y < 8; y++) buf[0][y] = 0;
for (y = 0; y < 1000; y++) safer_ecb_encrypt(buf[0], buf[0], &skey);
for (y = 0; y < 1000; y++) safer_ecb_decrypt(buf[0], buf[0], &skey);
for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
return CRYPT_OK;
#endif
}
/** Terminate the context
@param skey The scheduled key
*/
void safer_done(symmetric_key *skey)
{
LTC_UNUSED_PARAM(skey);
}
int safer_sk128_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const unsigned char sk128_pt[] = { 1, 2, 3, 4, 5, 6, 7, 8 },
sk128_key[] = { 1, 2, 3, 4, 5, 6, 7, 8,
0, 0, 0, 0, 0, 0, 0, 0 },
sk128_ct[] = { 255, 120, 17, 228, 179, 167, 46, 113 };
symmetric_key skey;
unsigned char buf[2][8];
int err, y;
/* test SK128 */
if ((err = safer_sk128_setup(sk128_key, 16, 0, &skey)) != CRYPT_OK) {
return err;
}
safer_ecb_encrypt(sk128_pt, buf[0], &skey);
safer_ecb_decrypt(buf[0], buf[1], &skey);
if (compare_testvector(buf[0], 8, sk128_ct, 8, "Safer SK128 Encrypt", 0) != 0 ||
compare_testvector(buf[1], 8, sk128_pt, 8, "Safer SK128 Decrypt", 0) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
for (y = 0; y < 8; y++) buf[0][y] = 0;
for (y = 0; y < 1000; y++) safer_ecb_encrypt(buf[0], buf[0], &skey);
for (y = 0; y < 1000; y++) safer_ecb_decrypt(buf[0], buf[0], &skey);
for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
return CRYPT_OK;
#endif
}
#undef ROL8
#undef EXP
#undef LOG
#undef PHT
#undef IPHT
#endif

View File

@@ -0,0 +1,54 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file safer_tab.c
Tables for LTC_SAFER block ciphers
*/
#ifdef LTC_SAFER_TAB_C
/* This is the box defined by ebox[x] = 45^x mod 257.
* Its assumed that the value "256" corresponds to zero. */
static const unsigned char safer_ebox[256] = {
1, 45, 226, 147, 190, 69, 21, 174, 120, 3, 135, 164, 184, 56, 207, 63,
8, 103, 9, 148, 235, 38, 168, 107, 189, 24, 52, 27, 187, 191, 114, 247,
64, 53, 72, 156, 81, 47, 59, 85, 227, 192, 159, 216, 211, 243, 141, 177,
255, 167, 62, 220, 134, 119, 215, 166, 17, 251, 244, 186, 146, 145, 100, 131,
241, 51, 239, 218, 44, 181, 178, 43, 136, 209, 153, 203, 140, 132, 29, 20,
129, 151, 113, 202, 95, 163, 139, 87, 60, 130, 196, 82, 92, 28, 232, 160,
4, 180, 133, 74, 246, 19, 84, 182, 223, 12, 26, 142, 222, 224, 57, 252,
32, 155, 36, 78, 169, 152, 158, 171, 242, 96, 208, 108, 234, 250, 199, 217,
0, 212, 31, 110, 67, 188, 236, 83, 137, 254, 122, 93, 73, 201, 50, 194,
249, 154, 248, 109, 22, 219, 89, 150, 68, 233, 205, 230, 70, 66, 143, 10,
193, 204, 185, 101, 176, 210, 198, 172, 30, 65, 98, 41, 46, 14, 116, 80,
2, 90, 195, 37, 123, 138, 42, 91, 240, 6, 13, 71, 111, 112, 157, 126,
16, 206, 18, 39, 213, 76, 79, 214, 121, 48, 104, 54, 117, 125, 228, 237,
128, 106, 144, 55, 162, 94, 118, 170, 197, 127, 61, 175, 165, 229, 25, 97,
253, 77, 124, 183, 11, 238, 173, 75, 34, 245, 231, 115, 35, 33, 200, 5,
225, 102, 221, 179, 88, 105, 99, 86, 15, 161, 49, 149, 23, 7, 58, 40
};
/* This is the inverse of ebox or the base 45 logarithm */
static const unsigned char safer_lbox[256] = {
128, 0, 176, 9, 96, 239, 185, 253, 16, 18, 159, 228, 105, 186, 173, 248,
192, 56, 194, 101, 79, 6, 148, 252, 25, 222, 106, 27, 93, 78, 168, 130,
112, 237, 232, 236, 114, 179, 21, 195, 255, 171, 182, 71, 68, 1, 172, 37,
201, 250, 142, 65, 26, 33, 203, 211, 13, 110, 254, 38, 88, 218, 50, 15,
32, 169, 157, 132, 152, 5, 156, 187, 34, 140, 99, 231, 197, 225, 115, 198,
175, 36, 91, 135, 102, 39, 247, 87, 244, 150, 177, 183, 92, 139, 213, 84,
121, 223, 170, 246, 62, 163, 241, 17, 202, 245, 209, 23, 123, 147, 131, 188,
189, 82, 30, 235, 174, 204, 214, 53, 8, 200, 138, 180, 226, 205, 191, 217,
208, 80, 89, 63, 77, 98, 52, 10, 72, 136, 181, 86, 76, 46, 107, 158,
210, 61, 60, 3, 19, 251, 151, 81, 117, 74, 145, 113, 35, 190, 118, 42,
95, 249, 212, 85, 11, 220, 55, 49, 22, 116, 215, 119, 167, 230, 7, 219,
164, 47, 70, 243, 97, 69, 103, 227, 12, 162, 59, 28, 133, 24, 4, 29,
41, 160, 143, 178, 90, 216, 166, 126, 238, 141, 83, 75, 161, 154, 193, 14,
122, 73, 165, 44, 129, 196, 199, 54, 43, 127, 67, 149, 51, 242, 108, 104,
109, 240, 2, 40, 206, 221, 155, 234, 94, 153, 124, 20, 134, 207, 229, 66,
184, 64, 120, 45, 58, 233, 100, 31, 146, 144, 125, 57, 111, 224, 137, 48
};
#endif /* LTC_SAFER_TAB_C */

View File

@@ -0,0 +1,576 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file saferp.c
LTC_SAFER+ Implementation by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_SAFERP
#ifndef LTC_SAFER_TAB_C
#define LTC_SAFER_TAB_C
#include "safer_tab.c"
#endif
const struct ltc_cipher_descriptor saferp_desc =
{
"safer+",
4,
16, 32, 16, 8,
&saferp_setup,
&saferp_ecb_encrypt,
&saferp_ecb_decrypt,
&saferp_test,
&saferp_done,
&saferp_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
/* ROUND(b,i)
*
* This is one forward key application. Note the basic form is
* key addition, substitution, key addition. The safer_ebox and safer_lbox
* are the exponentiation box and logarithm boxes respectively.
* The value of 'i' is the current round number which allows this
* function to be unrolled massively. Most of LTC_SAFER+'s speed
* comes from not having to compute indirect accesses into the
* array of 16 bytes b[0..15] which is the block of data
*/
#define ROUND(b, i) do { \
b[0] = (safer_ebox[(b[0] ^ skey->saferp.K[i][0]) & 255] + skey->saferp.K[i+1][0]) & 255; \
b[1] = safer_lbox[(b[1] + skey->saferp.K[i][1]) & 255] ^ skey->saferp.K[i+1][1]; \
b[2] = safer_lbox[(b[2] + skey->saferp.K[i][2]) & 255] ^ skey->saferp.K[i+1][2]; \
b[3] = (safer_ebox[(b[3] ^ skey->saferp.K[i][3]) & 255] + skey->saferp.K[i+1][3]) & 255; \
b[4] = (safer_ebox[(b[4] ^ skey->saferp.K[i][4]) & 255] + skey->saferp.K[i+1][4]) & 255; \
b[5] = safer_lbox[(b[5] + skey->saferp.K[i][5]) & 255] ^ skey->saferp.K[i+1][5]; \
b[6] = safer_lbox[(b[6] + skey->saferp.K[i][6]) & 255] ^ skey->saferp.K[i+1][6]; \
b[7] = (safer_ebox[(b[7] ^ skey->saferp.K[i][7]) & 255] + skey->saferp.K[i+1][7]) & 255; \
b[8] = (safer_ebox[(b[8] ^ skey->saferp.K[i][8]) & 255] + skey->saferp.K[i+1][8]) & 255; \
b[9] = safer_lbox[(b[9] + skey->saferp.K[i][9]) & 255] ^ skey->saferp.K[i+1][9]; \
b[10] = safer_lbox[(b[10] + skey->saferp.K[i][10]) & 255] ^ skey->saferp.K[i+1][10]; \
b[11] = (safer_ebox[(b[11] ^ skey->saferp.K[i][11]) & 255] + skey->saferp.K[i+1][11]) & 255; \
b[12] = (safer_ebox[(b[12] ^ skey->saferp.K[i][12]) & 255] + skey->saferp.K[i+1][12]) & 255; \
b[13] = safer_lbox[(b[13] + skey->saferp.K[i][13]) & 255] ^ skey->saferp.K[i+1][13]; \
b[14] = safer_lbox[(b[14] + skey->saferp.K[i][14]) & 255] ^ skey->saferp.K[i+1][14]; \
b[15] = (safer_ebox[(b[15] ^ skey->saferp.K[i][15]) & 255] + skey->saferp.K[i+1][15]) & 255; \
} while (0)
/* This is one inverse key application */
#define iROUND(b, i) do { \
b[0] = safer_lbox[(b[0] - skey->saferp.K[i+1][0]) & 255] ^ skey->saferp.K[i][0]; \
b[1] = (safer_ebox[(b[1] ^ skey->saferp.K[i+1][1]) & 255] - skey->saferp.K[i][1]) & 255; \
b[2] = (safer_ebox[(b[2] ^ skey->saferp.K[i+1][2]) & 255] - skey->saferp.K[i][2]) & 255; \
b[3] = safer_lbox[(b[3] - skey->saferp.K[i+1][3]) & 255] ^ skey->saferp.K[i][3]; \
b[4] = safer_lbox[(b[4] - skey->saferp.K[i+1][4]) & 255] ^ skey->saferp.K[i][4]; \
b[5] = (safer_ebox[(b[5] ^ skey->saferp.K[i+1][5]) & 255] - skey->saferp.K[i][5]) & 255; \
b[6] = (safer_ebox[(b[6] ^ skey->saferp.K[i+1][6]) & 255] - skey->saferp.K[i][6]) & 255; \
b[7] = safer_lbox[(b[7] - skey->saferp.K[i+1][7]) & 255] ^ skey->saferp.K[i][7]; \
b[8] = safer_lbox[(b[8] - skey->saferp.K[i+1][8]) & 255] ^ skey->saferp.K[i][8]; \
b[9] = (safer_ebox[(b[9] ^ skey->saferp.K[i+1][9]) & 255] - skey->saferp.K[i][9]) & 255; \
b[10] = (safer_ebox[(b[10] ^ skey->saferp.K[i+1][10]) & 255] - skey->saferp.K[i][10]) & 255; \
b[11] = safer_lbox[(b[11] - skey->saferp.K[i+1][11]) & 255] ^ skey->saferp.K[i][11]; \
b[12] = safer_lbox[(b[12] - skey->saferp.K[i+1][12]) & 255] ^ skey->saferp.K[i][12]; \
b[13] = (safer_ebox[(b[13] ^ skey->saferp.K[i+1][13]) & 255] - skey->saferp.K[i][13]) & 255; \
b[14] = (safer_ebox[(b[14] ^ skey->saferp.K[i+1][14]) & 255] - skey->saferp.K[i][14]) & 255; \
b[15] = safer_lbox[(b[15] - skey->saferp.K[i+1][15]) & 255] ^ skey->saferp.K[i][15]; \
} while (0)
/* This is a forward single layer PHT transform. */
#define PHT(b) do { \
b[0] = (b[0] + (b[1] = (b[0] + b[1]) & 255)) & 255; \
b[2] = (b[2] + (b[3] = (b[3] + b[2]) & 255)) & 255; \
b[4] = (b[4] + (b[5] = (b[5] + b[4]) & 255)) & 255; \
b[6] = (b[6] + (b[7] = (b[7] + b[6]) & 255)) & 255; \
b[8] = (b[8] + (b[9] = (b[9] + b[8]) & 255)) & 255; \
b[10] = (b[10] + (b[11] = (b[11] + b[10]) & 255)) & 255; \
b[12] = (b[12] + (b[13] = (b[13] + b[12]) & 255)) & 255; \
b[14] = (b[14] + (b[15] = (b[15] + b[14]) & 255)) & 255; \
} while (0)
/* This is an inverse single layer PHT transform */
#define iPHT(b) do { \
b[15] = (b[15] - (b[14] = (b[14] - b[15]) & 255)) & 255; \
b[13] = (b[13] - (b[12] = (b[12] - b[13]) & 255)) & 255; \
b[11] = (b[11] - (b[10] = (b[10] - b[11]) & 255)) & 255; \
b[9] = (b[9] - (b[8] = (b[8] - b[9]) & 255)) & 255; \
b[7] = (b[7] - (b[6] = (b[6] - b[7]) & 255)) & 255; \
b[5] = (b[5] - (b[4] = (b[4] - b[5]) & 255)) & 255; \
b[3] = (b[3] - (b[2] = (b[2] - b[3]) & 255)) & 255; \
b[1] = (b[1] - (b[0] = (b[0] - b[1]) & 255)) & 255; \
} while (0)
/* This is the "Armenian" Shuffle. It takes the input from b and stores it in b2 */
#define SHUF(b, b2) do { \
b2[0] = b[8]; b2[1] = b[11]; b2[2] = b[12]; b2[3] = b[15]; \
b2[4] = b[2]; b2[5] = b[1]; b2[6] = b[6]; b2[7] = b[5]; \
b2[8] = b[10]; b2[9] = b[9]; b2[10] = b[14]; b2[11] = b[13]; \
b2[12] = b[0]; b2[13] = b[7]; b2[14] = b[4]; b2[15] = b[3]; \
} while (0)
/* This is the inverse shuffle. It takes from b and gives to b2 */
#define iSHUF(b, b2) do { \
b2[0] = b[12]; b2[1] = b[5]; b2[2] = b[4]; b2[3] = b[15]; \
b2[4] = b[14]; b2[5] = b[7]; b2[6] = b[6]; b2[7] = b[13]; \
b2[8] = b[0]; b2[9] = b[9]; b2[10] = b[8]; b2[11] = b[1]; \
b2[12] = b[2]; b2[13] = b[11]; b2[14] = b[10]; b2[15] = b[3]; \
} while (0)
/* The complete forward Linear Transform layer.
* Note that alternating usage of b and b2.
* Each round of LT starts in 'b' and ends in 'b2'.
*/
#define LT(b, b2) do { \
PHT(b); SHUF(b, b2); \
PHT(b2); SHUF(b2, b); \
PHT(b); SHUF(b, b2); \
PHT(b2); \
} while (0)
/* This is the inverse linear transform layer. */
#define iLT(b, b2) do { \
iPHT(b); \
iSHUF(b, b2); iPHT(b2); \
iSHUF(b2, b); iPHT(b); \
iSHUF(b, b2); iPHT(b2); \
} while (0)
#ifdef LTC_SMALL_CODE
static void s_round(unsigned char *b, int i, const symmetric_key *skey)
{
ROUND(b, i);
}
static void s_iround(unsigned char *b, int i, const symmetric_key *skey)
{
iROUND(b, i);
}
static void s_lt(unsigned char *b, unsigned char *b2)
{
LT(b, b2);
}
static void s_ilt(unsigned char *b, unsigned char *b2)
{
iLT(b, b2);
}
#undef ROUND
#define ROUND(b, i) s_round(b, i, skey)
#undef iROUND
#define iROUND(b, i) s_iround(b, i, skey)
#undef LT
#define LT(b, b2) s_lt(b, b2)
#undef iLT
#define iLT(b, b2) s_ilt(b, b2)
#endif
/* These are the 33, 128-bit bias words for the key schedule */
static const unsigned char safer_bias[33][16] = {
{ 70, 151, 177, 186, 163, 183, 16, 10, 197, 55, 179, 201, 90, 40, 172, 100},
{ 236, 171, 170, 198, 103, 149, 88, 13, 248, 154, 246, 110, 102, 220, 5, 61},
{ 138, 195, 216, 137, 106, 233, 54, 73, 67, 191, 235, 212, 150, 155, 104, 160},
{ 93, 87, 146, 31, 213, 113, 92, 187, 34, 193, 190, 123, 188, 153, 99, 148},
{ 42, 97, 184, 52, 50, 25, 253, 251, 23, 64, 230, 81, 29, 65, 68, 143},
{ 221, 4, 128, 222, 231, 49, 214, 127, 1, 162, 247, 57, 218, 111, 35, 202},
{ 58, 208, 28, 209, 48, 62, 18, 161, 205, 15, 224, 168, 175, 130, 89, 44},
{ 125, 173, 178, 239, 194, 135, 206, 117, 6, 19, 2, 144, 79, 46, 114, 51},
{ 192, 141, 207, 169, 129, 226, 196, 39, 47, 108, 122, 159, 82, 225, 21, 56},
{ 252, 32, 66, 199, 8, 228, 9, 85, 94, 140, 20, 118, 96, 255, 223, 215},
{ 250, 11, 33, 0, 26, 249, 166, 185, 232, 158, 98, 76, 217, 145, 80, 210},
{ 24, 180, 7, 132, 234, 91, 164, 200, 14, 203, 72, 105, 75, 78, 156, 53},
{ 69, 77, 84, 229, 37, 60, 12, 74, 139, 63, 204, 167, 219, 107, 174, 244},
{ 45, 243, 124, 109, 157, 181, 38, 116, 242, 147, 83, 176, 240, 17, 237, 131},
{ 182, 3, 22, 115, 59, 30, 142, 112, 189, 134, 27, 71, 126, 36, 86, 241},
{ 136, 70, 151, 177, 186, 163, 183, 16, 10, 197, 55, 179, 201, 90, 40, 172},
{ 220, 134, 119, 215, 166, 17, 251, 244, 186, 146, 145, 100, 131, 241, 51, 239},
{ 44, 181, 178, 43, 136, 209, 153, 203, 140, 132, 29, 20, 129, 151, 113, 202},
{ 163, 139, 87, 60, 130, 196, 82, 92, 28, 232, 160, 4, 180, 133, 74, 246},
{ 84, 182, 223, 12, 26, 142, 222, 224, 57, 252, 32, 155, 36, 78, 169, 152},
{ 171, 242, 96, 208, 108, 234, 250, 199, 217, 0, 212, 31, 110, 67, 188, 236},
{ 137, 254, 122, 93, 73, 201, 50, 194, 249, 154, 248, 109, 22, 219, 89, 150},
{ 233, 205, 230, 70, 66, 143, 10, 193, 204, 185, 101, 176, 210, 198, 172, 30},
{ 98, 41, 46, 14, 116, 80, 2, 90, 195, 37, 123, 138, 42, 91, 240, 6},
{ 71, 111, 112, 157, 126, 16, 206, 18, 39, 213, 76, 79, 214, 121, 48, 104},
{ 117, 125, 228, 237, 128, 106, 144, 55, 162, 94, 118, 170, 197, 127, 61, 175},
{ 229, 25, 97, 253, 77, 124, 183, 11, 238, 173, 75, 34, 245, 231, 115, 35},
{ 200, 5, 225, 102, 221, 179, 88, 105, 99, 86, 15, 161, 49, 149, 23, 7},
{ 40, 1, 45, 226, 147, 190, 69, 21, 174, 120, 3, 135, 164, 184, 56, 207},
{ 8, 103, 9, 148, 235, 38, 168, 107, 189, 24, 52, 27, 187, 191, 114, 247},
{ 53, 72, 156, 81, 47, 59, 85, 227, 192, 159, 216, 211, 243, 141, 177, 255},
{ 62, 220, 134, 119, 215, 166, 17, 251, 244, 186, 146, 145, 100, 131, 241, 51}};
/**
Initialize the LTC_SAFER+ block cipher
@param key The symmetric key you wish to pass
@param keylen The key length in bytes
@param num_rounds The number of rounds desired (0 for default)
@param skey The key in as scheduled by this function.
@return CRYPT_OK if successful
*/
int saferp_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
unsigned x, y, z;
unsigned char t[33];
static const int rounds[3] = { 8, 12, 16 };
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
/* check arguments */
if (keylen != 16 && keylen != 24 && keylen != 32) {
return CRYPT_INVALID_KEYSIZE;
}
/* Is the number of rounds valid? Either use zero for default or
* 8,12,16 rounds for 16,24,32 byte keys
*/
if (num_rounds != 0 && num_rounds != rounds[(keylen/8)-2]) {
return CRYPT_INVALID_ROUNDS;
}
/* 128 bit key version */
if (keylen == 16) {
/* copy key into t */
for (x = y = 0; x < 16; x++) {
t[x] = key[x];
y ^= key[x];
}
t[16] = y;
/* make round keys */
for (x = 0; x < 16; x++) {
skey->saferp.K[0][x] = t[x];
}
/* make the 16 other keys as a transformation of the first key */
for (x = 1; x < 17; x++) {
/* rotate 3 bits each */
for (y = 0; y < 17; y++) {
t[y] = ((t[y]<<3)|(t[y]>>5)) & 255;
}
/* select and add */
z = x;
for (y = 0; y < 16; y++) {
skey->saferp.K[x][y] = (t[z] + safer_bias[x-1][y]) & 255;
if (++z == 17) { z = 0; }
}
}
skey->saferp.rounds = 8;
} else if (keylen == 24) {
/* copy key into t */
for (x = y = 0; x < 24; x++) {
t[x] = key[x];
y ^= key[x];
}
t[24] = y;
/* make round keys */
for (x = 0; x < 16; x++) {
skey->saferp.K[0][x] = t[x];
}
for (x = 1; x < 25; x++) {
/* rotate 3 bits each */
for (y = 0; y < 25; y++) {
t[y] = ((t[y]<<3)|(t[y]>>5)) & 255;
}
/* select and add */
z = x;
for (y = 0; y < 16; y++) {
skey->saferp.K[x][y] = (t[z] + safer_bias[x-1][y]) & 255;
if (++z == 25) { z = 0; }
}
}
skey->saferp.rounds = 12;
} else {
/* copy key into t */
for (x = y = 0; x < 32; x++) {
t[x] = key[x];
y ^= key[x];
}
t[32] = y;
/* make round keys */
for (x = 0; x < 16; x++) {
skey->saferp.K[0][x] = t[x];
}
for (x = 1; x < 33; x++) {
/* rotate 3 bits each */
for (y = 0; y < 33; y++) {
t[y] = ((t[y]<<3)|(t[y]>>5)) & 255;
}
/* select and add */
z = x;
for (y = 0; y < 16; y++) {
skey->saferp.K[x][y] = (t[z] + safer_bias[x-1][y]) & 255;
if (++z == 33) { z = 0; }
}
}
skey->saferp.rounds = 16;
}
#ifdef LTC_CLEAN_STACK
zeromem(t, sizeof(t));
#endif
return CRYPT_OK;
}
/**
Encrypts a block of text with LTC_SAFER+
@param pt The input plaintext (16 bytes)
@param ct The output ciphertext (16 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
int saferp_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
{
unsigned char b[16];
int x;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
if (skey->saferp.rounds < 8 || skey->saferp.rounds > 16) {
return CRYPT_INVALID_ROUNDS;
}
/* do eight rounds */
for (x = 0; x < 16; x++) {
b[x] = pt[x];
}
ROUND(b, 0); LT(b, ct);
ROUND(ct, 2); LT(ct, b);
ROUND(b, 4); LT(b, ct);
ROUND(ct, 6); LT(ct, b);
ROUND(b, 8); LT(b, ct);
ROUND(ct, 10); LT(ct, b);
ROUND(b, 12); LT(b, ct);
ROUND(ct, 14); LT(ct, b);
/* 192-bit key? */
if (skey->saferp.rounds > 8) {
ROUND(b, 16); LT(b, ct);
ROUND(ct, 18); LT(ct, b);
ROUND(b, 20); LT(b, ct);
ROUND(ct, 22); LT(ct, b);
}
/* 256-bit key? */
if (skey->saferp.rounds > 12) {
ROUND(b, 24); LT(b, ct);
ROUND(ct, 26); LT(ct, b);
ROUND(b, 28); LT(b, ct);
ROUND(ct, 30); LT(ct, b);
}
ct[0] = b[0] ^ skey->saferp.K[skey->saferp.rounds*2][0];
ct[1] = (b[1] + skey->saferp.K[skey->saferp.rounds*2][1]) & 255;
ct[2] = (b[2] + skey->saferp.K[skey->saferp.rounds*2][2]) & 255;
ct[3] = b[3] ^ skey->saferp.K[skey->saferp.rounds*2][3];
ct[4] = b[4] ^ skey->saferp.K[skey->saferp.rounds*2][4];
ct[5] = (b[5] + skey->saferp.K[skey->saferp.rounds*2][5]) & 255;
ct[6] = (b[6] + skey->saferp.K[skey->saferp.rounds*2][6]) & 255;
ct[7] = b[7] ^ skey->saferp.K[skey->saferp.rounds*2][7];
ct[8] = b[8] ^ skey->saferp.K[skey->saferp.rounds*2][8];
ct[9] = (b[9] + skey->saferp.K[skey->saferp.rounds*2][9]) & 255;
ct[10] = (b[10] + skey->saferp.K[skey->saferp.rounds*2][10]) & 255;
ct[11] = b[11] ^ skey->saferp.K[skey->saferp.rounds*2][11];
ct[12] = b[12] ^ skey->saferp.K[skey->saferp.rounds*2][12];
ct[13] = (b[13] + skey->saferp.K[skey->saferp.rounds*2][13]) & 255;
ct[14] = (b[14] + skey->saferp.K[skey->saferp.rounds*2][14]) & 255;
ct[15] = b[15] ^ skey->saferp.K[skey->saferp.rounds*2][15];
#ifdef LTC_CLEAN_STACK
zeromem(b, sizeof(b));
#endif
return CRYPT_OK;
}
/**
Decrypts a block of text with LTC_SAFER+
@param ct The input ciphertext (16 bytes)
@param pt The output plaintext (16 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
int saferp_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
{
unsigned char b[16];
int x;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
if (skey->saferp.rounds < 8 || skey->saferp.rounds > 16) {
return CRYPT_INVALID_ROUNDS;
}
/* do eight rounds */
b[0] = ct[0] ^ skey->saferp.K[skey->saferp.rounds*2][0];
b[1] = (ct[1] - skey->saferp.K[skey->saferp.rounds*2][1]) & 255;
b[2] = (ct[2] - skey->saferp.K[skey->saferp.rounds*2][2]) & 255;
b[3] = ct[3] ^ skey->saferp.K[skey->saferp.rounds*2][3];
b[4] = ct[4] ^ skey->saferp.K[skey->saferp.rounds*2][4];
b[5] = (ct[5] - skey->saferp.K[skey->saferp.rounds*2][5]) & 255;
b[6] = (ct[6] - skey->saferp.K[skey->saferp.rounds*2][6]) & 255;
b[7] = ct[7] ^ skey->saferp.K[skey->saferp.rounds*2][7];
b[8] = ct[8] ^ skey->saferp.K[skey->saferp.rounds*2][8];
b[9] = (ct[9] - skey->saferp.K[skey->saferp.rounds*2][9]) & 255;
b[10] = (ct[10] - skey->saferp.K[skey->saferp.rounds*2][10]) & 255;
b[11] = ct[11] ^ skey->saferp.K[skey->saferp.rounds*2][11];
b[12] = ct[12] ^ skey->saferp.K[skey->saferp.rounds*2][12];
b[13] = (ct[13] - skey->saferp.K[skey->saferp.rounds*2][13]) & 255;
b[14] = (ct[14] - skey->saferp.K[skey->saferp.rounds*2][14]) & 255;
b[15] = ct[15] ^ skey->saferp.K[skey->saferp.rounds*2][15];
/* 256-bit key? */
if (skey->saferp.rounds > 12) {
iLT(b, pt); iROUND(pt, 30);
iLT(pt, b); iROUND(b, 28);
iLT(b, pt); iROUND(pt, 26);
iLT(pt, b); iROUND(b, 24);
}
/* 192-bit key? */
if (skey->saferp.rounds > 8) {
iLT(b, pt); iROUND(pt, 22);
iLT(pt, b); iROUND(b, 20);
iLT(b, pt); iROUND(pt, 18);
iLT(pt, b); iROUND(b, 16);
}
iLT(b, pt); iROUND(pt, 14);
iLT(pt, b); iROUND(b, 12);
iLT(b, pt); iROUND(pt,10);
iLT(pt, b); iROUND(b, 8);
iLT(b, pt); iROUND(pt,6);
iLT(pt, b); iROUND(b, 4);
iLT(b, pt); iROUND(pt,2);
iLT(pt, b); iROUND(b, 0);
for (x = 0; x < 16; x++) {
pt[x] = b[x];
}
#ifdef LTC_CLEAN_STACK
zeromem(b, sizeof(b));
#endif
return CRYPT_OK;
}
/**
Performs a self-test of the LTC_SAFER+ block cipher
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int saferp_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
int keylen;
unsigned char key[32], pt[16], ct[16];
} tests[] = {
{
16,
{ 41, 35, 190, 132, 225, 108, 214, 174,
82, 144, 73, 241, 241, 187, 233, 235 },
{ 179, 166, 219, 60, 135, 12, 62, 153,
36, 94, 13, 28, 6, 183, 71, 222 },
{ 224, 31, 182, 10, 12, 255, 84, 70,
127, 13, 89, 249, 9, 57, 165, 220 }
}, {
24,
{ 72, 211, 143, 117, 230, 217, 29, 42,
229, 192, 247, 43, 120, 129, 135, 68,
14, 95, 80, 0, 212, 97, 141, 190 },
{ 123, 5, 21, 7, 59, 51, 130, 31,
24, 112, 146, 218, 100, 84, 206, 177 },
{ 92, 136, 4, 63, 57, 95, 100, 0,
150, 130, 130, 16, 193, 111, 219, 133 }
}, {
32,
{ 243, 168, 141, 254, 190, 242, 235, 113,
255, 160, 208, 59, 117, 6, 140, 126,
135, 120, 115, 77, 208, 190, 130, 190,
219, 194, 70, 65, 43, 140, 250, 48 },
{ 127, 112, 240, 167, 84, 134, 50, 149,
170, 91, 104, 19, 11, 230, 252, 245 },
{ 88, 11, 25, 36, 172, 229, 202, 213,
170, 65, 105, 153, 220, 104, 153, 138 }
}
};
unsigned char tmp[2][16];
symmetric_key skey;
int err, i, y;
for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
if ((err = saferp_setup(tests[i].key, tests[i].keylen, 0, &skey)) != CRYPT_OK) {
return err;
}
saferp_ecb_encrypt(tests[i].pt, tmp[0], &skey);
saferp_ecb_decrypt(tmp[0], tmp[1], &skey);
/* compare */
if (compare_testvector(tmp[0], 16, tests[i].ct, 16, "Safer+ Encrypt", i) ||
compare_testvector(tmp[1], 16, tests[i].pt, 16, "Safer+ Decrypt", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
for (y = 0; y < 16; y++) tmp[0][y] = 0;
for (y = 0; y < 1000; y++) saferp_ecb_encrypt(tmp[0], tmp[0], &skey);
for (y = 0; y < 1000; y++) saferp_ecb_decrypt(tmp[0], tmp[0], &skey);
for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
}
return CRYPT_OK;
#endif
}
/** Terminate the context
@param skey The scheduled key
*/
void saferp_done(symmetric_key *skey)
{
LTC_UNUSED_PARAM(skey);
}
/**
Gets suitable key size
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
@return CRYPT_OK if the input key size is acceptable.
*/
int saferp_keysize(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize < 16) {
return CRYPT_INVALID_KEYSIZE;
}
if (*keysize < 24) {
*keysize = 16;
} else if (*keysize < 32) {
*keysize = 24;
} else {
*keysize = 32;
}
return CRYPT_OK;
}
#undef ROUND
#undef iROUND
#undef PHT
#undef iPHT
#undef SHUF
#undef iSHUF
#undef LT
#undef iLT
#endif

View File

@@ -0,0 +1,759 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/* Based on serpent.cpp - originally written and placed in the public domain by Wei Dai
https://github.com/weidai11/cryptopp/blob/master/serpent.cpp
On 2017-10-16 wikipedia says:
"The Serpent cipher algorithm is in the public domain and has not been patented."
https://en.wikipedia.org/wiki/Serpent_(cipher)
*/
#include "tomcrypt_private.h"
#ifdef LTC_SERPENT
const struct ltc_cipher_descriptor serpent_desc = {
"serpent",
25, /* cipher_ID */
16, 32, 16, 32, /* min_key_len, max_key_len, block_len, default_rounds */
&serpent_setup,
&serpent_ecb_encrypt,
&serpent_ecb_decrypt,
&serpent_test,
&serpent_done,
&serpent_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
/* linear transformation */
#define s_lt(i,a,b,c,d,e) { \
a = ROLc(a, 13); \
c = ROLc(c, 3); \
d = ROLc(d ^ c ^ (a << 3), 7); \
b = ROLc(b ^ a ^ c, 1); \
a = ROLc(a ^ b ^ d, 5); \
c = ROLc(c ^ d ^ (b << 7), 22); \
}
/* inverse linear transformation */
#define s_ilt(i,a,b,c,d,e) { \
c = RORc(c, 22); \
a = RORc(a, 5); \
c ^= d ^ (b << 7); \
a ^= b ^ d; \
b = RORc(b, 1); \
d = RORc(d, 7) ^ c ^ (a << 3); \
b ^= a ^ c; \
c = RORc(c, 3); \
a = RORc(a, 13); \
}
/* order of output from S-box functions */
#define s_beforeS0(f) f(0,a,b,c,d,e)
#define s_afterS0(f) f(1,b,e,c,a,d)
#define s_afterS1(f) f(2,c,b,a,e,d)
#define s_afterS2(f) f(3,a,e,b,d,c)
#define s_afterS3(f) f(4,e,b,d,c,a)
#define s_afterS4(f) f(5,b,a,e,c,d)
#define s_afterS5(f) f(6,a,c,b,e,d)
#define s_afterS6(f) f(7,a,c,d,b,e)
#define s_afterS7(f) f(8,d,e,b,a,c)
/* order of output from inverse S-box functions */
#define s_beforeI7(f) f(8,a,b,c,d,e)
#define s_afterI7(f) f(7,d,a,b,e,c)
#define s_afterI6(f) f(6,a,b,c,e,d)
#define s_afterI5(f) f(5,b,d,e,c,a)
#define s_afterI4(f) f(4,b,c,e,a,d)
#define s_afterI3(f) f(3,a,b,e,c,d)
#define s_afterI2(f) f(2,b,d,e,c,a)
#define s_afterI1(f) f(1,a,b,c,e,d)
#define s_afterI0(f) f(0,a,d,b,e,c)
/* The instruction sequences for the S-box functions
* come from Dag Arne Osvik's paper "Speeding up Serpent".
*/
#define s_s0(i, r0, r1, r2, r3, r4) { \
r3 ^= r0; \
r4 = r1; \
r1 &= r3; \
r4 ^= r2; \
r1 ^= r0; \
r0 |= r3; \
r0 ^= r4; \
r4 ^= r3; \
r3 ^= r2; \
r2 |= r1; \
r2 ^= r4; \
r4 = ~r4; \
r4 |= r1; \
r1 ^= r3; \
r1 ^= r4; \
r3 |= r0; \
r1 ^= r3; \
r4 ^= r3; \
}
#define s_i0(i, r0, r1, r2, r3, r4) { \
r2 = ~r2; \
r4 = r1; \
r1 |= r0; \
r4 = ~r4; \
r1 ^= r2; \
r2 |= r4; \
r1 ^= r3; \
r0 ^= r4; \
r2 ^= r0; \
r0 &= r3; \
r4 ^= r0; \
r0 |= r1; \
r0 ^= r2; \
r3 ^= r4; \
r2 ^= r1; \
r3 ^= r0; \
r3 ^= r1; \
r2 &= r3; \
r4 ^= r2; \
}
#define s_s1(i, r0, r1, r2, r3, r4) { \
r0 = ~r0; \
r2 = ~r2; \
r4 = r0; \
r0 &= r1; \
r2 ^= r0; \
r0 |= r3; \
r3 ^= r2; \
r1 ^= r0; \
r0 ^= r4; \
r4 |= r1; \
r1 ^= r3; \
r2 |= r0; \
r2 &= r4; \
r0 ^= r1; \
r1 &= r2; \
r1 ^= r0; \
r0 &= r2; \
r0 ^= r4; \
}
#define s_i1(i, r0, r1, r2, r3, r4) { \
r4 = r1; \
r1 ^= r3; \
r3 &= r1; \
r4 ^= r2; \
r3 ^= r0; \
r0 |= r1; \
r2 ^= r3; \
r0 ^= r4; \
r0 |= r2; \
r1 ^= r3; \
r0 ^= r1; \
r1 |= r3; \
r1 ^= r0; \
r4 = ~r4; \
r4 ^= r1; \
r1 |= r0; \
r1 ^= r0; \
r1 |= r4; \
r3 ^= r1; \
}
#define s_s2(i, r0, r1, r2, r3, r4) { \
r4 = r0; \
r0 &= r2; \
r0 ^= r3; \
r2 ^= r1; \
r2 ^= r0; \
r3 |= r4; \
r3 ^= r1; \
r4 ^= r2; \
r1 = r3; \
r3 |= r4; \
r3 ^= r0; \
r0 &= r1; \
r4 ^= r0; \
r1 ^= r3; \
r1 ^= r4; \
r4 = ~r4; \
}
#define s_i2(i, r0, r1, r2, r3, r4) { \
r2 ^= r3; \
r3 ^= r0; \
r4 = r3; \
r3 &= r2; \
r3 ^= r1; \
r1 |= r2; \
r1 ^= r4; \
r4 &= r3; \
r2 ^= r3; \
r4 &= r0; \
r4 ^= r2; \
r2 &= r1; \
r2 |= r0; \
r3 = ~r3; \
r2 ^= r3; \
r0 ^= r3; \
r0 &= r1; \
r3 ^= r4; \
r3 ^= r0; \
}
#define s_s3(i, r0, r1, r2, r3, r4) { \
r4 = r0; \
r0 |= r3; \
r3 ^= r1; \
r1 &= r4; \
r4 ^= r2; \
r2 ^= r3; \
r3 &= r0; \
r4 |= r1; \
r3 ^= r4; \
r0 ^= r1; \
r4 &= r0; \
r1 ^= r3; \
r4 ^= r2; \
r1 |= r0; \
r1 ^= r2; \
r0 ^= r3; \
r2 = r1; \
r1 |= r3; \
r1 ^= r0; \
}
#define s_i3(i, r0, r1, r2, r3, r4) { \
r4 = r2; \
r2 ^= r1; \
r1 &= r2; \
r1 ^= r0; \
r0 &= r4; \
r4 ^= r3; \
r3 |= r1; \
r3 ^= r2; \
r0 ^= r4; \
r2 ^= r0; \
r0 |= r3; \
r0 ^= r1; \
r4 ^= r2; \
r2 &= r3; \
r1 |= r3; \
r1 ^= r2; \
r4 ^= r0; \
r2 ^= r4; \
}
#define s_s4(i, r0, r1, r2, r3, r4) { \
r1 ^= r3; \
r3 = ~r3; \
r2 ^= r3; \
r3 ^= r0; \
r4 = r1; \
r1 &= r3; \
r1 ^= r2; \
r4 ^= r3; \
r0 ^= r4; \
r2 &= r4; \
r2 ^= r0; \
r0 &= r1; \
r3 ^= r0; \
r4 |= r1; \
r4 ^= r0; \
r0 |= r3; \
r0 ^= r2; \
r2 &= r3; \
r0 = ~r0; \
r4 ^= r2; \
}
#define s_i4(i, r0, r1, r2, r3, r4) { \
r4 = r2; \
r2 &= r3; \
r2 ^= r1; \
r1 |= r3; \
r1 &= r0; \
r4 ^= r2; \
r4 ^= r1; \
r1 &= r2; \
r0 = ~r0; \
r3 ^= r4; \
r1 ^= r3; \
r3 &= r0; \
r3 ^= r2; \
r0 ^= r1; \
r2 &= r0; \
r3 ^= r0; \
r2 ^= r4; \
r2 |= r3; \
r3 ^= r0; \
r2 ^= r1; \
}
#define s_s5(i, r0, r1, r2, r3, r4) { \
r0 ^= r1; \
r1 ^= r3; \
r3 = ~r3; \
r4 = r1; \
r1 &= r0; \
r2 ^= r3; \
r1 ^= r2; \
r2 |= r4; \
r4 ^= r3; \
r3 &= r1; \
r3 ^= r0; \
r4 ^= r1; \
r4 ^= r2; \
r2 ^= r0; \
r0 &= r3; \
r2 = ~r2; \
r0 ^= r4; \
r4 |= r3; \
r2 ^= r4; \
}
#define s_i5(i, r0, r1, r2, r3, r4) { \
r1 = ~r1; \
r4 = r3; \
r2 ^= r1; \
r3 |= r0; \
r3 ^= r2; \
r2 |= r1; \
r2 &= r0; \
r4 ^= r3; \
r2 ^= r4; \
r4 |= r0; \
r4 ^= r1; \
r1 &= r2; \
r1 ^= r3; \
r4 ^= r2; \
r3 &= r4; \
r4 ^= r1; \
r3 ^= r0; \
r3 ^= r4; \
r4 = ~r4; \
}
#define s_s6(i, r0, r1, r2, r3, r4) { \
r2 = ~r2; \
r4 = r3; \
r3 &= r0; \
r0 ^= r4; \
r3 ^= r2; \
r2 |= r4; \
r1 ^= r3; \
r2 ^= r0; \
r0 |= r1; \
r2 ^= r1; \
r4 ^= r0; \
r0 |= r3; \
r0 ^= r2; \
r4 ^= r3; \
r4 ^= r0; \
r3 = ~r3; \
r2 &= r4; \
r2 ^= r3; \
}
#define s_i6(i, r0, r1, r2, r3, r4) { \
r0 ^= r2; \
r4 = r2; \
r2 &= r0; \
r4 ^= r3; \
r2 = ~r2; \
r3 ^= r1; \
r2 ^= r3; \
r4 |= r0; \
r0 ^= r2; \
r3 ^= r4; \
r4 ^= r1; \
r1 &= r3; \
r1 ^= r0; \
r0 ^= r3; \
r0 |= r2; \
r3 ^= r1; \
r4 ^= r0; \
}
#define s_s7(i, r0, r1, r2, r3, r4) { \
r4 = r2; \
r2 &= r1; \
r2 ^= r3; \
r3 &= r1; \
r4 ^= r2; \
r2 ^= r1; \
r1 ^= r0; \
r0 |= r4; \
r0 ^= r2; \
r3 ^= r1; \
r2 ^= r3; \
r3 &= r0; \
r3 ^= r4; \
r4 ^= r2; \
r2 &= r0; \
r4 = ~r4; \
r2 ^= r4; \
r4 &= r0; \
r1 ^= r3; \
r4 ^= r1; \
}
#define s_i7(i, r0, r1, r2, r3, r4) { \
r4 = r2; \
r2 ^= r0; \
r0 &= r3; \
r2 = ~r2; \
r4 |= r3; \
r3 ^= r1; \
r1 |= r0; \
r0 ^= r2; \
r2 &= r4; \
r1 ^= r2; \
r2 ^= r0; \
r0 |= r2; \
r3 &= r4; \
r0 ^= r3; \
r4 ^= r1; \
r3 ^= r4; \
r4 |= r0; \
r3 ^= r2; \
r4 ^= r2; \
}
/* key xor */
#define s_kx(r, a, b, c, d, e) { \
a ^= k[4 * r + 0]; \
b ^= k[4 * r + 1]; \
c ^= k[4 * r + 2]; \
d ^= k[4 * r + 3]; \
}
#define s_lk(r, a, b, c, d, e) { \
a = k[(8-r)*4 + 0]; \
b = k[(8-r)*4 + 1]; \
c = k[(8-r)*4 + 2]; \
d = k[(8-r)*4 + 3]; \
}
#define s_sk(r, a, b, c, d, e) { \
k[(8-r)*4 + 4] = a; \
k[(8-r)*4 + 5] = b; \
k[(8-r)*4 + 6] = c; \
k[(8-r)*4 + 7] = d; \
}
#define s_setup_key s_serpent_setup_key
static int s_setup_key(const unsigned char *key, int keylen, int rounds, ulong32 *k)
{
int i;
ulong32 t;
ulong32 k0[8] = { 0 }; /* zero-initialize */
ulong32 a, b, c, d, e;
for (i = 0; i < 8 && i < keylen/4; ++i) {
LOAD32L(k0[i], key + i * 4);
}
if (keylen < 32) {
k0[keylen/4] |= (ulong32)1 << ((keylen%4)*8);
}
t = k0[7];
for (i = 0; i < 8; ++i) {
k[i] = k0[i] = t = ROLc(k0[i] ^ k0[(i+3)%8] ^ k0[(i+5)%8] ^ t ^ 0x9e3779b9 ^ i, 11);
}
for (i = 8; i < 4*(rounds+1); ++i) {
k[i] = t = ROLc(k[i-8] ^ k[i-5] ^ k[i-3] ^ t ^ 0x9e3779b9 ^ i, 11);
}
k -= 20;
for (i = 0; i < rounds/8; i++) {
s_afterS2(s_lk); s_afterS2(s_s3); s_afterS3(s_sk);
s_afterS1(s_lk); s_afterS1(s_s2); s_afterS2(s_sk);
s_afterS0(s_lk); s_afterS0(s_s1); s_afterS1(s_sk);
s_beforeS0(s_lk); s_beforeS0(s_s0); s_afterS0(s_sk);
k += 8*4;
s_afterS6(s_lk); s_afterS6(s_s7); s_afterS7(s_sk);
s_afterS5(s_lk); s_afterS5(s_s6); s_afterS6(s_sk);
s_afterS4(s_lk); s_afterS4(s_s5); s_afterS5(s_sk);
s_afterS3(s_lk); s_afterS3(s_s4); s_afterS4(s_sk);
}
s_afterS2(s_lk); s_afterS2(s_s3); s_afterS3(s_sk);
return CRYPT_OK;
}
static int s_enc_block(const unsigned char *in, unsigned char *out, const ulong32 *k)
{
ulong32 a, b, c, d, e;
unsigned int i = 1;
LOAD32L(a, in + 0);
LOAD32L(b, in + 4);
LOAD32L(c, in + 8);
LOAD32L(d, in + 12);
do {
s_beforeS0(s_kx); s_beforeS0(s_s0); s_afterS0(s_lt);
s_afterS0(s_kx); s_afterS0(s_s1); s_afterS1(s_lt);
s_afterS1(s_kx); s_afterS1(s_s2); s_afterS2(s_lt);
s_afterS2(s_kx); s_afterS2(s_s3); s_afterS3(s_lt);
s_afterS3(s_kx); s_afterS3(s_s4); s_afterS4(s_lt);
s_afterS4(s_kx); s_afterS4(s_s5); s_afterS5(s_lt);
s_afterS5(s_kx); s_afterS5(s_s6); s_afterS6(s_lt);
s_afterS6(s_kx); s_afterS6(s_s7);
if (i == 4) break;
++i;
c = b;
b = e;
e = d;
d = a;
a = e;
k += 32;
s_beforeS0(s_lt);
} while (1);
s_afterS7(s_kx);
STORE32L(d, out + 0);
STORE32L(e, out + 4);
STORE32L(b, out + 8);
STORE32L(a, out + 12);
return CRYPT_OK;
}
static int s_dec_block(const unsigned char *in, unsigned char *out, const ulong32 *k)
{
ulong32 a, b, c, d, e;
unsigned int i;
LOAD32L(a, in + 0);
LOAD32L(b, in + 4);
LOAD32L(c, in + 8);
LOAD32L(d, in + 12);
e = 0; LTC_UNUSED_PARAM(e); /* avoid scan-build warning */
i = 4;
k += 96;
s_beforeI7(s_kx);
goto start;
do {
c = b;
b = d;
d = e;
k -= 32;
s_beforeI7(s_ilt);
start:
s_beforeI7(s_i7); s_afterI7(s_kx);
s_afterI7(s_ilt); s_afterI7(s_i6); s_afterI6(s_kx);
s_afterI6(s_ilt); s_afterI6(s_i5); s_afterI5(s_kx);
s_afterI5(s_ilt); s_afterI5(s_i4); s_afterI4(s_kx);
s_afterI4(s_ilt); s_afterI4(s_i3); s_afterI3(s_kx);
s_afterI3(s_ilt); s_afterI3(s_i2); s_afterI2(s_kx);
s_afterI2(s_ilt); s_afterI2(s_i1); s_afterI1(s_kx);
s_afterI1(s_ilt); s_afterI1(s_i0); s_afterI0(s_kx);
} while (--i != 0);
STORE32L(a, out + 0);
STORE32L(d, out + 4);
STORE32L(b, out + 8);
STORE32L(e, out + 12);
return CRYPT_OK;
}
int serpent_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
int err;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
if (num_rounds != 0 && num_rounds != 32) return CRYPT_INVALID_ROUNDS;
if (keylen != 16 && keylen != 24 && keylen != 32) return CRYPT_INVALID_KEYSIZE;
err = s_setup_key(key, keylen, 32, skey->serpent.k);
#ifdef LTC_CLEAN_STACK
burn_stack(sizeof(ulong32) * 14 + sizeof(int));
#endif
return err;
}
int serpent_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
{
int err = s_enc_block(pt, ct, skey->serpent.k);
#ifdef LTC_CLEAN_STACK
burn_stack(sizeof(ulong32) * 5 + sizeof(int));
#endif
return err;
}
int serpent_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
{
int err = s_dec_block(ct, pt, skey->serpent.k);
#ifdef LTC_CLEAN_STACK
burn_stack(sizeof(ulong32) * 5 + sizeof(int));
#endif
return err;
}
void serpent_done(symmetric_key *skey)
{
LTC_UNUSED_PARAM(skey);
}
int serpent_keysize(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize >= 32) { *keysize = 32; }
else if (*keysize >= 24) { *keysize = 24; }
else if (*keysize >= 16) { *keysize = 16; }
else return CRYPT_INVALID_KEYSIZE;
return CRYPT_OK;
}
int serpent_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
unsigned char key[32];
int keylen;
unsigned char pt[16], ct[16];
} tests[] = {
{
/* key */ {0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},
/* keylen */ 32,
/* pt */ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},
/* ct */ {0xA2,0x23,0xAA,0x12,0x88,0x46,0x3C,0x0E,0x2B,0xE3,0x8E,0xBD,0x82,0x56,0x16,0xC0}
},
{
/* key */ {0x40,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},
/* keylen */ 32,
/* pt */ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},
/* ct */ {0xEA,0xE1,0xD4,0x05,0x57,0x01,0x74,0xDF,0x7D,0xF2,0xF9,0x96,0x6D,0x50,0x91,0x59}
},
{
/* key */ {0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},
/* keylen */ 32,
/* pt */ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},
/* ct */ {0x65,0xF3,0x76,0x84,0x47,0x1E,0x92,0x1D,0xC8,0xA3,0x0F,0x45,0xB4,0x3C,0x44,0x99}
},
{
/* key */ {0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},
/* keylen */ 24,
/* pt */ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},
/* ct */ {0x9E,0x27,0x4E,0xAD,0x9B,0x73,0x7B,0xB2,0x1E,0xFC,0xFC,0xA5,0x48,0x60,0x26,0x89}
},
{
/* key */ {0x40,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},
/* keylen */ 24,
/* pt */ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},
/* ct */ {0x92,0xFC,0x8E,0x51,0x03,0x99,0xE4,0x6A,0x04,0x1B,0xF3,0x65,0xE7,0xB3,0xAE,0x82}
},
{
/* key */ {0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},
/* keylen */ 24,
/* pt */ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},
/* ct */ {0x5E,0x0D,0xA3,0x86,0xC4,0x6A,0xD4,0x93,0xDE,0xA2,0x03,0xFD,0xC6,0xF5,0x7D,0x70}
},
{
/* key */ {0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},
/* keylen */ 16,
/* pt */ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},
/* ct */ {0x26,0x4E,0x54,0x81,0xEF,0xF4,0x2A,0x46,0x06,0xAB,0xDA,0x06,0xC0,0xBF,0xDA,0x3D}
},
{
/* key */ {0x40,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},
/* keylen */ 16,
/* pt */ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},
/* ct */ {0x4A,0x23,0x1B,0x3B,0xC7,0x27,0x99,0x34,0x07,0xAC,0x6E,0xC8,0x35,0x0E,0x85,0x24}
},
{
/* key */ {0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},
/* keylen */ 16,
/* pt */ {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},
/* ct */ {0xE0,0x32,0x69,0xF9,0xE9,0xFD,0x85,0x3C,0x7D,0x81,0x56,0xDF,0x14,0xB9,0x8D,0x56}
}
};
unsigned char buf[2][16];
symmetric_key key;
int err, x;
for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) {
if ((err = serpent_setup(tests[x].key, tests[x].keylen, 0, &key)) != CRYPT_OK) {
return err;
}
if ((err = serpent_ecb_encrypt(tests[x].pt, buf[0], &key)) != CRYPT_OK) {
return err;
}
if (compare_testvector(buf[0], 16, tests[x].ct, 16, "SERPENT Encrypt", x)) {
return CRYPT_FAIL_TESTVECTOR;
}
if ((err = serpent_ecb_decrypt(tests[x].ct, buf[1], &key)) != CRYPT_OK) {
return err;
}
if (compare_testvector(buf[1], 16, tests[x].pt, 16, "SERPENT Decrypt", x)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
#undef s_lt
#undef s_ilt
#undef s_beforeS0
#undef s_afterS0
#undef s_afterS1
#undef s_afterS2
#undef s_afterS3
#undef s_afterS4
#undef s_afterS5
#undef s_afterS6
#undef s_afterS7
#undef s_beforeI7
#undef s_afterI7
#undef s_afterI6
#undef s_afterI5
#undef s_afterI4
#undef s_afterI3
#undef s_afterI2
#undef s_afterI1
#undef s_afterI0
#undef s_s0
#undef s_i0
#undef s_s1
#undef s_i1
#undef s_s2
#undef s_i2
#undef s_s3
#undef s_i3
#undef s_s4
#undef s_i4
#undef s_s5
#undef s_i5
#undef s_s6
#undef s_i6
#undef s_s7
#undef s_i7
#undef s_kx
#undef s_lk
#undef s_sk
#undef s_setup_key
#endif

View File

@@ -0,0 +1,339 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file skipjack.c
Skipjack Implementation by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_SKIPJACK
const struct ltc_cipher_descriptor skipjack_desc =
{
"skipjack",
17,
10, 10, 8, 32,
&skipjack_setup,
&skipjack_ecb_encrypt,
&skipjack_ecb_decrypt,
&skipjack_test,
&skipjack_done,
&skipjack_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
static const unsigned char sbox[256] = {
0xa3,0xd7,0x09,0x83,0xf8,0x48,0xf6,0xf4,0xb3,0x21,0x15,0x78,0x99,0xb1,0xaf,0xf9,
0xe7,0x2d,0x4d,0x8a,0xce,0x4c,0xca,0x2e,0x52,0x95,0xd9,0x1e,0x4e,0x38,0x44,0x28,
0x0a,0xdf,0x02,0xa0,0x17,0xf1,0x60,0x68,0x12,0xb7,0x7a,0xc3,0xe9,0xfa,0x3d,0x53,
0x96,0x84,0x6b,0xba,0xf2,0x63,0x9a,0x19,0x7c,0xae,0xe5,0xf5,0xf7,0x16,0x6a,0xa2,
0x39,0xb6,0x7b,0x0f,0xc1,0x93,0x81,0x1b,0xee,0xb4,0x1a,0xea,0xd0,0x91,0x2f,0xb8,
0x55,0xb9,0xda,0x85,0x3f,0x41,0xbf,0xe0,0x5a,0x58,0x80,0x5f,0x66,0x0b,0xd8,0x90,
0x35,0xd5,0xc0,0xa7,0x33,0x06,0x65,0x69,0x45,0x00,0x94,0x56,0x6d,0x98,0x9b,0x76,
0x97,0xfc,0xb2,0xc2,0xb0,0xfe,0xdb,0x20,0xe1,0xeb,0xd6,0xe4,0xdd,0x47,0x4a,0x1d,
0x42,0xed,0x9e,0x6e,0x49,0x3c,0xcd,0x43,0x27,0xd2,0x07,0xd4,0xde,0xc7,0x67,0x18,
0x89,0xcb,0x30,0x1f,0x8d,0xc6,0x8f,0xaa,0xc8,0x74,0xdc,0xc9,0x5d,0x5c,0x31,0xa4,
0x70,0x88,0x61,0x2c,0x9f,0x0d,0x2b,0x87,0x50,0x82,0x54,0x64,0x26,0x7d,0x03,0x40,
0x34,0x4b,0x1c,0x73,0xd1,0xc4,0xfd,0x3b,0xcc,0xfb,0x7f,0xab,0xe6,0x3e,0x5b,0xa5,
0xad,0x04,0x23,0x9c,0x14,0x51,0x22,0xf0,0x29,0x79,0x71,0x7e,0xff,0x8c,0x0e,0xe2,
0x0c,0xef,0xbc,0x72,0x75,0x6f,0x37,0xa1,0xec,0xd3,0x8e,0x62,0x8b,0x86,0x10,0xe8,
0x08,0x77,0x11,0xbe,0x92,0x4f,0x24,0xc5,0x32,0x36,0x9d,0xcf,0xf3,0xa6,0xbb,0xac,
0x5e,0x6c,0xa9,0x13,0x57,0x25,0xb5,0xe3,0xbd,0xa8,0x3a,0x01,0x05,0x59,0x2a,0x46
};
/* simple x + 1 (mod 10) in one step. */
static const int keystep[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
/* simple x - 1 (mod 10) in one step */
static const int ikeystep[] = { 9, 0, 1, 2, 3, 4, 5, 6, 7, 8 };
/**
Initialize the Skipjack block cipher
@param key The symmetric key you wish to pass
@param keylen The key length in bytes
@param num_rounds The number of rounds desired (0 for default)
@param skey The key in as scheduled by this function.
@return CRYPT_OK if successful
*/
int skipjack_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
int x;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
if (keylen != 10) {
return CRYPT_INVALID_KEYSIZE;
}
if (num_rounds != 32 && num_rounds != 0) {
return CRYPT_INVALID_ROUNDS;
}
/* make sure the key is in range for platforms where CHAR_BIT != 8 */
for (x = 0; x < 10; x++) {
skey->skipjack.key[x] = key[x] & 255;
}
return CRYPT_OK;
}
#define RULE_A \
tmp = g_func(w1, &kp, skey->skipjack.key); \
w1 = tmp ^ w4 ^ x; \
w4 = w3; w3 = w2; \
w2 = tmp;
#define RULE_B \
tmp = g_func(w1, &kp, skey->skipjack.key); \
tmp1 = w4; w4 = w3; \
w3 = w1 ^ w2 ^ x; \
w1 = tmp1; w2 = tmp;
#define RULE_A1 \
tmp = w1 ^ w2 ^ x; \
w1 = ig_func(w2, &kp, skey->skipjack.key); \
w2 = w3; w3 = w4; w4 = tmp;
#define RULE_B1 \
tmp = ig_func(w2, &kp, skey->skipjack.key); \
w2 = tmp ^ w3 ^ x; \
w3 = w4; w4 = w1; w1 = tmp;
static unsigned g_func(unsigned w, int *kp, const unsigned char *key)
{
unsigned char g1,g2;
g1 = (w >> 8) & 255; g2 = w & 255;
g1 ^= sbox[g2^key[*kp]]; *kp = keystep[*kp];
g2 ^= sbox[g1^key[*kp]]; *kp = keystep[*kp];
g1 ^= sbox[g2^key[*kp]]; *kp = keystep[*kp];
g2 ^= sbox[g1^key[*kp]]; *kp = keystep[*kp];
return ((unsigned)g1<<8)|(unsigned)g2;
}
static unsigned ig_func(unsigned w, int *kp, const unsigned char *key)
{
unsigned char g1,g2;
g1 = (w >> 8) & 255; g2 = w & 255;
*kp = ikeystep[*kp]; g2 ^= sbox[g1^key[*kp]];
*kp = ikeystep[*kp]; g1 ^= sbox[g2^key[*kp]];
*kp = ikeystep[*kp]; g2 ^= sbox[g1^key[*kp]];
*kp = ikeystep[*kp]; g1 ^= sbox[g2^key[*kp]];
return ((unsigned)g1<<8)|(unsigned)g2;
}
/**
Encrypts a block of text with Skipjack
@param pt The input plaintext (8 bytes)
@param ct The output ciphertext (8 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#else
int skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#endif
{
unsigned w1,w2,w3,w4,tmp,tmp1;
int x, kp;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
/* load block */
w1 = ((unsigned)pt[0]<<8)|pt[1];
w2 = ((unsigned)pt[2]<<8)|pt[3];
w3 = ((unsigned)pt[4]<<8)|pt[5];
w4 = ((unsigned)pt[6]<<8)|pt[7];
/* 8 rounds of RULE A */
for (x = 1, kp = 0; x < 9; x++) {
RULE_A;
}
/* 8 rounds of RULE B */
for (; x < 17; x++) {
RULE_B;
}
/* 8 rounds of RULE A */
for (; x < 25; x++) {
RULE_A;
}
/* 8 rounds of RULE B */
for (; x < 33; x++) {
RULE_B;
}
/* store block */
ct[0] = (w1>>8)&255; ct[1] = w1&255;
ct[2] = (w2>>8)&255; ct[3] = w2&255;
ct[4] = (w3>>8)&255; ct[5] = w3&255;
ct[6] = (w4>>8)&255; ct[7] = w4&255;
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
{
int err = s_skipjack_ecb_encrypt(pt, ct, skey);
burn_stack(sizeof(unsigned) * 8 + sizeof(int) * 2);
return err;
}
#endif
/**
Decrypts a block of text with Skipjack
@param ct The input ciphertext (8 bytes)
@param pt The output plaintext (8 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#else
int skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#endif
{
unsigned w1,w2,w3,w4,tmp;
int x, kp;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
/* load block */
w1 = ((unsigned)ct[0]<<8)|ct[1];
w2 = ((unsigned)ct[2]<<8)|ct[3];
w3 = ((unsigned)ct[4]<<8)|ct[5];
w4 = ((unsigned)ct[6]<<8)|ct[7];
/* 8 rounds of RULE B^-1
Note the value "kp = 8" comes from "kp = (32 * 4) mod 10" where 32*4 is 128 which mod 10 is 8
*/
for (x = 32, kp = 8; x > 24; x--) {
RULE_B1;
}
/* 8 rounds of RULE A^-1 */
for (; x > 16; x--) {
RULE_A1;
}
/* 8 rounds of RULE B^-1 */
for (; x > 8; x--) {
RULE_B1;
}
/* 8 rounds of RULE A^-1 */
for (; x > 0; x--) {
RULE_A1;
}
/* store block */
pt[0] = (w1>>8)&255; pt[1] = w1&255;
pt[2] = (w2>>8)&255; pt[3] = w2&255;
pt[4] = (w3>>8)&255; pt[5] = w3&255;
pt[6] = (w4>>8)&255; pt[7] = w4&255;
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
{
int err = s_skipjack_ecb_decrypt(ct, pt, skey);
burn_stack(sizeof(unsigned) * 7 + sizeof(int) * 2);
return err;
}
#endif
/**
Performs a self-test of the Skipjack block cipher
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int skipjack_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
unsigned char key[10], pt[8], ct[8];
} tests[] = {
{
{ 0x00, 0x99, 0x88, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11 },
{ 0x33, 0x22, 0x11, 0x00, 0xdd, 0xcc, 0xbb, 0xaa },
{ 0x25, 0x87, 0xca, 0xe2, 0x7a, 0x12, 0xd3, 0x00 }
}
};
unsigned char buf[2][8];
int x, y, err;
symmetric_key key;
for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
/* setup key */
if ((err = skipjack_setup(tests[x].key, 10, 0, &key)) != CRYPT_OK) {
return err;
}
/* encrypt and decrypt */
skipjack_ecb_encrypt(tests[x].pt, buf[0], &key);
skipjack_ecb_decrypt(buf[0], buf[1], &key);
/* compare */
if (compare_testvector(buf[0], 8, tests[x].ct, 8, "Skipjack Encrypt", x) != 0 ||
compare_testvector(buf[1], 8, tests[x].pt, 8, "Skipjack Decrypt", x) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
for (y = 0; y < 8; y++) buf[0][y] = 0;
for (y = 0; y < 1000; y++) skipjack_ecb_encrypt(buf[0], buf[0], &key);
for (y = 0; y < 1000; y++) skipjack_ecb_decrypt(buf[0], buf[0], &key);
for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
}
return CRYPT_OK;
#endif
}
/** Terminate the context
@param skey The scheduled key
*/
void skipjack_done(symmetric_key *skey)
{
LTC_UNUSED_PARAM(skey);
}
/**
Gets suitable key size
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
@return CRYPT_OK if the input key size is acceptable.
*/
int skipjack_keysize(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize < 10) {
return CRYPT_INVALID_KEYSIZE;
}
if (*keysize > 10) {
*keysize = 10;
}
return CRYPT_OK;
}
#undef RULE_A
#undef RULE_B
#undef RULE_A1
#undef RULE_B1
#endif

View File

@@ -0,0 +1,377 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@brief SM4 block cipher algorithm
@date Oct 2018
@author Chao Wei
SM4 (formerly SMS4) is a block cipher used in the Chinese National
Standard for Wireless LAN WAPI (Wired Authentication and Privacy
Infrastructure).
--from wikipedia:
https://en.wikipedia.org/wiki/SM4_(cipher)
This implimentation follows Chinese National Standard
GM/T 0002-2012
*/
#include "tomcrypt_private.h"
#ifdef LTC_SM4
/*porting to libtomcrypt*/
/*char always 8bits long*/
typedef unsigned char sm4_u8_t;
typedef ulong32 sm4_u32_t;
/*
* S-box defined in section 6.2
* (1) Nonlinear transformation
*/
static const sm4_u8_t sm4_sbox_table[16][16] = {
{0xd6, 0x90, 0xe9, 0xfe, 0xcc, 0xe1, 0x3d, 0xb7,
0x16, 0xb6, 0x14, 0xc2, 0x28, 0xfb, 0x2c, 0x05},
{0x2b, 0x67, 0x9a, 0x76, 0x2a, 0xbe, 0x04, 0xc3,
0xaa, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99},
{0x9c, 0x42, 0x50, 0xf4, 0x91, 0xef, 0x98, 0x7a,
0x33, 0x54, 0x0b, 0x43, 0xed, 0xcf, 0xac, 0x62},
{0xe4, 0xb3, 0x1c, 0xa9, 0xc9, 0x08, 0xe8, 0x95,
0x80, 0xdf, 0x94, 0xfa, 0x75, 0x8f, 0x3f, 0xa6},
{0x47, 0x07, 0xa7, 0xfc, 0xf3, 0x73, 0x17, 0xba,
0x83, 0x59, 0x3c, 0x19, 0xe6, 0x85, 0x4f, 0xa8},
{0x68, 0x6b, 0x81, 0xb2, 0x71, 0x64, 0xda, 0x8b,
0xf8, 0xeb, 0x0f, 0x4b, 0x70, 0x56, 0x9d, 0x35},
{0x1e, 0x24, 0x0e, 0x5e, 0x63, 0x58, 0xd1, 0xa2,
0x25, 0x22, 0x7c, 0x3b, 0x01, 0x21, 0x78, 0x87},
{0xd4, 0x00, 0x46, 0x57, 0x9f, 0xd3, 0x27, 0x52,
0x4c, 0x36, 0x02, 0xe7, 0xa0, 0xc4, 0xc8, 0x9e},
{0xea, 0xbf, 0x8a, 0xd2, 0x40, 0xc7, 0x38, 0xb5,
0xa3, 0xf7, 0xf2, 0xce, 0xf9, 0x61, 0x15, 0xa1},
{0xe0, 0xae, 0x5d, 0xa4, 0x9b, 0x34, 0x1a, 0x55,
0xad, 0x93, 0x32, 0x30, 0xf5, 0x8c, 0xb1, 0xe3},
{0x1d, 0xf6, 0xe2, 0x2e, 0x82, 0x66, 0xca, 0x60,
0xc0, 0x29, 0x23, 0xab, 0x0d, 0x53, 0x4e, 0x6f},
{0xd5, 0xdb, 0x37, 0x45, 0xde, 0xfd, 0x8e, 0x2f,
0x03, 0xff, 0x6a, 0x72, 0x6d, 0x6c, 0x5b, 0x51},
{0x8d, 0x1b, 0xaf, 0x92, 0xbb, 0xdd, 0xbc, 0x7f,
0x11, 0xd9, 0x5c, 0x41, 0x1f, 0x10, 0x5a, 0xd8},
{0x0a, 0xc1, 0x31, 0x88, 0xa5, 0xcd, 0x7b, 0xbd,
0x2d, 0x74, 0xd0, 0x12, 0xb8, 0xe5, 0xb4, 0xb0},
{0x89, 0x69, 0x97, 0x4a, 0x0c, 0x96, 0x77, 0x7e,
0x65, 0xb9, 0xf1, 0x09, 0xc5, 0x6e, 0xc6, 0x84},
{0x18, 0xf0, 0x7d, 0xec, 0x3a, 0xdc, 0x4d, 0x20,
0x79, 0xee, 0x5f, 0x3e, 0xd7, 0xcb, 0x39, 0x48},
};
/*
* S-box
* defined in section 2.6 S-box
*/
LTC_INLINE static sm4_u8_t s_sm4_sbox(sm4_u8_t a)
{
return sm4_sbox_table[(a >> 4) & 0x0f][a & 0x0f];
}
/*
* Nonlinear transformation t
* defined in section 6.2 (1) Nonelinear transformation t
*
* Here should be big endian.
* But we just convert a 32bit word byte by byte.
* So it's OK if we don't convert the endian order
*/
LTC_INLINE static sm4_u32_t s_sm4_t(sm4_u32_t A)
{
sm4_u8_t a[4];
sm4_u8_t b[4];
sm4_u32_t B;
STORE32H(A, a);
b[0] = s_sm4_sbox(a[0]);
b[1] = s_sm4_sbox(a[1]);
b[2] = s_sm4_sbox(a[2]);
b[3] = s_sm4_sbox(a[3]);
LOAD32H(B, b);
return B;
}
/*
* defined in section 6.2 (2) Linear transformation L
*/
LTC_INLINE static sm4_u32_t s_sm4_L62(sm4_u32_t B)
{
return B ^ ROLc(B, 2) ^ ROLc(B, 10) ^ ROLc(B, 18) ^ ROLc(B, 24);
}
/*
* defined in section 6.2 Permutation T
*/
LTC_INLINE static sm4_u32_t s_sm4_T62(sm4_u32_t Z)
{
return s_sm4_L62(s_sm4_t(Z));
}
/*
* defined in section 7.3 (2) The system parameter FK
*/
static const sm4_u32_t sm4_FK[4] = {
0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc
};
/*
* defined in section 7.3 (3) The fixed parameter CK
* The fixed parameter CK is used in the key expansion algorithm
*/
static const sm4_u32_t sm4_CK[32] =
{
0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269,
0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9,
0xe0e7eef5, 0xfc030a11, 0x181f262d, 0x343b4249,
0x50575e65, 0x6c737a81, 0x888f969d, 0xa4abb2b9,
0xc0c7ced5, 0xdce3eaf1, 0xf8ff060d, 0x141b2229,
0x30373e45, 0x4c535a61, 0x686f767d, 0x848b9299,
0xa0a7aeb5, 0xbcc3cad1, 0xd8dfe6ed, 0xf4fb0209,
0x10171e25, 0x2c333a41, 0x484f565d, 0x646b7279,
};
/*
* defined in section 7.3 (1) L'
*/
LTC_INLINE static sm4_u32_t s_sm4_L73(sm4_u32_t B)
{
return B ^ ROLc(B, 13) ^ ROLc(B, 23);
}
/*
* defined in section 7.3 (1) T'
*/
LTC_INLINE static sm4_u32_t s_sm4_T73(sm4_u32_t Z)
{
return s_sm4_L73(s_sm4_t(Z));
}
/*
* defined in section 7.3 Key Expansion
*/
LTC_INLINE static void s_sm4_mk2rk(sm4_u32_t rk[32], sm4_u8_t mk[16])
{
sm4_u32_t MK[4] = { 0 };
sm4_u32_t K[4+32] = { 0 };
int i;
LOAD32H(MK[0], mk );
LOAD32H(MK[1], mk + 4);
LOAD32H(MK[2], mk + 8);
LOAD32H(MK[3], mk + 12);
for (i = 0; i < 4; ++i)
K[i] = MK[i] ^ sm4_FK[i];
for (i = 0; i < 32; ++i)
K[i+4] = K[i] ^ s_sm4_T73(K[i+1] ^ K[i+2] ^ K[i+3] ^ sm4_CK[i]);
for (i = 0; i < 32; ++i)
rk[i] = K[i+4];
}
/*
* defined in section 6 Round Function F
*/
LTC_INLINE static sm4_u32_t s_sm4_F(sm4_u32_t X[4], sm4_u32_t rk)
{
return X[0] ^ s_sm4_T62(X[1] ^ X[2] ^ X[3] ^ rk);
}
/*
* defined in section 7.1 (2) The reverse transformation
*/
LTC_INLINE static void s_sm4_R(sm4_u32_t Y[4], sm4_u32_t X[32+4])
{
Y[0] = X[35];
Y[1] = X[34];
Y[2] = X[33];
Y[3] = X[32];
}
/*
* defined in section 7.1 (En)cryption
*/
LTC_INLINE static void s_sm4_crypt(sm4_u32_t Y[4], sm4_u32_t X[4+32], const sm4_u32_t rk[32])
{
int i;
for (i = 0; i < 32; ++i)
X[i+4] = s_sm4_F(X+i, rk[i]);
s_sm4_R(Y, X);
}
LTC_INLINE static void s_sm4_setkey(struct sm4_key *sm4, const unsigned char *key)
{
int i;
s_sm4_mk2rk(sm4->ek,(void*)key);
/*swap key sequence when decrypt cipher*/
for (i = 0; i < 32; ++i)
sm4->dk[i] = sm4->ek[32 - 1 - i];
}
int sm4_setup(const unsigned char *key, int keylen,
int num_rounds, symmetric_key *skey)
{
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
if (num_rounds != 0 && num_rounds != 32)
return CRYPT_INVALID_ROUNDS;
if (keylen != 16)
return CRYPT_INVALID_KEYSIZE;
s_sm4_setkey(&(skey->sm4), key);
return CRYPT_OK;
}
/*
* SM4 encryption.
*/
LTC_INLINE static void s_sm4_do(void *output, const void *input, const sm4_u32_t rk[32])
{
sm4_u32_t Y[4];
sm4_u32_t X[32+4];
LOAD32H(X[0], (sm4_u8_t *)input );
LOAD32H(X[1], (sm4_u8_t *)input + 4);
LOAD32H(X[2], (sm4_u8_t *)input + 8);
LOAD32H(X[3], (sm4_u8_t *)input + 12);
s_sm4_crypt(Y, X, rk);
STORE32H(Y[0], (sm4_u8_t *)output );
STORE32H(Y[1], (sm4_u8_t *)output + 4);
STORE32H(Y[2], (sm4_u8_t *)output + 8);
STORE32H(Y[3], (sm4_u8_t *)output + 12);
}
int sm4_ecb_encrypt(const unsigned char *pt, unsigned char *ct,
const symmetric_key *skey)
{
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
s_sm4_do(ct, pt, skey->sm4.ek);
return CRYPT_OK;
}
int sm4_ecb_decrypt(const unsigned char *ct, unsigned char *pt,
const symmetric_key *skey)
{
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
s_sm4_do(pt, ct, skey->sm4.dk);
return CRYPT_OK;
}
void sm4_done(symmetric_key *skey)
{
LTC_UNUSED_PARAM(skey);
}
int sm4_keysize(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if(*keysize < 16) {
return CRYPT_INVALID_KEYSIZE;
}
*keysize = 16;
return CRYPT_OK;
}
/*
* libtomcrypt interface is used
*/
#ifdef LTC_TEST
static int sm4_self_test_ltc(void)
{
int result;
int i;
int keysize;
symmetric_key skey;
sm4_u8_t output[16];
sm4_u8_t plaintext[] = {
0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF,
0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10,
};
sm4_u8_t key[] = {
0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF,
0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10,
};
sm4_u8_t ciphertext[] = {
0x68, 0x1E, 0xDF, 0x34, 0xD2, 0x06, 0x96, 0x5E,
0x86, 0xB3, 0xE9, 0x4F, 0x53, 0x6E, 0x42, 0x46,
};
sm4_u8_t ciphertext_1000000t[] = {
0x59, 0x52, 0x98, 0xC7, 0xC6, 0xFD, 0x27, 0x1F,
0x04, 0x02, 0xF8, 0x04, 0xC3, 0x3D, 0x3F, 0x66,
};
result = CRYPT_OK; /* Assume the best */
sm4_setup(key, sizeof(key), 32, &skey);
/*A.1 example 1*/
sm4_ecb_encrypt(plaintext, output, &skey);
if (compare_testvector(output, 16, ciphertext, 16, "SM4 single encryption", 0) != 0)
result = CRYPT_ERROR;
sm4_ecb_decrypt(ciphertext, output, &skey);
if (compare_testvector(output, 16, plaintext, 16, "SM4 single decryption", 0) != 0)
result = CRYPT_ERROR;
/*A.2 example 2*/
XMEMCPY(output, plaintext, 16);
for (i = 0; i < 1000000; ++i)
sm4_ecb_encrypt(output, output, &skey);
if (compare_testvector(output, 16, ciphertext_1000000t, 16, "SM4 1000000 times encryption", 0) != 0)
result = CRYPT_ERROR;
XMEMCPY(output, ciphertext_1000000t, 16);
for (i = 0; i < 1000000; ++i)
sm4_ecb_decrypt(output, output, &skey);
if (compare_testvector(output, 16, plaintext, 16, "SM4 1000000 times encryption", 0) != 0)
result = CRYPT_ERROR;
keysize = 128;
if (sm4_keysize(&keysize) != CRYPT_OK) {
fprintf(stderr, "Getting the max SM4 keysize failed\n");
result = CRYPT_ERROR;
} else if (keysize != 16) {
fprintf(stderr, "SM4 maximum key size is faulty:\nSHOULD be 16\nIS %d\n", keysize);
result = CRYPT_ERROR;
}
sm4_done(&skey);
return result;
}
#endif
int sm4_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
return sm4_self_test_ltc();
#endif
}
const struct ltc_cipher_descriptor sm4_desc = {
"sm4",
28,
16, 16, 16, 32, /* min_key_len, max_key_len, block_len, default_rounds */
&sm4_setup,
&sm4_ecb_encrypt,
&sm4_ecb_decrypt,
&sm4_test,
&sm4_done,
&sm4_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL,
};
#endif /*LTC_SM4*/

View File

@@ -0,0 +1,212 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file tea.c
Implementation of TEA, Steffen Jaeckel
*/
#include "tomcrypt_private.h"
#ifdef LTC_TEA
const struct ltc_cipher_descriptor tea_desc =
{
"tea",
26,
16, 16, 8, 32,
&tea_setup,
&tea_ecb_encrypt,
&tea_ecb_decrypt,
&tea_test,
&tea_done,
&tea_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
#define DELTA 0x9E3779B9uL
#define SUM 0xC6EF3720uL
int tea_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
/* check arguments */
if (keylen != 16) {
return CRYPT_INVALID_KEYSIZE;
}
if (num_rounds != 0 && num_rounds != 32) {
return CRYPT_INVALID_ROUNDS;
}
/* load key */
LOAD32H(skey->tea.k[0], key+0);
LOAD32H(skey->tea.k[1], key+4);
LOAD32H(skey->tea.k[2], key+8);
LOAD32H(skey->tea.k[3], key+12);
return CRYPT_OK;
}
/**
Encrypts a block of text with TEA
@param pt The input plaintext (8 bytes)
@param ct The output ciphertext (8 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
int tea_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
{
ulong32 y, z, sum = 0;
const ulong32 delta = DELTA;
int r;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
LOAD32H(y, &pt[0]);
LOAD32H(z, &pt[4]);
for (r = 0; r < 32; r++) {
sum += delta;
y += ((z<<4) + skey->tea.k[0]) ^ (z + sum) ^ ((z>>5) + skey->tea.k[1]);
z += ((y<<4) + skey->tea.k[2]) ^ (y + sum) ^ ((y>>5) + skey->tea.k[3]);
}
STORE32H(y, &ct[0]);
STORE32H(z, &ct[4]);
return CRYPT_OK;
}
/**
Decrypts a block of text with TEA
@param ct The input ciphertext (8 bytes)
@param pt The output plaintext (8 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
int tea_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
{
ulong32 v0, v1, sum = SUM;
const ulong32 delta = DELTA;
int r;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
LOAD32H(v0, &ct[0]);
LOAD32H(v1, &ct[4]);
for (r = 0; r < 32; r++) {
v1 -= ((v0 << 4) + skey->tea.k[2]) ^ (v0 + sum) ^ ((v0 >> 5) + skey->tea.k[3]);
v0 -= ((v1 << 4) + skey->tea.k[0]) ^ (v1 + sum) ^ ((v1 >> 5) + skey->tea.k[1]);
sum -= delta;
}
STORE32H(v0, &pt[0]);
STORE32H(v1, &pt[4]);
return CRYPT_OK;
}
/**
Performs a self-test of the TEA block cipher
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int tea_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
const char *key, *pt, *ct;
} tests[] = {
{
"00000000000000000000000000000000",
"0000000000000000",
"41ea3a0a94baa940"
}, {
"32a1e65408b63bb9214105744ec5d2e2",
"5ada1d89a9c3801a",
"dd46249e28aa0b4b"
}, {
"60388adadf70a1f5d9cb4e097d2c6c57",
"7a6adb4d69c53e0f",
"44b71215cf25368a"
}, {
"4368d2249bd0321eb7c56d5b63a1bfac",
"5a5d7ca2e186c41a",
"91f56dff7281794f"
}, {
"5c60bff27072d01c4513c5eb8f3a38ab",
"80d9c4adcf899635",
"2bb0f1b3c023ed11"
}
};
unsigned char ptct[2][8];
unsigned char tmp[2][8];
unsigned char key[16];
unsigned long l;
symmetric_key skey;
size_t i;
int err, y;
for (i = 0; i < sizeof(tests)/sizeof(tests[0]); i++) {
zeromem(&skey, sizeof(skey));
l = sizeof(key);
if ((err = base16_decode(tests[i].key, XSTRLEN(tests[i].key), key, &l)) != CRYPT_OK) return err;
l = sizeof(ptct[0]);
if ((err = base16_decode(tests[i].pt, XSTRLEN(tests[i].pt), ptct[0], &l)) != CRYPT_OK) return err;
l = sizeof(ptct[1]);
if ((err = base16_decode(tests[i].ct, XSTRLEN(tests[i].ct), ptct[1], &l)) != CRYPT_OK) return err;
if ((err = tea_setup(key, 16, 0, &skey)) != CRYPT_OK) {
return err;
}
tea_ecb_encrypt(ptct[0], tmp[0], &skey);
tea_ecb_decrypt(tmp[0], tmp[1], &skey);
if (compare_testvector(tmp[0], 8, ptct[1], 8, "TEA Encrypt", (int)i) != 0 ||
compare_testvector(tmp[1], 8, ptct[0], 8, "TEA Decrypt", (int)i) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
for (y = 0; y < 8; y++) tmp[0][y] = 0;
for (y = 0; y < 1000; y++) tea_ecb_encrypt(tmp[0], tmp[0], &skey);
for (y = 0; y < 1000; y++) tea_ecb_decrypt(tmp[0], tmp[0], &skey);
for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
} /* for */
return CRYPT_OK;
#endif
}
/** Terminate the context
@param skey The scheduled key
*/
void tea_done(symmetric_key *skey)
{
LTC_UNUSED_PARAM(skey);
}
/**
Gets suitable key size
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
@return CRYPT_OK if the input key size is acceptable.
*/
int tea_keysize(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize < 16) {
return CRYPT_INVALID_KEYSIZE;
}
*keysize = 16;
return CRYPT_OK;
}
#undef DELTA
#undef SUM
#endif

View File

@@ -0,0 +1,717 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file twofish.c
Implementation of Twofish by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_TWOFISH
/* first LTC_TWOFISH_ALL_TABLES must ensure LTC_TWOFISH_TABLES is defined */
#ifdef LTC_TWOFISH_ALL_TABLES
#ifndef LTC_TWOFISH_TABLES
#define LTC_TWOFISH_TABLES
#endif
#endif
const struct ltc_cipher_descriptor twofish_desc =
{
"twofish",
7,
16, 32, 16, 16,
&twofish_setup,
&twofish_ecb_encrypt,
&twofish_ecb_decrypt,
&twofish_test,
&twofish_done,
&twofish_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
/* the two polynomials */
#ifndef LTC_TWOFISH_TABLES
#define MDS_POLY 0x169
#endif
#ifndef LTC_TWOFISH_ALL_TABLES
#define RS_POLY 0x14D
#endif
/* The 4x8 RS Linear Transform */
static const unsigned char RS[4][8] = {
{ 0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E },
{ 0xA4, 0x56, 0x82, 0xF3, 0X1E, 0XC6, 0X68, 0XE5 },
{ 0X02, 0XA1, 0XFC, 0XC1, 0X47, 0XAE, 0X3D, 0X19 },
{ 0XA4, 0X55, 0X87, 0X5A, 0X58, 0XDB, 0X9E, 0X03 }
};
#ifdef LTC_TWOFISH_SMALL
/* sbox usage orderings */
static const unsigned char qord[4][5] = {
{ 1, 1, 0, 0, 1 },
{ 0, 1, 1, 0, 0 },
{ 0, 0, 0, 1, 1 },
{ 1, 0, 1, 1, 0 }
};
#endif /* LTC_TWOFISH_SMALL */
#ifdef LTC_TWOFISH_TABLES
#define LTC_TWOFISH_TAB_C
#include "twofish_tab.c"
#define sbox(i, x) ((ulong32)SBOX[i][(x)&255])
#else
/* The Q-box tables */
static const unsigned char qbox[2][4][16] = {
{
{ 0x8, 0x1, 0x7, 0xD, 0x6, 0xF, 0x3, 0x2, 0x0, 0xB, 0x5, 0x9, 0xE, 0xC, 0xA, 0x4 },
{ 0xE, 0XC, 0XB, 0X8, 0X1, 0X2, 0X3, 0X5, 0XF, 0X4, 0XA, 0X6, 0X7, 0X0, 0X9, 0XD },
{ 0XB, 0XA, 0X5, 0XE, 0X6, 0XD, 0X9, 0X0, 0XC, 0X8, 0XF, 0X3, 0X2, 0X4, 0X7, 0X1 },
{ 0XD, 0X7, 0XF, 0X4, 0X1, 0X2, 0X6, 0XE, 0X9, 0XB, 0X3, 0X0, 0X8, 0X5, 0XC, 0XA }
},
{
{ 0X2, 0X8, 0XB, 0XD, 0XF, 0X7, 0X6, 0XE, 0X3, 0X1, 0X9, 0X4, 0X0, 0XA, 0XC, 0X5 },
{ 0X1, 0XE, 0X2, 0XB, 0X4, 0XC, 0X3, 0X7, 0X6, 0XD, 0XA, 0X5, 0XF, 0X9, 0X0, 0X8 },
{ 0X4, 0XC, 0X7, 0X5, 0X1, 0X6, 0X9, 0XA, 0X0, 0XE, 0XD, 0X8, 0X2, 0XB, 0X3, 0XF },
{ 0xB, 0X9, 0X5, 0X1, 0XC, 0X3, 0XD, 0XE, 0X6, 0X4, 0X7, 0XF, 0X2, 0X0, 0X8, 0XA }
}
};
/* computes S_i[x] */
#ifdef LTC_CLEAN_STACK
static ulong32 s_sbox(int i, ulong32 x)
#else
static ulong32 sbox(int i, ulong32 x)
#endif
{
unsigned char a0,b0,a1,b1,a2,b2,a3,b3,a4,b4,y;
/* a0,b0 = [x/16], x mod 16 */
a0 = (unsigned char)((x>>4)&15);
b0 = (unsigned char)((x)&15);
/* a1 = a0 ^ b0 */
a1 = a0 ^ b0;
/* b1 = a0 ^ ROR(b0, 1) ^ 8a0 */
b1 = (a0 ^ ((b0<<3)|(b0>>1)) ^ (a0<<3)) & 15;
/* a2,b2 = t0[a1], t1[b1] */
a2 = qbox[i][0][(int)a1];
b2 = qbox[i][1][(int)b1];
/* a3 = a2 ^ b2 */
a3 = a2 ^ b2;
/* b3 = a2 ^ ROR(b2, 1) ^ 8a2 */
b3 = (a2 ^ ((b2<<3)|(b2>>1)) ^ (a2<<3)) & 15;
/* a4,b4 = t2[a3], t3[b3] */
a4 = qbox[i][2][(int)a3];
b4 = qbox[i][3][(int)b3];
/* y = 16b4 + a4 */
y = (b4 << 4) + a4;
/* return result */
return (ulong32)y;
}
#ifdef LTC_CLEAN_STACK
static ulong32 sbox(int i, ulong32 x)
{
ulong32 y;
y = s_sbox(i, x);
burn_stack(sizeof(unsigned char) * 11);
return y;
}
#endif /* LTC_CLEAN_STACK */
#endif /* LTC_TWOFISH_TABLES */
/* computes ab mod p */
static ulong32 gf_mult(ulong32 a, ulong32 b, ulong32 p)
{
ulong32 result, B[2], P[2];
P[1] = p;
B[1] = b;
result = P[0] = B[0] = 0;
/* unrolled branchless GF multiplier */
result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1);
result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1);
result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1);
result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1);
result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1);
result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1);
result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1);
result ^= B[a&1];
return result;
}
/* computes [y0 y1 y2 y3] = MDS . [x0] */
#ifndef LTC_TWOFISH_TABLES
static ulong32 mds_column_mult(unsigned char in, int col)
{
ulong32 x01, x5B, xEF;
x01 = in;
x5B = gf_mult(in, 0x5B, MDS_POLY);
xEF = gf_mult(in, 0xEF, MDS_POLY);
switch (col) {
case 0:
return (x01 << 0 ) |
(x5B << 8 ) |
(xEF << 16) |
(xEF << 24);
case 1:
return (xEF << 0 ) |
(xEF << 8 ) |
(x5B << 16) |
(x01 << 24);
case 2:
return (x5B << 0 ) |
(xEF << 8 ) |
(x01 << 16) |
(xEF << 24);
case 3:
return (x5B << 0 ) |
(x01 << 8 ) |
(xEF << 16) |
(x5B << 24);
}
/* avoid warnings, we'd never get here normally but just to calm compiler warnings... */
return 0;
}
#else /* !LTC_TWOFISH_TABLES */
#define mds_column_mult(x, i) mds_tab[i][x]
#endif /* LTC_TWOFISH_TABLES */
/* Computes [y0 y1 y2 y3] = MDS . [x0 x1 x2 x3] */
static void mds_mult(const unsigned char *in, unsigned char *out)
{
int x;
ulong32 tmp;
for (tmp = x = 0; x < 4; x++) {
tmp ^= mds_column_mult(in[x], x);
}
STORE32L(tmp, out);
}
#ifdef LTC_TWOFISH_ALL_TABLES
/* computes [y0 y1 y2 y3] = RS . [x0 x1 x2 x3 x4 x5 x6 x7] */
static void rs_mult(const unsigned char *in, unsigned char *out)
{
ulong32 tmp;
tmp = rs_tab0[in[0]] ^ rs_tab1[in[1]] ^ rs_tab2[in[2]] ^ rs_tab3[in[3]] ^
rs_tab4[in[4]] ^ rs_tab5[in[5]] ^ rs_tab6[in[6]] ^ rs_tab7[in[7]];
STORE32L(tmp, out);
}
#else /* !LTC_TWOFISH_ALL_TABLES */
/* computes [y0 y1 y2 y3] = RS . [x0 x1 x2 x3 x4 x5 x6 x7] */
static void rs_mult(const unsigned char *in, unsigned char *out)
{
int x, y;
for (x = 0; x < 4; x++) {
out[x] = 0;
for (y = 0; y < 8; y++) {
out[x] ^= gf_mult(in[y], RS[x][y], RS_POLY);
}
}
}
#endif
/* computes h(x) */
static void h_func(const unsigned char *in, unsigned char *out, const unsigned char *M, int k, int offset)
{
int x;
unsigned char y[4];
for (x = 0; x < 4; x++) {
y[x] = in[x];
}
switch (k) {
case 4:
y[0] = (unsigned char)(sbox(1, (ulong32)y[0]) ^ M[4 * (6 + offset) + 0]);
y[1] = (unsigned char)(sbox(0, (ulong32)y[1]) ^ M[4 * (6 + offset) + 1]);
y[2] = (unsigned char)(sbox(0, (ulong32)y[2]) ^ M[4 * (6 + offset) + 2]);
y[3] = (unsigned char)(sbox(1, (ulong32)y[3]) ^ M[4 * (6 + offset) + 3]);
/* FALLTHROUGH */
case 3:
y[0] = (unsigned char)(sbox(1, (ulong32)y[0]) ^ M[4 * (4 + offset) + 0]);
y[1] = (unsigned char)(sbox(1, (ulong32)y[1]) ^ M[4 * (4 + offset) + 1]);
y[2] = (unsigned char)(sbox(0, (ulong32)y[2]) ^ M[4 * (4 + offset) + 2]);
y[3] = (unsigned char)(sbox(0, (ulong32)y[3]) ^ M[4 * (4 + offset) + 3]);
/* FALLTHROUGH */
case 2:
y[0] = (unsigned char)(sbox(1, sbox(0, sbox(0, (ulong32)y[0]) ^ M[4 * (2 + offset) + 0]) ^ M[4 * (0 + offset) + 0]));
y[1] = (unsigned char)(sbox(0, sbox(0, sbox(1, (ulong32)y[1]) ^ M[4 * (2 + offset) + 1]) ^ M[4 * (0 + offset) + 1]));
y[2] = (unsigned char)(sbox(1, sbox(1, sbox(0, (ulong32)y[2]) ^ M[4 * (2 + offset) + 2]) ^ M[4 * (0 + offset) + 2]));
y[3] = (unsigned char)(sbox(0, sbox(1, sbox(1, (ulong32)y[3]) ^ M[4 * (2 + offset) + 3]) ^ M[4 * (0 + offset) + 3]));
/* FALLTHROUGH */
}
mds_mult(y, out);
}
#ifndef LTC_TWOFISH_SMALL
/* for GCC we don't use pointer aliases */
#if defined(__GNUC__)
#define S1 skey->twofish.S[0]
#define S2 skey->twofish.S[1]
#define S3 skey->twofish.S[2]
#define S4 skey->twofish.S[3]
#endif
/* the G function */
#define g_func(x, dum) (S1[LTC_BYTE(x,0)] ^ S2[LTC_BYTE(x,1)] ^ S3[LTC_BYTE(x,2)] ^ S4[LTC_BYTE(x,3)])
#define g1_func(x, dum) (S2[LTC_BYTE(x,0)] ^ S3[LTC_BYTE(x,1)] ^ S4[LTC_BYTE(x,2)] ^ S1[LTC_BYTE(x,3)])
#else
#ifdef LTC_CLEAN_STACK
static ulong32 s_g_func(ulong32 x, const symmetric_key *key)
#else
static ulong32 g_func(ulong32 x, const symmetric_key *key)
#endif
{
unsigned char g, i, y, z;
ulong32 res;
res = 0;
for (y = 0; y < 4; y++) {
z = key->twofish.start;
/* do unkeyed substitution */
g = sbox(qord[y][z++], (x >> (8*y)) & 255);
/* first subkey */
i = 0;
/* do key mixing+sbox until z==5 */
while (z != 5) {
g = g ^ key->twofish.S[4*i++ + y];
g = sbox(qord[y][z++], g);
}
/* multiply g by a column of the MDS */
res ^= mds_column_mult(g, y);
}
return res;
}
#define g1_func(x, key) g_func(ROLc(x, 8), key)
#ifdef LTC_CLEAN_STACK
static ulong32 g_func(ulong32 x, const symmetric_key *key)
{
ulong32 y;
y = s_g_func(x, key);
burn_stack(sizeof(unsigned char) * 4 + sizeof(ulong32));
return y;
}
#endif /* LTC_CLEAN_STACK */
#endif /* LTC_TWOFISH_SMALL */
/**
Initialize the Twofish block cipher
@param key The symmetric key you wish to pass
@param keylen The key length in bytes
@param num_rounds The number of rounds desired (0 for default)
@param skey The key in as scheduled by this function.
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
#else
int twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
#endif
{
#ifndef LTC_TWOFISH_SMALL
unsigned char S[4*4], tmpx0, tmpx1;
#endif
int k, x, y;
unsigned char tmp[4], tmp2[4], M[8*4];
ulong32 A, B;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
/* invalid arguments? */
if (num_rounds != 16 && num_rounds != 0) {
return CRYPT_INVALID_ROUNDS;
}
if (keylen != 16 && keylen != 24 && keylen != 32) {
return CRYPT_INVALID_KEYSIZE;
}
/* k = keysize/64 [but since our keysize is in bytes...] */
k = keylen / 8;
/* copy the key into M */
for (x = 0; x < keylen; x++) {
M[x] = key[x] & 255;
}
/* create the S[..] words */
#ifndef LTC_TWOFISH_SMALL
for (x = 0; x < k; x++) {
rs_mult(M+(x*8), S+(x*4));
}
#else
for (x = 0; x < k; x++) {
rs_mult(M+(x*8), skey->twofish.S+(x*4));
}
#endif
/* make subkeys */
for (x = 0; x < 20; x++) {
/* A = h(p * 2x, Me) */
for (y = 0; y < 4; y++) {
tmp[y] = x+x;
}
h_func(tmp, tmp2, M, k, 0);
LOAD32L(A, tmp2);
/* B = ROL(h(p * (2x + 1), Mo), 8) */
for (y = 0; y < 4; y++) {
tmp[y] = (unsigned char)(x+x+1);
}
h_func(tmp, tmp2, M, k, 1);
LOAD32L(B, tmp2);
B = ROLc(B, 8);
/* K[2i] = A + B */
skey->twofish.K[x+x] = (A + B) & 0xFFFFFFFFUL;
/* K[2i+1] = (A + 2B) <<< 9 */
skey->twofish.K[x+x+1] = ROLc(B + B + A, 9);
}
#ifndef LTC_TWOFISH_SMALL
/* make the sboxes (large ram variant) */
if (k == 2) {
for (x = 0; x < 256; x++) {
tmpx0 = (unsigned char)sbox(0, x);
tmpx1 = (unsigned char)sbox(1, x);
skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, tmpx0 ^ S[0]) ^ S[4])),0);
skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, tmpx1 ^ S[1]) ^ S[5])),1);
skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, tmpx0 ^ S[2]) ^ S[6])),2);
skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, tmpx1 ^ S[3]) ^ S[7])),3);
}
} else if (k == 3) {
for (x = 0; x < 256; x++) {
tmpx0 = (unsigned char)sbox(0, x);
tmpx1 = (unsigned char)sbox(1, x);
skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, sbox(0, tmpx1 ^ S[0]) ^ S[4]) ^ S[8])),0);
skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, sbox(1, tmpx1 ^ S[1]) ^ S[5]) ^ S[9])),1);
skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, sbox(0, tmpx0 ^ S[2]) ^ S[6]) ^ S[10])),2);
skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, sbox(1, tmpx0 ^ S[3]) ^ S[7]) ^ S[11])),3);
}
} else {
for (x = 0; x < 256; x++) {
tmpx0 = (unsigned char)sbox(0, x);
tmpx1 = (unsigned char)sbox(1, x);
skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, sbox(0, sbox(1, tmpx1 ^ S[0]) ^ S[4]) ^ S[8]) ^ S[12])),0);
skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, sbox(1, sbox(1, tmpx0 ^ S[1]) ^ S[5]) ^ S[9]) ^ S[13])),1);
skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, sbox(0, sbox(0, tmpx0 ^ S[2]) ^ S[6]) ^ S[10]) ^ S[14])),2);
skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, sbox(1, sbox(0, tmpx1 ^ S[3]) ^ S[7]) ^ S[11]) ^ S[15])),3);
}
}
#else
/* where to start in the sbox layers */
/* small ram variant */
switch (k) {
case 4 : skey->twofish.start = 0; break;
case 3 : skey->twofish.start = 1; break;
default: skey->twofish.start = 2; break;
}
#endif
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
int x;
x = s_twofish_setup(key, keylen, num_rounds, skey);
burn_stack(sizeof(int) * 7 + sizeof(unsigned char) * 56 + sizeof(ulong32) * 2);
return x;
}
#endif
/**
Encrypts a block of text with Twofish
@param pt The input plaintext (16 bytes)
@param ct The output ciphertext (16 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#else
int twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
#endif
{
ulong32 a,b,c,d,ta,tb,tc,td,t1,t2;
const ulong32 *k;
int r;
#if !defined(LTC_TWOFISH_SMALL) && !defined(__GNUC__)
const ulong32 *S1, *S2, *S3, *S4;
#endif
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
#if !defined(LTC_TWOFISH_SMALL) && !defined(__GNUC__)
S1 = skey->twofish.S[0];
S2 = skey->twofish.S[1];
S3 = skey->twofish.S[2];
S4 = skey->twofish.S[3];
#endif
LOAD32L(a,&pt[0]); LOAD32L(b,&pt[4]);
LOAD32L(c,&pt[8]); LOAD32L(d,&pt[12]);
a ^= skey->twofish.K[0];
b ^= skey->twofish.K[1];
c ^= skey->twofish.K[2];
d ^= skey->twofish.K[3];
k = skey->twofish.K + 8;
for (r = 8; r != 0; --r) {
t2 = g1_func(b, skey);
t1 = g_func(a, skey) + t2;
c = RORc(c ^ (t1 + k[0]), 1);
d = ROLc(d, 1) ^ (t2 + t1 + k[1]);
t2 = g1_func(d, skey);
t1 = g_func(c, skey) + t2;
a = RORc(a ^ (t1 + k[2]), 1);
b = ROLc(b, 1) ^ (t2 + t1 + k[3]);
k += 4;
}
/* output with "undo last swap" */
ta = c ^ skey->twofish.K[4];
tb = d ^ skey->twofish.K[5];
tc = a ^ skey->twofish.K[6];
td = b ^ skey->twofish.K[7];
/* store output */
STORE32L(ta,&ct[0]); STORE32L(tb,&ct[4]);
STORE32L(tc,&ct[8]); STORE32L(td,&ct[12]);
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
{
int err = s_twofish_ecb_encrypt(pt, ct, skey);
burn_stack(sizeof(ulong32) * 10 + sizeof(int));
return err;
}
#endif
/**
Decrypts a block of text with Twofish
@param ct The input ciphertext (16 bytes)
@param pt The output plaintext (16 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int s_twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#else
int twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
#endif
{
ulong32 a,b,c,d,ta,tb,tc,td,t1,t2;
const ulong32 *k;
int r;
#if !defined(LTC_TWOFISH_SMALL) && !defined(__GNUC__)
const ulong32 *S1, *S2, *S3, *S4;
#endif
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
#if !defined(LTC_TWOFISH_SMALL) && !defined(__GNUC__)
S1 = skey->twofish.S[0];
S2 = skey->twofish.S[1];
S3 = skey->twofish.S[2];
S4 = skey->twofish.S[3];
#endif
/* load input */
LOAD32L(ta,&ct[0]); LOAD32L(tb,&ct[4]);
LOAD32L(tc,&ct[8]); LOAD32L(td,&ct[12]);
/* undo undo final swap */
a = tc ^ skey->twofish.K[6];
b = td ^ skey->twofish.K[7];
c = ta ^ skey->twofish.K[4];
d = tb ^ skey->twofish.K[5];
k = skey->twofish.K + 36;
for (r = 8; r != 0; --r) {
t2 = g1_func(d, skey);
t1 = g_func(c, skey) + t2;
a = ROLc(a, 1) ^ (t1 + k[2]);
b = RORc(b ^ (t2 + t1 + k[3]), 1);
t2 = g1_func(b, skey);
t1 = g_func(a, skey) + t2;
c = ROLc(c, 1) ^ (t1 + k[0]);
d = RORc(d ^ (t2 + t1 + k[1]), 1);
k -= 4;
}
/* pre-white */
a ^= skey->twofish.K[0];
b ^= skey->twofish.K[1];
c ^= skey->twofish.K[2];
d ^= skey->twofish.K[3];
/* store */
STORE32L(a, &pt[0]); STORE32L(b, &pt[4]);
STORE32L(c, &pt[8]); STORE32L(d, &pt[12]);
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
{
int err = s_twofish_ecb_decrypt(ct, pt, skey);
burn_stack(sizeof(ulong32) * 10 + sizeof(int));
return err;
}
#endif
/**
Performs a self-test of the Twofish block cipher
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int twofish_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
int keylen;
unsigned char key[32], pt[16], ct[16];
} tests[] = {
{ 16,
{ 0x9F, 0x58, 0x9F, 0x5C, 0xF6, 0x12, 0x2C, 0x32,
0xB6, 0xBF, 0xEC, 0x2F, 0x2A, 0xE8, 0xC3, 0x5A },
{ 0xD4, 0x91, 0xDB, 0x16, 0xE7, 0xB1, 0xC3, 0x9E,
0x86, 0xCB, 0x08, 0x6B, 0x78, 0x9F, 0x54, 0x19 },
{ 0x01, 0x9F, 0x98, 0x09, 0xDE, 0x17, 0x11, 0x85,
0x8F, 0xAA, 0xC3, 0xA3, 0xBA, 0x20, 0xFB, 0xC3 }
}, {
24,
{ 0x88, 0xB2, 0xB2, 0x70, 0x6B, 0x10, 0x5E, 0x36,
0xB4, 0x46, 0xBB, 0x6D, 0x73, 0x1A, 0x1E, 0x88,
0xEF, 0xA7, 0x1F, 0x78, 0x89, 0x65, 0xBD, 0x44 },
{ 0x39, 0xDA, 0x69, 0xD6, 0xBA, 0x49, 0x97, 0xD5,
0x85, 0xB6, 0xDC, 0x07, 0x3C, 0xA3, 0x41, 0xB2 },
{ 0x18, 0x2B, 0x02, 0xD8, 0x14, 0x97, 0xEA, 0x45,
0xF9, 0xDA, 0xAC, 0xDC, 0x29, 0x19, 0x3A, 0x65 }
}, {
32,
{ 0xD4, 0x3B, 0xB7, 0x55, 0x6E, 0xA3, 0x2E, 0x46,
0xF2, 0xA2, 0x82, 0xB7, 0xD4, 0x5B, 0x4E, 0x0D,
0x57, 0xFF, 0x73, 0x9D, 0x4D, 0xC9, 0x2C, 0x1B,
0xD7, 0xFC, 0x01, 0x70, 0x0C, 0xC8, 0x21, 0x6F },
{ 0x90, 0xAF, 0xE9, 0x1B, 0xB2, 0x88, 0x54, 0x4F,
0x2C, 0x32, 0xDC, 0x23, 0x9B, 0x26, 0x35, 0xE6 },
{ 0x6C, 0xB4, 0x56, 0x1C, 0x40, 0xBF, 0x0A, 0x97,
0x05, 0x93, 0x1C, 0xB6, 0xD4, 0x08, 0xE7, 0xFA }
}
};
symmetric_key key;
unsigned char tmp[2][16];
int err, i, y;
for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
if ((err = twofish_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
return err;
}
twofish_ecb_encrypt(tests[i].pt, tmp[0], &key);
twofish_ecb_decrypt(tmp[0], tmp[1], &key);
if (compare_testvector(tmp[0], 16, tests[i].ct, 16, "Twofish Encrypt", i) != 0 ||
compare_testvector(tmp[1], 16, tests[i].pt, 16, "Twofish Decrypt", i) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
for (y = 0; y < 16; y++) tmp[0][y] = 0;
for (y = 0; y < 1000; y++) twofish_ecb_encrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 1000; y++) twofish_ecb_decrypt(tmp[0], tmp[0], &key);
for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
}
return CRYPT_OK;
#endif
}
/** Terminate the context
@param skey The scheduled key
*/
void twofish_done(symmetric_key *skey)
{
LTC_UNUSED_PARAM(skey);
}
/**
Gets suitable key size
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
@return CRYPT_OK if the input key size is acceptable.
*/
int twofish_keysize(int *keysize)
{
LTC_ARGCHK(keysize);
if (*keysize < 16) {
return CRYPT_INVALID_KEYSIZE;
}
if (*keysize < 24) {
*keysize = 16;
return CRYPT_OK;
}
if (*keysize < 32) {
*keysize = 24;
return CRYPT_OK;
}
*keysize = 32;
return CRYPT_OK;
}
#undef MDS_POLY
#undef RS_POLY
#undef sbox
#undef mds_column_mult
#undef S1
#undef S2
#undef S3
#undef S4
#undef g_func
#undef g1_func
#endif

View File

@@ -0,0 +1,486 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file twofish_tab.c
Twofish tables, Tom St Denis
*/
#ifdef LTC_TWOFISH_TABLES
#ifdef LTC_TWOFISH_TAB_C
/* pre generated 8x8 tables from the four 4x4s */
static const unsigned char SBOX[2][256] = {
{
0xa9, 0x67, 0xb3, 0xe8, 0x04, 0xfd, 0xa3, 0x76, 0x9a, 0x92,
0x80, 0x78, 0xe4, 0xdd, 0xd1, 0x38, 0x0d, 0xc6, 0x35, 0x98,
0x18, 0xf7, 0xec, 0x6c, 0x43, 0x75, 0x37, 0x26, 0xfa, 0x13,
0x94, 0x48, 0xf2, 0xd0, 0x8b, 0x30, 0x84, 0x54, 0xdf, 0x23,
0x19, 0x5b, 0x3d, 0x59, 0xf3, 0xae, 0xa2, 0x82, 0x63, 0x01,
0x83, 0x2e, 0xd9, 0x51, 0x9b, 0x7c, 0xa6, 0xeb, 0xa5, 0xbe,
0x16, 0x0c, 0xe3, 0x61, 0xc0, 0x8c, 0x3a, 0xf5, 0x73, 0x2c,
0x25, 0x0b, 0xbb, 0x4e, 0x89, 0x6b, 0x53, 0x6a, 0xb4, 0xf1,
0xe1, 0xe6, 0xbd, 0x45, 0xe2, 0xf4, 0xb6, 0x66, 0xcc, 0x95,
0x03, 0x56, 0xd4, 0x1c, 0x1e, 0xd7, 0xfb, 0xc3, 0x8e, 0xb5,
0xe9, 0xcf, 0xbf, 0xba, 0xea, 0x77, 0x39, 0xaf, 0x33, 0xc9,
0x62, 0x71, 0x81, 0x79, 0x09, 0xad, 0x24, 0xcd, 0xf9, 0xd8,
0xe5, 0xc5, 0xb9, 0x4d, 0x44, 0x08, 0x86, 0xe7, 0xa1, 0x1d,
0xaa, 0xed, 0x06, 0x70, 0xb2, 0xd2, 0x41, 0x7b, 0xa0, 0x11,
0x31, 0xc2, 0x27, 0x90, 0x20, 0xf6, 0x60, 0xff, 0x96, 0x5c,
0xb1, 0xab, 0x9e, 0x9c, 0x52, 0x1b, 0x5f, 0x93, 0x0a, 0xef,
0x91, 0x85, 0x49, 0xee, 0x2d, 0x4f, 0x8f, 0x3b, 0x47, 0x87,
0x6d, 0x46, 0xd6, 0x3e, 0x69, 0x64, 0x2a, 0xce, 0xcb, 0x2f,
0xfc, 0x97, 0x05, 0x7a, 0xac, 0x7f, 0xd5, 0x1a, 0x4b, 0x0e,
0xa7, 0x5a, 0x28, 0x14, 0x3f, 0x29, 0x88, 0x3c, 0x4c, 0x02,
0xb8, 0xda, 0xb0, 0x17, 0x55, 0x1f, 0x8a, 0x7d, 0x57, 0xc7,
0x8d, 0x74, 0xb7, 0xc4, 0x9f, 0x72, 0x7e, 0x15, 0x22, 0x12,
0x58, 0x07, 0x99, 0x34, 0x6e, 0x50, 0xde, 0x68, 0x65, 0xbc,
0xdb, 0xf8, 0xc8, 0xa8, 0x2b, 0x40, 0xdc, 0xfe, 0x32, 0xa4,
0xca, 0x10, 0x21, 0xf0, 0xd3, 0x5d, 0x0f, 0x00, 0x6f, 0x9d,
0x36, 0x42, 0x4a, 0x5e, 0xc1, 0xe0},
{
0x75, 0xf3, 0xc6, 0xf4, 0xdb, 0x7b, 0xfb, 0xc8, 0x4a, 0xd3,
0xe6, 0x6b, 0x45, 0x7d, 0xe8, 0x4b, 0xd6, 0x32, 0xd8, 0xfd,
0x37, 0x71, 0xf1, 0xe1, 0x30, 0x0f, 0xf8, 0x1b, 0x87, 0xfa,
0x06, 0x3f, 0x5e, 0xba, 0xae, 0x5b, 0x8a, 0x00, 0xbc, 0x9d,
0x6d, 0xc1, 0xb1, 0x0e, 0x80, 0x5d, 0xd2, 0xd5, 0xa0, 0x84,
0x07, 0x14, 0xb5, 0x90, 0x2c, 0xa3, 0xb2, 0x73, 0x4c, 0x54,
0x92, 0x74, 0x36, 0x51, 0x38, 0xb0, 0xbd, 0x5a, 0xfc, 0x60,
0x62, 0x96, 0x6c, 0x42, 0xf7, 0x10, 0x7c, 0x28, 0x27, 0x8c,
0x13, 0x95, 0x9c, 0xc7, 0x24, 0x46, 0x3b, 0x70, 0xca, 0xe3,
0x85, 0xcb, 0x11, 0xd0, 0x93, 0xb8, 0xa6, 0x83, 0x20, 0xff,
0x9f, 0x77, 0xc3, 0xcc, 0x03, 0x6f, 0x08, 0xbf, 0x40, 0xe7,
0x2b, 0xe2, 0x79, 0x0c, 0xaa, 0x82, 0x41, 0x3a, 0xea, 0xb9,
0xe4, 0x9a, 0xa4, 0x97, 0x7e, 0xda, 0x7a, 0x17, 0x66, 0x94,
0xa1, 0x1d, 0x3d, 0xf0, 0xde, 0xb3, 0x0b, 0x72, 0xa7, 0x1c,
0xef, 0xd1, 0x53, 0x3e, 0x8f, 0x33, 0x26, 0x5f, 0xec, 0x76,
0x2a, 0x49, 0x81, 0x88, 0xee, 0x21, 0xc4, 0x1a, 0xeb, 0xd9,
0xc5, 0x39, 0x99, 0xcd, 0xad, 0x31, 0x8b, 0x01, 0x18, 0x23,
0xdd, 0x1f, 0x4e, 0x2d, 0xf9, 0x48, 0x4f, 0xf2, 0x65, 0x8e,
0x78, 0x5c, 0x58, 0x19, 0x8d, 0xe5, 0x98, 0x57, 0x67, 0x7f,
0x05, 0x64, 0xaf, 0x63, 0xb6, 0xfe, 0xf5, 0xb7, 0x3c, 0xa5,
0xce, 0xe9, 0x68, 0x44, 0xe0, 0x4d, 0x43, 0x69, 0x29, 0x2e,
0xac, 0x15, 0x59, 0xa8, 0x0a, 0x9e, 0x6e, 0x47, 0xdf, 0x34,
0x35, 0x6a, 0xcf, 0xdc, 0x22, 0xc9, 0xc0, 0x9b, 0x89, 0xd4,
0xed, 0xab, 0x12, 0xa2, 0x0d, 0x52, 0xbb, 0x02, 0x2f, 0xa9,
0xd7, 0x61, 0x1e, 0xb4, 0x50, 0x04, 0xf6, 0xc2, 0x16, 0x25,
0x86, 0x56, 0x55, 0x09, 0xbe, 0x91}
};
/* the 4x4 MDS in a nicer format */
static const ulong32 mds_tab[4][256] = {
{
0x00000000UL, 0xefef5b01UL, 0xb7b7b602UL, 0x5858ed03UL, 0x07070504UL, 0xe8e85e05UL, 0xb0b0b306UL, 0x5f5fe807UL,
0x0e0e0a08UL, 0xe1e15109UL, 0xb9b9bc0aUL, 0x5656e70bUL, 0x09090f0cUL, 0xe6e6540dUL, 0xbebeb90eUL, 0x5151e20fUL,
0x1c1c1410UL, 0xf3f34f11UL, 0xababa212UL, 0x4444f913UL, 0x1b1b1114UL, 0xf4f44a15UL, 0xacaca716UL, 0x4343fc17UL,
0x12121e18UL, 0xfdfd4519UL, 0xa5a5a81aUL, 0x4a4af31bUL, 0x15151b1cUL, 0xfafa401dUL, 0xa2a2ad1eUL, 0x4d4df61fUL,
0x38382820UL, 0xd7d77321UL, 0x8f8f9e22UL, 0x6060c523UL, 0x3f3f2d24UL, 0xd0d07625UL, 0x88889b26UL, 0x6767c027UL,
0x36362228UL, 0xd9d97929UL, 0x8181942aUL, 0x6e6ecf2bUL, 0x3131272cUL, 0xdede7c2dUL, 0x8686912eUL, 0x6969ca2fUL,
0x24243c30UL, 0xcbcb6731UL, 0x93938a32UL, 0x7c7cd133UL, 0x23233934UL, 0xcccc6235UL, 0x94948f36UL, 0x7b7bd437UL,
0x2a2a3638UL, 0xc5c56d39UL, 0x9d9d803aUL, 0x7272db3bUL, 0x2d2d333cUL, 0xc2c2683dUL, 0x9a9a853eUL, 0x7575de3fUL,
0x70705040UL, 0x9f9f0b41UL, 0xc7c7e642UL, 0x2828bd43UL, 0x77775544UL, 0x98980e45UL, 0xc0c0e346UL, 0x2f2fb847UL,
0x7e7e5a48UL, 0x91910149UL, 0xc9c9ec4aUL, 0x2626b74bUL, 0x79795f4cUL, 0x9696044dUL, 0xcecee94eUL, 0x2121b24fUL,
0x6c6c4450UL, 0x83831f51UL, 0xdbdbf252UL, 0x3434a953UL, 0x6b6b4154UL, 0x84841a55UL, 0xdcdcf756UL, 0x3333ac57UL,
0x62624e58UL, 0x8d8d1559UL, 0xd5d5f85aUL, 0x3a3aa35bUL, 0x65654b5cUL, 0x8a8a105dUL, 0xd2d2fd5eUL, 0x3d3da65fUL,
0x48487860UL, 0xa7a72361UL, 0xffffce62UL, 0x10109563UL, 0x4f4f7d64UL, 0xa0a02665UL, 0xf8f8cb66UL, 0x17179067UL,
0x46467268UL, 0xa9a92969UL, 0xf1f1c46aUL, 0x1e1e9f6bUL, 0x4141776cUL, 0xaeae2c6dUL, 0xf6f6c16eUL, 0x19199a6fUL,
0x54546c70UL, 0xbbbb3771UL, 0xe3e3da72UL, 0x0c0c8173UL, 0x53536974UL, 0xbcbc3275UL, 0xe4e4df76UL, 0x0b0b8477UL,
0x5a5a6678UL, 0xb5b53d79UL, 0xededd07aUL, 0x02028b7bUL, 0x5d5d637cUL, 0xb2b2387dUL, 0xeaead57eUL, 0x05058e7fUL,
0xe0e0a080UL, 0x0f0ffb81UL, 0x57571682UL, 0xb8b84d83UL, 0xe7e7a584UL, 0x0808fe85UL, 0x50501386UL, 0xbfbf4887UL,
0xeeeeaa88UL, 0x0101f189UL, 0x59591c8aUL, 0xb6b6478bUL, 0xe9e9af8cUL, 0x0606f48dUL, 0x5e5e198eUL, 0xb1b1428fUL,
0xfcfcb490UL, 0x1313ef91UL, 0x4b4b0292UL, 0xa4a45993UL, 0xfbfbb194UL, 0x1414ea95UL, 0x4c4c0796UL, 0xa3a35c97UL,
0xf2f2be98UL, 0x1d1de599UL, 0x4545089aUL, 0xaaaa539bUL, 0xf5f5bb9cUL, 0x1a1ae09dUL, 0x42420d9eUL, 0xadad569fUL,
0xd8d888a0UL, 0x3737d3a1UL, 0x6f6f3ea2UL, 0x808065a3UL, 0xdfdf8da4UL, 0x3030d6a5UL, 0x68683ba6UL, 0x878760a7UL,
0xd6d682a8UL, 0x3939d9a9UL, 0x616134aaUL, 0x8e8e6fabUL, 0xd1d187acUL, 0x3e3edcadUL, 0x666631aeUL, 0x89896aafUL,
0xc4c49cb0UL, 0x2b2bc7b1UL, 0x73732ab2UL, 0x9c9c71b3UL, 0xc3c399b4UL, 0x2c2cc2b5UL, 0x74742fb6UL, 0x9b9b74b7UL,
0xcaca96b8UL, 0x2525cdb9UL, 0x7d7d20baUL, 0x92927bbbUL, 0xcdcd93bcUL, 0x2222c8bdUL, 0x7a7a25beUL, 0x95957ebfUL,
0x9090f0c0UL, 0x7f7fabc1UL, 0x272746c2UL, 0xc8c81dc3UL, 0x9797f5c4UL, 0x7878aec5UL, 0x202043c6UL, 0xcfcf18c7UL,
0x9e9efac8UL, 0x7171a1c9UL, 0x29294ccaUL, 0xc6c617cbUL, 0x9999ffccUL, 0x7676a4cdUL, 0x2e2e49ceUL, 0xc1c112cfUL,
0x8c8ce4d0UL, 0x6363bfd1UL, 0x3b3b52d2UL, 0xd4d409d3UL, 0x8b8be1d4UL, 0x6464bad5UL, 0x3c3c57d6UL, 0xd3d30cd7UL,
0x8282eed8UL, 0x6d6db5d9UL, 0x353558daUL, 0xdada03dbUL, 0x8585ebdcUL, 0x6a6ab0ddUL, 0x32325ddeUL, 0xdddd06dfUL,
0xa8a8d8e0UL, 0x474783e1UL, 0x1f1f6ee2UL, 0xf0f035e3UL, 0xafafdde4UL, 0x404086e5UL, 0x18186be6UL, 0xf7f730e7UL,
0xa6a6d2e8UL, 0x494989e9UL, 0x111164eaUL, 0xfefe3febUL, 0xa1a1d7ecUL, 0x4e4e8cedUL, 0x161661eeUL, 0xf9f93aefUL,
0xb4b4ccf0UL, 0x5b5b97f1UL, 0x03037af2UL, 0xecec21f3UL, 0xb3b3c9f4UL, 0x5c5c92f5UL, 0x04047ff6UL, 0xebeb24f7UL,
0xbabac6f8UL, 0x55559df9UL, 0x0d0d70faUL, 0xe2e22bfbUL, 0xbdbdc3fcUL, 0x525298fdUL, 0x0a0a75feUL, 0xe5e52effUL
},
{
0x00000000UL, 0x015befefUL, 0x02b6b7b7UL, 0x03ed5858UL, 0x04050707UL, 0x055ee8e8UL, 0x06b3b0b0UL, 0x07e85f5fUL,
0x080a0e0eUL, 0x0951e1e1UL, 0x0abcb9b9UL, 0x0be75656UL, 0x0c0f0909UL, 0x0d54e6e6UL, 0x0eb9bebeUL, 0x0fe25151UL,
0x10141c1cUL, 0x114ff3f3UL, 0x12a2ababUL, 0x13f94444UL, 0x14111b1bUL, 0x154af4f4UL, 0x16a7acacUL, 0x17fc4343UL,
0x181e1212UL, 0x1945fdfdUL, 0x1aa8a5a5UL, 0x1bf34a4aUL, 0x1c1b1515UL, 0x1d40fafaUL, 0x1eada2a2UL, 0x1ff64d4dUL,
0x20283838UL, 0x2173d7d7UL, 0x229e8f8fUL, 0x23c56060UL, 0x242d3f3fUL, 0x2576d0d0UL, 0x269b8888UL, 0x27c06767UL,
0x28223636UL, 0x2979d9d9UL, 0x2a948181UL, 0x2bcf6e6eUL, 0x2c273131UL, 0x2d7cdedeUL, 0x2e918686UL, 0x2fca6969UL,
0x303c2424UL, 0x3167cbcbUL, 0x328a9393UL, 0x33d17c7cUL, 0x34392323UL, 0x3562ccccUL, 0x368f9494UL, 0x37d47b7bUL,
0x38362a2aUL, 0x396dc5c5UL, 0x3a809d9dUL, 0x3bdb7272UL, 0x3c332d2dUL, 0x3d68c2c2UL, 0x3e859a9aUL, 0x3fde7575UL,
0x40507070UL, 0x410b9f9fUL, 0x42e6c7c7UL, 0x43bd2828UL, 0x44557777UL, 0x450e9898UL, 0x46e3c0c0UL, 0x47b82f2fUL,
0x485a7e7eUL, 0x49019191UL, 0x4aecc9c9UL, 0x4bb72626UL, 0x4c5f7979UL, 0x4d049696UL, 0x4ee9ceceUL, 0x4fb22121UL,
0x50446c6cUL, 0x511f8383UL, 0x52f2dbdbUL, 0x53a93434UL, 0x54416b6bUL, 0x551a8484UL, 0x56f7dcdcUL, 0x57ac3333UL,
0x584e6262UL, 0x59158d8dUL, 0x5af8d5d5UL, 0x5ba33a3aUL, 0x5c4b6565UL, 0x5d108a8aUL, 0x5efdd2d2UL, 0x5fa63d3dUL,
0x60784848UL, 0x6123a7a7UL, 0x62ceffffUL, 0x63951010UL, 0x647d4f4fUL, 0x6526a0a0UL, 0x66cbf8f8UL, 0x67901717UL,
0x68724646UL, 0x6929a9a9UL, 0x6ac4f1f1UL, 0x6b9f1e1eUL, 0x6c774141UL, 0x6d2caeaeUL, 0x6ec1f6f6UL, 0x6f9a1919UL,
0x706c5454UL, 0x7137bbbbUL, 0x72dae3e3UL, 0x73810c0cUL, 0x74695353UL, 0x7532bcbcUL, 0x76dfe4e4UL, 0x77840b0bUL,
0x78665a5aUL, 0x793db5b5UL, 0x7ad0ededUL, 0x7b8b0202UL, 0x7c635d5dUL, 0x7d38b2b2UL, 0x7ed5eaeaUL, 0x7f8e0505UL,
0x80a0e0e0UL, 0x81fb0f0fUL, 0x82165757UL, 0x834db8b8UL, 0x84a5e7e7UL, 0x85fe0808UL, 0x86135050UL, 0x8748bfbfUL,
0x88aaeeeeUL, 0x89f10101UL, 0x8a1c5959UL, 0x8b47b6b6UL, 0x8cafe9e9UL, 0x8df40606UL, 0x8e195e5eUL, 0x8f42b1b1UL,
0x90b4fcfcUL, 0x91ef1313UL, 0x92024b4bUL, 0x9359a4a4UL, 0x94b1fbfbUL, 0x95ea1414UL, 0x96074c4cUL, 0x975ca3a3UL,
0x98bef2f2UL, 0x99e51d1dUL, 0x9a084545UL, 0x9b53aaaaUL, 0x9cbbf5f5UL, 0x9de01a1aUL, 0x9e0d4242UL, 0x9f56adadUL,
0xa088d8d8UL, 0xa1d33737UL, 0xa23e6f6fUL, 0xa3658080UL, 0xa48ddfdfUL, 0xa5d63030UL, 0xa63b6868UL, 0xa7608787UL,
0xa882d6d6UL, 0xa9d93939UL, 0xaa346161UL, 0xab6f8e8eUL, 0xac87d1d1UL, 0xaddc3e3eUL, 0xae316666UL, 0xaf6a8989UL,
0xb09cc4c4UL, 0xb1c72b2bUL, 0xb22a7373UL, 0xb3719c9cUL, 0xb499c3c3UL, 0xb5c22c2cUL, 0xb62f7474UL, 0xb7749b9bUL,
0xb896cacaUL, 0xb9cd2525UL, 0xba207d7dUL, 0xbb7b9292UL, 0xbc93cdcdUL, 0xbdc82222UL, 0xbe257a7aUL, 0xbf7e9595UL,
0xc0f09090UL, 0xc1ab7f7fUL, 0xc2462727UL, 0xc31dc8c8UL, 0xc4f59797UL, 0xc5ae7878UL, 0xc6432020UL, 0xc718cfcfUL,
0xc8fa9e9eUL, 0xc9a17171UL, 0xca4c2929UL, 0xcb17c6c6UL, 0xccff9999UL, 0xcda47676UL, 0xce492e2eUL, 0xcf12c1c1UL,
0xd0e48c8cUL, 0xd1bf6363UL, 0xd2523b3bUL, 0xd309d4d4UL, 0xd4e18b8bUL, 0xd5ba6464UL, 0xd6573c3cUL, 0xd70cd3d3UL,
0xd8ee8282UL, 0xd9b56d6dUL, 0xda583535UL, 0xdb03dadaUL, 0xdceb8585UL, 0xddb06a6aUL, 0xde5d3232UL, 0xdf06ddddUL,
0xe0d8a8a8UL, 0xe1834747UL, 0xe26e1f1fUL, 0xe335f0f0UL, 0xe4ddafafUL, 0xe5864040UL, 0xe66b1818UL, 0xe730f7f7UL,
0xe8d2a6a6UL, 0xe9894949UL, 0xea641111UL, 0xeb3ffefeUL, 0xecd7a1a1UL, 0xed8c4e4eUL, 0xee611616UL, 0xef3af9f9UL,
0xf0ccb4b4UL, 0xf1975b5bUL, 0xf27a0303UL, 0xf321ececUL, 0xf4c9b3b3UL, 0xf5925c5cUL, 0xf67f0404UL, 0xf724ebebUL,
0xf8c6babaUL, 0xf99d5555UL, 0xfa700d0dUL, 0xfb2be2e2UL, 0xfcc3bdbdUL, 0xfd985252UL, 0xfe750a0aUL, 0xff2ee5e5UL
},
{
0x00000000UL, 0xef01ef5bUL, 0xb702b7b6UL, 0x580358edUL, 0x07040705UL, 0xe805e85eUL, 0xb006b0b3UL, 0x5f075fe8UL,
0x0e080e0aUL, 0xe109e151UL, 0xb90ab9bcUL, 0x560b56e7UL, 0x090c090fUL, 0xe60de654UL, 0xbe0ebeb9UL, 0x510f51e2UL,
0x1c101c14UL, 0xf311f34fUL, 0xab12aba2UL, 0x441344f9UL, 0x1b141b11UL, 0xf415f44aUL, 0xac16aca7UL, 0x431743fcUL,
0x1218121eUL, 0xfd19fd45UL, 0xa51aa5a8UL, 0x4a1b4af3UL, 0x151c151bUL, 0xfa1dfa40UL, 0xa21ea2adUL, 0x4d1f4df6UL,
0x38203828UL, 0xd721d773UL, 0x8f228f9eUL, 0x602360c5UL, 0x3f243f2dUL, 0xd025d076UL, 0x8826889bUL, 0x672767c0UL,
0x36283622UL, 0xd929d979UL, 0x812a8194UL, 0x6e2b6ecfUL, 0x312c3127UL, 0xde2dde7cUL, 0x862e8691UL, 0x692f69caUL,
0x2430243cUL, 0xcb31cb67UL, 0x9332938aUL, 0x7c337cd1UL, 0x23342339UL, 0xcc35cc62UL, 0x9436948fUL, 0x7b377bd4UL,
0x2a382a36UL, 0xc539c56dUL, 0x9d3a9d80UL, 0x723b72dbUL, 0x2d3c2d33UL, 0xc23dc268UL, 0x9a3e9a85UL, 0x753f75deUL,
0x70407050UL, 0x9f419f0bUL, 0xc742c7e6UL, 0x284328bdUL, 0x77447755UL, 0x9845980eUL, 0xc046c0e3UL, 0x2f472fb8UL,
0x7e487e5aUL, 0x91499101UL, 0xc94ac9ecUL, 0x264b26b7UL, 0x794c795fUL, 0x964d9604UL, 0xce4ecee9UL, 0x214f21b2UL,
0x6c506c44UL, 0x8351831fUL, 0xdb52dbf2UL, 0x345334a9UL, 0x6b546b41UL, 0x8455841aUL, 0xdc56dcf7UL, 0x335733acUL,
0x6258624eUL, 0x8d598d15UL, 0xd55ad5f8UL, 0x3a5b3aa3UL, 0x655c654bUL, 0x8a5d8a10UL, 0xd25ed2fdUL, 0x3d5f3da6UL,
0x48604878UL, 0xa761a723UL, 0xff62ffceUL, 0x10631095UL, 0x4f644f7dUL, 0xa065a026UL, 0xf866f8cbUL, 0x17671790UL,
0x46684672UL, 0xa969a929UL, 0xf16af1c4UL, 0x1e6b1e9fUL, 0x416c4177UL, 0xae6dae2cUL, 0xf66ef6c1UL, 0x196f199aUL,
0x5470546cUL, 0xbb71bb37UL, 0xe372e3daUL, 0x0c730c81UL, 0x53745369UL, 0xbc75bc32UL, 0xe476e4dfUL, 0x0b770b84UL,
0x5a785a66UL, 0xb579b53dUL, 0xed7aedd0UL, 0x027b028bUL, 0x5d7c5d63UL, 0xb27db238UL, 0xea7eead5UL, 0x057f058eUL,
0xe080e0a0UL, 0x0f810ffbUL, 0x57825716UL, 0xb883b84dUL, 0xe784e7a5UL, 0x088508feUL, 0x50865013UL, 0xbf87bf48UL,
0xee88eeaaUL, 0x018901f1UL, 0x598a591cUL, 0xb68bb647UL, 0xe98ce9afUL, 0x068d06f4UL, 0x5e8e5e19UL, 0xb18fb142UL,
0xfc90fcb4UL, 0x139113efUL, 0x4b924b02UL, 0xa493a459UL, 0xfb94fbb1UL, 0x149514eaUL, 0x4c964c07UL, 0xa397a35cUL,
0xf298f2beUL, 0x1d991de5UL, 0x459a4508UL, 0xaa9baa53UL, 0xf59cf5bbUL, 0x1a9d1ae0UL, 0x429e420dUL, 0xad9fad56UL,
0xd8a0d888UL, 0x37a137d3UL, 0x6fa26f3eUL, 0x80a38065UL, 0xdfa4df8dUL, 0x30a530d6UL, 0x68a6683bUL, 0x87a78760UL,
0xd6a8d682UL, 0x39a939d9UL, 0x61aa6134UL, 0x8eab8e6fUL, 0xd1acd187UL, 0x3ead3edcUL, 0x66ae6631UL, 0x89af896aUL,
0xc4b0c49cUL, 0x2bb12bc7UL, 0x73b2732aUL, 0x9cb39c71UL, 0xc3b4c399UL, 0x2cb52cc2UL, 0x74b6742fUL, 0x9bb79b74UL,
0xcab8ca96UL, 0x25b925cdUL, 0x7dba7d20UL, 0x92bb927bUL, 0xcdbccd93UL, 0x22bd22c8UL, 0x7abe7a25UL, 0x95bf957eUL,
0x90c090f0UL, 0x7fc17fabUL, 0x27c22746UL, 0xc8c3c81dUL, 0x97c497f5UL, 0x78c578aeUL, 0x20c62043UL, 0xcfc7cf18UL,
0x9ec89efaUL, 0x71c971a1UL, 0x29ca294cUL, 0xc6cbc617UL, 0x99cc99ffUL, 0x76cd76a4UL, 0x2ece2e49UL, 0xc1cfc112UL,
0x8cd08ce4UL, 0x63d163bfUL, 0x3bd23b52UL, 0xd4d3d409UL, 0x8bd48be1UL, 0x64d564baUL, 0x3cd63c57UL, 0xd3d7d30cUL,
0x82d882eeUL, 0x6dd96db5UL, 0x35da3558UL, 0xdadbda03UL, 0x85dc85ebUL, 0x6add6ab0UL, 0x32de325dUL, 0xdddfdd06UL,
0xa8e0a8d8UL, 0x47e14783UL, 0x1fe21f6eUL, 0xf0e3f035UL, 0xafe4afddUL, 0x40e54086UL, 0x18e6186bUL, 0xf7e7f730UL,
0xa6e8a6d2UL, 0x49e94989UL, 0x11ea1164UL, 0xfeebfe3fUL, 0xa1eca1d7UL, 0x4eed4e8cUL, 0x16ee1661UL, 0xf9eff93aUL,
0xb4f0b4ccUL, 0x5bf15b97UL, 0x03f2037aUL, 0xecf3ec21UL, 0xb3f4b3c9UL, 0x5cf55c92UL, 0x04f6047fUL, 0xebf7eb24UL,
0xbaf8bac6UL, 0x55f9559dUL, 0x0dfa0d70UL, 0xe2fbe22bUL, 0xbdfcbdc3UL, 0x52fd5298UL, 0x0afe0a75UL, 0xe5ffe52eUL
},
{
0x00000000UL, 0x5bef015bUL, 0xb6b702b6UL, 0xed5803edUL, 0x05070405UL, 0x5ee8055eUL, 0xb3b006b3UL, 0xe85f07e8UL,
0x0a0e080aUL, 0x51e10951UL, 0xbcb90abcUL, 0xe7560be7UL, 0x0f090c0fUL, 0x54e60d54UL, 0xb9be0eb9UL, 0xe2510fe2UL,
0x141c1014UL, 0x4ff3114fUL, 0xa2ab12a2UL, 0xf94413f9UL, 0x111b1411UL, 0x4af4154aUL, 0xa7ac16a7UL, 0xfc4317fcUL,
0x1e12181eUL, 0x45fd1945UL, 0xa8a51aa8UL, 0xf34a1bf3UL, 0x1b151c1bUL, 0x40fa1d40UL, 0xada21eadUL, 0xf64d1ff6UL,
0x28382028UL, 0x73d72173UL, 0x9e8f229eUL, 0xc56023c5UL, 0x2d3f242dUL, 0x76d02576UL, 0x9b88269bUL, 0xc06727c0UL,
0x22362822UL, 0x79d92979UL, 0x94812a94UL, 0xcf6e2bcfUL, 0x27312c27UL, 0x7cde2d7cUL, 0x91862e91UL, 0xca692fcaUL,
0x3c24303cUL, 0x67cb3167UL, 0x8a93328aUL, 0xd17c33d1UL, 0x39233439UL, 0x62cc3562UL, 0x8f94368fUL, 0xd47b37d4UL,
0x362a3836UL, 0x6dc5396dUL, 0x809d3a80UL, 0xdb723bdbUL, 0x332d3c33UL, 0x68c23d68UL, 0x859a3e85UL, 0xde753fdeUL,
0x50704050UL, 0x0b9f410bUL, 0xe6c742e6UL, 0xbd2843bdUL, 0x55774455UL, 0x0e98450eUL, 0xe3c046e3UL, 0xb82f47b8UL,
0x5a7e485aUL, 0x01914901UL, 0xecc94aecUL, 0xb7264bb7UL, 0x5f794c5fUL, 0x04964d04UL, 0xe9ce4ee9UL, 0xb2214fb2UL,
0x446c5044UL, 0x1f83511fUL, 0xf2db52f2UL, 0xa93453a9UL, 0x416b5441UL, 0x1a84551aUL, 0xf7dc56f7UL, 0xac3357acUL,
0x4e62584eUL, 0x158d5915UL, 0xf8d55af8UL, 0xa33a5ba3UL, 0x4b655c4bUL, 0x108a5d10UL, 0xfdd25efdUL, 0xa63d5fa6UL,
0x78486078UL, 0x23a76123UL, 0xceff62ceUL, 0x95106395UL, 0x7d4f647dUL, 0x26a06526UL, 0xcbf866cbUL, 0x90176790UL,
0x72466872UL, 0x29a96929UL, 0xc4f16ac4UL, 0x9f1e6b9fUL, 0x77416c77UL, 0x2cae6d2cUL, 0xc1f66ec1UL, 0x9a196f9aUL,
0x6c54706cUL, 0x37bb7137UL, 0xdae372daUL, 0x810c7381UL, 0x69537469UL, 0x32bc7532UL, 0xdfe476dfUL, 0x840b7784UL,
0x665a7866UL, 0x3db5793dUL, 0xd0ed7ad0UL, 0x8b027b8bUL, 0x635d7c63UL, 0x38b27d38UL, 0xd5ea7ed5UL, 0x8e057f8eUL,
0xa0e080a0UL, 0xfb0f81fbUL, 0x16578216UL, 0x4db8834dUL, 0xa5e784a5UL, 0xfe0885feUL, 0x13508613UL, 0x48bf8748UL,
0xaaee88aaUL, 0xf10189f1UL, 0x1c598a1cUL, 0x47b68b47UL, 0xafe98cafUL, 0xf4068df4UL, 0x195e8e19UL, 0x42b18f42UL,
0xb4fc90b4UL, 0xef1391efUL, 0x024b9202UL, 0x59a49359UL, 0xb1fb94b1UL, 0xea1495eaUL, 0x074c9607UL, 0x5ca3975cUL,
0xbef298beUL, 0xe51d99e5UL, 0x08459a08UL, 0x53aa9b53UL, 0xbbf59cbbUL, 0xe01a9de0UL, 0x0d429e0dUL, 0x56ad9f56UL,
0x88d8a088UL, 0xd337a1d3UL, 0x3e6fa23eUL, 0x6580a365UL, 0x8ddfa48dUL, 0xd630a5d6UL, 0x3b68a63bUL, 0x6087a760UL,
0x82d6a882UL, 0xd939a9d9UL, 0x3461aa34UL, 0x6f8eab6fUL, 0x87d1ac87UL, 0xdc3eaddcUL, 0x3166ae31UL, 0x6a89af6aUL,
0x9cc4b09cUL, 0xc72bb1c7UL, 0x2a73b22aUL, 0x719cb371UL, 0x99c3b499UL, 0xc22cb5c2UL, 0x2f74b62fUL, 0x749bb774UL,
0x96cab896UL, 0xcd25b9cdUL, 0x207dba20UL, 0x7b92bb7bUL, 0x93cdbc93UL, 0xc822bdc8UL, 0x257abe25UL, 0x7e95bf7eUL,
0xf090c0f0UL, 0xab7fc1abUL, 0x4627c246UL, 0x1dc8c31dUL, 0xf597c4f5UL, 0xae78c5aeUL, 0x4320c643UL, 0x18cfc718UL,
0xfa9ec8faUL, 0xa171c9a1UL, 0x4c29ca4cUL, 0x17c6cb17UL, 0xff99ccffUL, 0xa476cda4UL, 0x492ece49UL, 0x12c1cf12UL,
0xe48cd0e4UL, 0xbf63d1bfUL, 0x523bd252UL, 0x09d4d309UL, 0xe18bd4e1UL, 0xba64d5baUL, 0x573cd657UL, 0x0cd3d70cUL,
0xee82d8eeUL, 0xb56dd9b5UL, 0x5835da58UL, 0x03dadb03UL, 0xeb85dcebUL, 0xb06addb0UL, 0x5d32de5dUL, 0x06dddf06UL,
0xd8a8e0d8UL, 0x8347e183UL, 0x6e1fe26eUL, 0x35f0e335UL, 0xddafe4ddUL, 0x8640e586UL, 0x6b18e66bUL, 0x30f7e730UL,
0xd2a6e8d2UL, 0x8949e989UL, 0x6411ea64UL, 0x3ffeeb3fUL, 0xd7a1ecd7UL, 0x8c4eed8cUL, 0x6116ee61UL, 0x3af9ef3aUL,
0xccb4f0ccUL, 0x975bf197UL, 0x7a03f27aUL, 0x21ecf321UL, 0xc9b3f4c9UL, 0x925cf592UL, 0x7f04f67fUL, 0x24ebf724UL,
0xc6baf8c6UL, 0x9d55f99dUL, 0x700dfa70UL, 0x2be2fb2bUL, 0xc3bdfcc3UL, 0x9852fd98UL, 0x750afe75UL, 0x2ee5ff2eUL
}};
#ifdef LTC_TWOFISH_ALL_TABLES
/* the 4x8 RS transform */
static const ulong32 rs_tab0[256] = {
0x00000000LU, 0xa402a401LU, 0x05040502LU, 0xa106a103LU, 0x0a080a04LU, 0xae0aae05LU, 0x0f0c0f06LU, 0xab0eab07LU,
0x14101408LU, 0xb012b009LU, 0x1114110aLU, 0xb516b50bLU, 0x1e181e0cLU, 0xba1aba0dLU, 0x1b1c1b0eLU, 0xbf1ebf0fLU,
0x28202810LU, 0x8c228c11LU, 0x2d242d12LU, 0x89268913LU, 0x22282214LU, 0x862a8615LU, 0x272c2716LU, 0x832e8317LU,
0x3c303c18LU, 0x98329819LU, 0x3934391aLU, 0x9d369d1bLU, 0x3638361cLU, 0x923a921dLU, 0x333c331eLU, 0x973e971fLU,
0x50405020LU, 0xf442f421LU, 0x55445522LU, 0xf146f123LU, 0x5a485a24LU, 0xfe4afe25LU, 0x5f4c5f26LU, 0xfb4efb27LU,
0x44504428LU, 0xe052e029LU, 0x4154412aLU, 0xe556e52bLU, 0x4e584e2cLU, 0xea5aea2dLU, 0x4b5c4b2eLU, 0xef5eef2fLU,
0x78607830LU, 0xdc62dc31LU, 0x7d647d32LU, 0xd966d933LU, 0x72687234LU, 0xd66ad635LU, 0x776c7736LU, 0xd36ed337LU,
0x6c706c38LU, 0xc872c839LU, 0x6974693aLU, 0xcd76cd3bLU, 0x6678663cLU, 0xc27ac23dLU, 0x637c633eLU, 0xc77ec73fLU,
0xa080a040LU, 0x04820441LU, 0xa584a542LU, 0x01860143LU, 0xaa88aa44LU, 0x0e8a0e45LU, 0xaf8caf46LU, 0x0b8e0b47LU,
0xb490b448LU, 0x10921049LU, 0xb194b14aLU, 0x1596154bLU, 0xbe98be4cLU, 0x1a9a1a4dLU, 0xbb9cbb4eLU, 0x1f9e1f4fLU,
0x88a08850LU, 0x2ca22c51LU, 0x8da48d52LU, 0x29a62953LU, 0x82a88254LU, 0x26aa2655LU, 0x87ac8756LU, 0x23ae2357LU,
0x9cb09c58LU, 0x38b23859LU, 0x99b4995aLU, 0x3db63d5bLU, 0x96b8965cLU, 0x32ba325dLU, 0x93bc935eLU, 0x37be375fLU,
0xf0c0f060LU, 0x54c25461LU, 0xf5c4f562LU, 0x51c65163LU, 0xfac8fa64LU, 0x5eca5e65LU, 0xffccff66LU, 0x5bce5b67LU,
0xe4d0e468LU, 0x40d24069LU, 0xe1d4e16aLU, 0x45d6456bLU, 0xeed8ee6cLU, 0x4ada4a6dLU, 0xebdceb6eLU, 0x4fde4f6fLU,
0xd8e0d870LU, 0x7ce27c71LU, 0xdde4dd72LU, 0x79e67973LU, 0xd2e8d274LU, 0x76ea7675LU, 0xd7ecd776LU, 0x73ee7377LU,
0xccf0cc78LU, 0x68f26879LU, 0xc9f4c97aLU, 0x6df66d7bLU, 0xc6f8c67cLU, 0x62fa627dLU, 0xc3fcc37eLU, 0x67fe677fLU,
0x0d4d0d80LU, 0xa94fa981LU, 0x08490882LU, 0xac4bac83LU, 0x07450784LU, 0xa347a385LU, 0x02410286LU, 0xa643a687LU,
0x195d1988LU, 0xbd5fbd89LU, 0x1c591c8aLU, 0xb85bb88bLU, 0x1355138cLU, 0xb757b78dLU, 0x1651168eLU, 0xb253b28fLU,
0x256d2590LU, 0x816f8191LU, 0x20692092LU, 0x846b8493LU, 0x2f652f94LU, 0x8b678b95LU, 0x2a612a96LU, 0x8e638e97LU,
0x317d3198LU, 0x957f9599LU, 0x3479349aLU, 0x907b909bLU, 0x3b753b9cLU, 0x9f779f9dLU, 0x3e713e9eLU, 0x9a739a9fLU,
0x5d0d5da0LU, 0xf90ff9a1LU, 0x580958a2LU, 0xfc0bfca3LU, 0x570557a4LU, 0xf307f3a5LU, 0x520152a6LU, 0xf603f6a7LU,
0x491d49a8LU, 0xed1feda9LU, 0x4c194caaLU, 0xe81be8abLU, 0x431543acLU, 0xe717e7adLU, 0x461146aeLU, 0xe213e2afLU,
0x752d75b0LU, 0xd12fd1b1LU, 0x702970b2LU, 0xd42bd4b3LU, 0x7f257fb4LU, 0xdb27dbb5LU, 0x7a217ab6LU, 0xde23deb7LU,
0x613d61b8LU, 0xc53fc5b9LU, 0x643964baLU, 0xc03bc0bbLU, 0x6b356bbcLU, 0xcf37cfbdLU, 0x6e316ebeLU, 0xca33cabfLU,
0xadcdadc0LU, 0x09cf09c1LU, 0xa8c9a8c2LU, 0x0ccb0cc3LU, 0xa7c5a7c4LU, 0x03c703c5LU, 0xa2c1a2c6LU, 0x06c306c7LU,
0xb9ddb9c8LU, 0x1ddf1dc9LU, 0xbcd9bccaLU, 0x18db18cbLU, 0xb3d5b3ccLU, 0x17d717cdLU, 0xb6d1b6ceLU, 0x12d312cfLU,
0x85ed85d0LU, 0x21ef21d1LU, 0x80e980d2LU, 0x24eb24d3LU, 0x8fe58fd4LU, 0x2be72bd5LU, 0x8ae18ad6LU, 0x2ee32ed7LU,
0x91fd91d8LU, 0x35ff35d9LU, 0x94f994daLU, 0x30fb30dbLU, 0x9bf59bdcLU, 0x3ff73fddLU, 0x9ef19edeLU, 0x3af33adfLU,
0xfd8dfde0LU, 0x598f59e1LU, 0xf889f8e2LU, 0x5c8b5ce3LU, 0xf785f7e4LU, 0x538753e5LU, 0xf281f2e6LU, 0x568356e7LU,
0xe99de9e8LU, 0x4d9f4de9LU, 0xec99eceaLU, 0x489b48ebLU, 0xe395e3ecLU, 0x479747edLU, 0xe691e6eeLU, 0x429342efLU,
0xd5add5f0LU, 0x71af71f1LU, 0xd0a9d0f2LU, 0x74ab74f3LU, 0xdfa5dff4LU, 0x7ba77bf5LU, 0xdaa1daf6LU, 0x7ea37ef7LU,
0xc1bdc1f8LU, 0x65bf65f9LU, 0xc4b9c4faLU, 0x60bb60fbLU, 0xcbb5cbfcLU, 0x6fb76ffdLU, 0xceb1cefeLU, 0x6ab36affLU };
static const ulong32 rs_tab1[256] = {
0x00000000LU, 0x55a156a4LU, 0xaa0fac05LU, 0xffaefaa1LU, 0x191e150aLU, 0x4cbf43aeLU, 0xb311b90fLU, 0xe6b0efabLU,
0x323c2a14LU, 0x679d7cb0LU, 0x98338611LU, 0xcd92d0b5LU, 0x2b223f1eLU, 0x7e8369baLU, 0x812d931bLU, 0xd48cc5bfLU,
0x64785428LU, 0x31d9028cLU, 0xce77f82dLU, 0x9bd6ae89LU, 0x7d664122LU, 0x28c71786LU, 0xd769ed27LU, 0x82c8bb83LU,
0x56447e3cLU, 0x03e52898LU, 0xfc4bd239LU, 0xa9ea849dLU, 0x4f5a6b36LU, 0x1afb3d92LU, 0xe555c733LU, 0xb0f49197LU,
0xc8f0a850LU, 0x9d51fef4LU, 0x62ff0455LU, 0x375e52f1LU, 0xd1eebd5aLU, 0x844febfeLU, 0x7be1115fLU, 0x2e4047fbLU,
0xfacc8244LU, 0xaf6dd4e0LU, 0x50c32e41LU, 0x056278e5LU, 0xe3d2974eLU, 0xb673c1eaLU, 0x49dd3b4bLU, 0x1c7c6defLU,
0xac88fc78LU, 0xf929aadcLU, 0x0687507dLU, 0x532606d9LU, 0xb596e972LU, 0xe037bfd6LU, 0x1f994577LU, 0x4a3813d3LU,
0x9eb4d66cLU, 0xcb1580c8LU, 0x34bb7a69LU, 0x611a2ccdLU, 0x87aac366LU, 0xd20b95c2LU, 0x2da56f63LU, 0x780439c7LU,
0xddad1da0LU, 0x880c4b04LU, 0x77a2b1a5LU, 0x2203e701LU, 0xc4b308aaLU, 0x91125e0eLU, 0x6ebca4afLU, 0x3b1df20bLU,
0xef9137b4LU, 0xba306110LU, 0x459e9bb1LU, 0x103fcd15LU, 0xf68f22beLU, 0xa32e741aLU, 0x5c808ebbLU, 0x0921d81fLU,
0xb9d54988LU, 0xec741f2cLU, 0x13dae58dLU, 0x467bb329LU, 0xa0cb5c82LU, 0xf56a0a26LU, 0x0ac4f087LU, 0x5f65a623LU,
0x8be9639cLU, 0xde483538LU, 0x21e6cf99LU, 0x7447993dLU, 0x92f77696LU, 0xc7562032LU, 0x38f8da93LU, 0x6d598c37LU,
0x155db5f0LU, 0x40fce354LU, 0xbf5219f5LU, 0xeaf34f51LU, 0x0c43a0faLU, 0x59e2f65eLU, 0xa64c0cffLU, 0xf3ed5a5bLU,
0x27619fe4LU, 0x72c0c940LU, 0x8d6e33e1LU, 0xd8cf6545LU, 0x3e7f8aeeLU, 0x6bdedc4aLU, 0x947026ebLU, 0xc1d1704fLU,
0x7125e1d8LU, 0x2484b77cLU, 0xdb2a4dddLU, 0x8e8b1b79LU, 0x683bf4d2LU, 0x3d9aa276LU, 0xc23458d7LU, 0x97950e73LU,
0x4319cbccLU, 0x16b89d68LU, 0xe91667c9LU, 0xbcb7316dLU, 0x5a07dec6LU, 0x0fa68862LU, 0xf00872c3LU, 0xa5a92467LU,
0xf7173a0dLU, 0xa2b66ca9LU, 0x5d189608LU, 0x08b9c0acLU, 0xee092f07LU, 0xbba879a3LU, 0x44068302LU, 0x11a7d5a6LU,
0xc52b1019LU, 0x908a46bdLU, 0x6f24bc1cLU, 0x3a85eab8LU, 0xdc350513LU, 0x899453b7LU, 0x763aa916LU, 0x239bffb2LU,
0x936f6e25LU, 0xc6ce3881LU, 0x3960c220LU, 0x6cc19484LU, 0x8a717b2fLU, 0xdfd02d8bLU, 0x207ed72aLU, 0x75df818eLU,
0xa1534431LU, 0xf4f21295LU, 0x0b5ce834LU, 0x5efdbe90LU, 0xb84d513bLU, 0xedec079fLU, 0x1242fd3eLU, 0x47e3ab9aLU,
0x3fe7925dLU, 0x6a46c4f9LU, 0x95e83e58LU, 0xc04968fcLU, 0x26f98757LU, 0x7358d1f3LU, 0x8cf62b52LU, 0xd9577df6LU,
0x0ddbb849LU, 0x587aeeedLU, 0xa7d4144cLU, 0xf27542e8LU, 0x14c5ad43LU, 0x4164fbe7LU, 0xbeca0146LU, 0xeb6b57e2LU,
0x5b9fc675LU, 0x0e3e90d1LU, 0xf1906a70LU, 0xa4313cd4LU, 0x4281d37fLU, 0x172085dbLU, 0xe88e7f7aLU, 0xbd2f29deLU,
0x69a3ec61LU, 0x3c02bac5LU, 0xc3ac4064LU, 0x960d16c0LU, 0x70bdf96bLU, 0x251cafcfLU, 0xdab2556eLU, 0x8f1303caLU,
0x2aba27adLU, 0x7f1b7109LU, 0x80b58ba8LU, 0xd514dd0cLU, 0x33a432a7LU, 0x66056403LU, 0x99ab9ea2LU, 0xcc0ac806LU,
0x18860db9LU, 0x4d275b1dLU, 0xb289a1bcLU, 0xe728f718LU, 0x019818b3LU, 0x54394e17LU, 0xab97b4b6LU, 0xfe36e212LU,
0x4ec27385LU, 0x1b632521LU, 0xe4cddf80LU, 0xb16c8924LU, 0x57dc668fLU, 0x027d302bLU, 0xfdd3ca8aLU, 0xa8729c2eLU,
0x7cfe5991LU, 0x295f0f35LU, 0xd6f1f594LU, 0x8350a330LU, 0x65e04c9bLU, 0x30411a3fLU, 0xcfefe09eLU, 0x9a4eb63aLU,
0xe24a8ffdLU, 0xb7ebd959LU, 0x484523f8LU, 0x1de4755cLU, 0xfb549af7LU, 0xaef5cc53LU, 0x515b36f2LU, 0x04fa6056LU,
0xd076a5e9LU, 0x85d7f34dLU, 0x7a7909ecLU, 0x2fd85f48LU, 0xc968b0e3LU, 0x9cc9e647LU, 0x63671ce6LU, 0x36c64a42LU,
0x8632dbd5LU, 0xd3938d71LU, 0x2c3d77d0LU, 0x799c2174LU, 0x9f2ccedfLU, 0xca8d987bLU, 0x352362daLU, 0x6082347eLU,
0xb40ef1c1LU, 0xe1afa765LU, 0x1e015dc4LU, 0x4ba00b60LU, 0xad10e4cbLU, 0xf8b1b26fLU, 0x071f48ceLU, 0x52be1e6aLU };
static const ulong32 rs_tab2[256] = {
0x00000000LU, 0x87fc8255LU, 0x43b549aaLU, 0xc449cbffLU, 0x86279219LU, 0x01db104cLU, 0xc592dbb3LU, 0x426e59e6LU,
0x414e6932LU, 0xc6b2eb67LU, 0x02fb2098LU, 0x8507a2cdLU, 0xc769fb2bLU, 0x4095797eLU, 0x84dcb281LU, 0x032030d4LU,
0x829cd264LU, 0x05605031LU, 0xc1299bceLU, 0x46d5199bLU, 0x04bb407dLU, 0x8347c228LU, 0x470e09d7LU, 0xc0f28b82LU,
0xc3d2bb56LU, 0x442e3903LU, 0x8067f2fcLU, 0x079b70a9LU, 0x45f5294fLU, 0xc209ab1aLU, 0x064060e5LU, 0x81bce2b0LU,
0x4975e9c8LU, 0xce896b9dLU, 0x0ac0a062LU, 0x8d3c2237LU, 0xcf527bd1LU, 0x48aef984LU, 0x8ce7327bLU, 0x0b1bb02eLU,
0x083b80faLU, 0x8fc702afLU, 0x4b8ec950LU, 0xcc724b05LU, 0x8e1c12e3LU, 0x09e090b6LU, 0xcda95b49LU, 0x4a55d91cLU,
0xcbe93bacLU, 0x4c15b9f9LU, 0x885c7206LU, 0x0fa0f053LU, 0x4dcea9b5LU, 0xca322be0LU, 0x0e7be01fLU, 0x8987624aLU,
0x8aa7529eLU, 0x0d5bd0cbLU, 0xc9121b34LU, 0x4eee9961LU, 0x0c80c087LU, 0x8b7c42d2LU, 0x4f35892dLU, 0xc8c90b78LU,
0x92ea9fddLU, 0x15161d88LU, 0xd15fd677LU, 0x56a35422LU, 0x14cd0dc4LU, 0x93318f91LU, 0x5778446eLU, 0xd084c63bLU,
0xd3a4f6efLU, 0x545874baLU, 0x9011bf45LU, 0x17ed3d10LU, 0x558364f6LU, 0xd27fe6a3LU, 0x16362d5cLU, 0x91caaf09LU,
0x10764db9LU, 0x978acfecLU, 0x53c30413LU, 0xd43f8646LU, 0x9651dfa0LU, 0x11ad5df5LU, 0xd5e4960aLU, 0x5218145fLU,
0x5138248bLU, 0xd6c4a6deLU, 0x128d6d21LU, 0x9571ef74LU, 0xd71fb692LU, 0x50e334c7LU, 0x94aaff38LU, 0x13567d6dLU,
0xdb9f7615LU, 0x5c63f440LU, 0x982a3fbfLU, 0x1fd6bdeaLU, 0x5db8e40cLU, 0xda446659LU, 0x1e0dada6LU, 0x99f12ff3LU,
0x9ad11f27LU, 0x1d2d9d72LU, 0xd964568dLU, 0x5e98d4d8LU, 0x1cf68d3eLU, 0x9b0a0f6bLU, 0x5f43c494LU, 0xd8bf46c1LU,
0x5903a471LU, 0xdeff2624LU, 0x1ab6eddbLU, 0x9d4a6f8eLU, 0xdf243668LU, 0x58d8b43dLU, 0x9c917fc2LU, 0x1b6dfd97LU,
0x184dcd43LU, 0x9fb14f16LU, 0x5bf884e9LU, 0xdc0406bcLU, 0x9e6a5f5aLU, 0x1996dd0fLU, 0xdddf16f0LU, 0x5a2394a5LU,
0x699973f7LU, 0xee65f1a2LU, 0x2a2c3a5dLU, 0xadd0b808LU, 0xefbee1eeLU, 0x684263bbLU, 0xac0ba844LU, 0x2bf72a11LU,
0x28d71ac5LU, 0xaf2b9890LU, 0x6b62536fLU, 0xec9ed13aLU, 0xaef088dcLU, 0x290c0a89LU, 0xed45c176LU, 0x6ab94323LU,
0xeb05a193LU, 0x6cf923c6LU, 0xa8b0e839LU, 0x2f4c6a6cLU, 0x6d22338aLU, 0xeadeb1dfLU, 0x2e977a20LU, 0xa96bf875LU,
0xaa4bc8a1LU, 0x2db74af4LU, 0xe9fe810bLU, 0x6e02035eLU, 0x2c6c5ab8LU, 0xab90d8edLU, 0x6fd91312LU, 0xe8259147LU,
0x20ec9a3fLU, 0xa710186aLU, 0x6359d395LU, 0xe4a551c0LU, 0xa6cb0826LU, 0x21378a73LU, 0xe57e418cLU, 0x6282c3d9LU,
0x61a2f30dLU, 0xe65e7158LU, 0x2217baa7LU, 0xa5eb38f2LU, 0xe7856114LU, 0x6079e341LU, 0xa43028beLU, 0x23ccaaebLU,
0xa270485bLU, 0x258cca0eLU, 0xe1c501f1LU, 0x663983a4LU, 0x2457da42LU, 0xa3ab5817LU, 0x67e293e8LU, 0xe01e11bdLU,
0xe33e2169LU, 0x64c2a33cLU, 0xa08b68c3LU, 0x2777ea96LU, 0x6519b370LU, 0xe2e53125LU, 0x26acfadaLU, 0xa150788fLU,
0xfb73ec2aLU, 0x7c8f6e7fLU, 0xb8c6a580LU, 0x3f3a27d5LU, 0x7d547e33LU, 0xfaa8fc66LU, 0x3ee13799LU, 0xb91db5ccLU,
0xba3d8518LU, 0x3dc1074dLU, 0xf988ccb2LU, 0x7e744ee7LU, 0x3c1a1701LU, 0xbbe69554LU, 0x7faf5eabLU, 0xf853dcfeLU,
0x79ef3e4eLU, 0xfe13bc1bLU, 0x3a5a77e4LU, 0xbda6f5b1LU, 0xffc8ac57LU, 0x78342e02LU, 0xbc7de5fdLU, 0x3b8167a8LU,
0x38a1577cLU, 0xbf5dd529LU, 0x7b141ed6LU, 0xfce89c83LU, 0xbe86c565LU, 0x397a4730LU, 0xfd338ccfLU, 0x7acf0e9aLU,
0xb20605e2LU, 0x35fa87b7LU, 0xf1b34c48LU, 0x764fce1dLU, 0x342197fbLU, 0xb3dd15aeLU, 0x7794de51LU, 0xf0685c04LU,
0xf3486cd0LU, 0x74b4ee85LU, 0xb0fd257aLU, 0x3701a72fLU, 0x756ffec9LU, 0xf2937c9cLU, 0x36dab763LU, 0xb1263536LU,
0x309ad786LU, 0xb76655d3LU, 0x732f9e2cLU, 0xf4d31c79LU, 0xb6bd459fLU, 0x3141c7caLU, 0xf5080c35LU, 0x72f48e60LU,
0x71d4beb4LU, 0xf6283ce1LU, 0x3261f71eLU, 0xb59d754bLU, 0xf7f32cadLU, 0x700faef8LU, 0xb4466507LU, 0x33bae752LU };
static const ulong32 rs_tab3[256] = {
0x00000000LU, 0x5ac1f387LU, 0xb4cfab43LU, 0xee0e58c4LU, 0x25d31b86LU, 0x7f12e801LU, 0x911cb0c5LU, 0xcbdd4342LU,
0x4aeb3641LU, 0x102ac5c6LU, 0xfe249d02LU, 0xa4e56e85LU, 0x6f382dc7LU, 0x35f9de40LU, 0xdbf78684LU, 0x81367503LU,
0x949b6c82LU, 0xce5a9f05LU, 0x2054c7c1LU, 0x7a953446LU, 0xb1487704LU, 0xeb898483LU, 0x0587dc47LU, 0x5f462fc0LU,
0xde705ac3LU, 0x84b1a944LU, 0x6abff180LU, 0x307e0207LU, 0xfba34145LU, 0xa162b2c2LU, 0x4f6cea06LU, 0x15ad1981LU,
0x657bd849LU, 0x3fba2bceLU, 0xd1b4730aLU, 0x8b75808dLU, 0x40a8c3cfLU, 0x1a693048LU, 0xf467688cLU, 0xaea69b0bLU,
0x2f90ee08LU, 0x75511d8fLU, 0x9b5f454bLU, 0xc19eb6ccLU, 0x0a43f58eLU, 0x50820609LU, 0xbe8c5ecdLU, 0xe44dad4aLU,
0xf1e0b4cbLU, 0xab21474cLU, 0x452f1f88LU, 0x1feeec0fLU, 0xd433af4dLU, 0x8ef25ccaLU, 0x60fc040eLU, 0x3a3df789LU,
0xbb0b828aLU, 0xe1ca710dLU, 0x0fc429c9LU, 0x5505da4eLU, 0x9ed8990cLU, 0xc4196a8bLU, 0x2a17324fLU, 0x70d6c1c8LU,
0xcaf6fd92LU, 0x90370e15LU, 0x7e3956d1LU, 0x24f8a556LU, 0xef25e614LU, 0xb5e41593LU, 0x5bea4d57LU, 0x012bbed0LU,
0x801dcbd3LU, 0xdadc3854LU, 0x34d26090LU, 0x6e139317LU, 0xa5ced055LU, 0xff0f23d2LU, 0x11017b16LU, 0x4bc08891LU,
0x5e6d9110LU, 0x04ac6297LU, 0xeaa23a53LU, 0xb063c9d4LU, 0x7bbe8a96LU, 0x217f7911LU, 0xcf7121d5LU, 0x95b0d252LU,
0x1486a751LU, 0x4e4754d6LU, 0xa0490c12LU, 0xfa88ff95LU, 0x3155bcd7LU, 0x6b944f50LU, 0x859a1794LU, 0xdf5be413LU,
0xaf8d25dbLU, 0xf54cd65cLU, 0x1b428e98LU, 0x41837d1fLU, 0x8a5e3e5dLU, 0xd09fcddaLU, 0x3e91951eLU, 0x64506699LU,
0xe566139aLU, 0xbfa7e01dLU, 0x51a9b8d9LU, 0x0b684b5eLU, 0xc0b5081cLU, 0x9a74fb9bLU, 0x747aa35fLU, 0x2ebb50d8LU,
0x3b164959LU, 0x61d7badeLU, 0x8fd9e21aLU, 0xd518119dLU, 0x1ec552dfLU, 0x4404a158LU, 0xaa0af99cLU, 0xf0cb0a1bLU,
0x71fd7f18LU, 0x2b3c8c9fLU, 0xc532d45bLU, 0x9ff327dcLU, 0x542e649eLU, 0x0eef9719LU, 0xe0e1cfddLU, 0xba203c5aLU,
0xd9a1b769LU, 0x836044eeLU, 0x6d6e1c2aLU, 0x37afefadLU, 0xfc72acefLU, 0xa6b35f68LU, 0x48bd07acLU, 0x127cf42bLU,
0x934a8128LU, 0xc98b72afLU, 0x27852a6bLU, 0x7d44d9ecLU, 0xb6999aaeLU, 0xec586929LU, 0x025631edLU, 0x5897c26aLU,
0x4d3adbebLU, 0x17fb286cLU, 0xf9f570a8LU, 0xa334832fLU, 0x68e9c06dLU, 0x322833eaLU, 0xdc266b2eLU, 0x86e798a9LU,
0x07d1edaaLU, 0x5d101e2dLU, 0xb31e46e9LU, 0xe9dfb56eLU, 0x2202f62cLU, 0x78c305abLU, 0x96cd5d6fLU, 0xcc0caee8LU,
0xbcda6f20LU, 0xe61b9ca7LU, 0x0815c463LU, 0x52d437e4LU, 0x990974a6LU, 0xc3c88721LU, 0x2dc6dfe5LU, 0x77072c62LU,
0xf6315961LU, 0xacf0aae6LU, 0x42fef222LU, 0x183f01a5LU, 0xd3e242e7LU, 0x8923b160LU, 0x672de9a4LU, 0x3dec1a23LU,
0x284103a2LU, 0x7280f025LU, 0x9c8ea8e1LU, 0xc64f5b66LU, 0x0d921824LU, 0x5753eba3LU, 0xb95db367LU, 0xe39c40e0LU,
0x62aa35e3LU, 0x386bc664LU, 0xd6659ea0LU, 0x8ca46d27LU, 0x47792e65LU, 0x1db8dde2LU, 0xf3b68526LU, 0xa97776a1LU,
0x13574afbLU, 0x4996b97cLU, 0xa798e1b8LU, 0xfd59123fLU, 0x3684517dLU, 0x6c45a2faLU, 0x824bfa3eLU, 0xd88a09b9LU,
0x59bc7cbaLU, 0x037d8f3dLU, 0xed73d7f9LU, 0xb7b2247eLU, 0x7c6f673cLU, 0x26ae94bbLU, 0xc8a0cc7fLU, 0x92613ff8LU,
0x87cc2679LU, 0xdd0dd5feLU, 0x33038d3aLU, 0x69c27ebdLU, 0xa21f3dffLU, 0xf8dece78LU, 0x16d096bcLU, 0x4c11653bLU,
0xcd271038LU, 0x97e6e3bfLU, 0x79e8bb7bLU, 0x232948fcLU, 0xe8f40bbeLU, 0xb235f839LU, 0x5c3ba0fdLU, 0x06fa537aLU,
0x762c92b2LU, 0x2ced6135LU, 0xc2e339f1LU, 0x9822ca76LU, 0x53ff8934LU, 0x093e7ab3LU, 0xe7302277LU, 0xbdf1d1f0LU,
0x3cc7a4f3LU, 0x66065774LU, 0x88080fb0LU, 0xd2c9fc37LU, 0x1914bf75LU, 0x43d54cf2LU, 0xaddb1436LU, 0xf71ae7b1LU,
0xe2b7fe30LU, 0xb8760db7LU, 0x56785573LU, 0x0cb9a6f4LU, 0xc764e5b6LU, 0x9da51631LU, 0x73ab4ef5LU, 0x296abd72LU,
0xa85cc871LU, 0xf29d3bf6LU, 0x1c936332LU, 0x465290b5LU, 0x8d8fd3f7LU, 0xd74e2070LU, 0x394078b4LU, 0x63818b33LU };
static const ulong32 rs_tab4[256] = {
0x00000000LU, 0x58471e5aLU, 0xb08e3cb4LU, 0xe8c922eeLU, 0x2d517825LU, 0x7516667fLU, 0x9ddf4491LU, 0xc5985acbLU,
0x5aa2f04aLU, 0x02e5ee10LU, 0xea2cccfeLU, 0xb26bd2a4LU, 0x77f3886fLU, 0x2fb49635LU, 0xc77db4dbLU, 0x9f3aaa81LU,
0xb409ad94LU, 0xec4eb3ceLU, 0x04879120LU, 0x5cc08f7aLU, 0x9958d5b1LU, 0xc11fcbebLU, 0x29d6e905LU, 0x7191f75fLU,
0xeeab5ddeLU, 0xb6ec4384LU, 0x5e25616aLU, 0x06627f30LU, 0xc3fa25fbLU, 0x9bbd3ba1LU, 0x7374194fLU, 0x2b330715LU,
0x25121765LU, 0x7d55093fLU, 0x959c2bd1LU, 0xcddb358bLU, 0x08436f40LU, 0x5004711aLU, 0xb8cd53f4LU, 0xe08a4daeLU,
0x7fb0e72fLU, 0x27f7f975LU, 0xcf3edb9bLU, 0x9779c5c1LU, 0x52e19f0aLU, 0x0aa68150LU, 0xe26fa3beLU, 0xba28bde4LU,
0x911bbaf1LU, 0xc95ca4abLU, 0x21958645LU, 0x79d2981fLU, 0xbc4ac2d4LU, 0xe40ddc8eLU, 0x0cc4fe60LU, 0x5483e03aLU,
0xcbb94abbLU, 0x93fe54e1LU, 0x7b37760fLU, 0x23706855LU, 0xe6e8329eLU, 0xbeaf2cc4LU, 0x56660e2aLU, 0x0e211070LU,
0x4a242ecaLU, 0x12633090LU, 0xfaaa127eLU, 0xa2ed0c24LU, 0x677556efLU, 0x3f3248b5LU, 0xd7fb6a5bLU, 0x8fbc7401LU,
0x1086de80LU, 0x48c1c0daLU, 0xa008e234LU, 0xf84ffc6eLU, 0x3dd7a6a5LU, 0x6590b8ffLU, 0x8d599a11LU, 0xd51e844bLU,
0xfe2d835eLU, 0xa66a9d04LU, 0x4ea3bfeaLU, 0x16e4a1b0LU, 0xd37cfb7bLU, 0x8b3be521LU, 0x63f2c7cfLU, 0x3bb5d995LU,
0xa48f7314LU, 0xfcc86d4eLU, 0x14014fa0LU, 0x4c4651faLU, 0x89de0b31LU, 0xd199156bLU, 0x39503785LU, 0x611729dfLU,
0x6f3639afLU, 0x377127f5LU, 0xdfb8051bLU, 0x87ff1b41LU, 0x4267418aLU, 0x1a205fd0LU, 0xf2e97d3eLU, 0xaaae6364LU,
0x3594c9e5LU, 0x6dd3d7bfLU, 0x851af551LU, 0xdd5deb0bLU, 0x18c5b1c0LU, 0x4082af9aLU, 0xa84b8d74LU, 0xf00c932eLU,
0xdb3f943bLU, 0x83788a61LU, 0x6bb1a88fLU, 0x33f6b6d5LU, 0xf66eec1eLU, 0xae29f244LU, 0x46e0d0aaLU, 0x1ea7cef0LU,
0x819d6471LU, 0xd9da7a2bLU, 0x311358c5LU, 0x6954469fLU, 0xaccc1c54LU, 0xf48b020eLU, 0x1c4220e0LU, 0x44053ebaLU,
0x94485cd9LU, 0xcc0f4283LU, 0x24c6606dLU, 0x7c817e37LU, 0xb91924fcLU, 0xe15e3aa6LU, 0x09971848LU, 0x51d00612LU,
0xceeaac93LU, 0x96adb2c9LU, 0x7e649027LU, 0x26238e7dLU, 0xe3bbd4b6LU, 0xbbfccaecLU, 0x5335e802LU, 0x0b72f658LU,
0x2041f14dLU, 0x7806ef17LU, 0x90cfcdf9LU, 0xc888d3a3LU, 0x0d108968LU, 0x55579732LU, 0xbd9eb5dcLU, 0xe5d9ab86LU,
0x7ae30107LU, 0x22a41f5dLU, 0xca6d3db3LU, 0x922a23e9LU, 0x57b27922LU, 0x0ff56778LU, 0xe73c4596LU, 0xbf7b5bccLU,
0xb15a4bbcLU, 0xe91d55e6LU, 0x01d47708LU, 0x59936952LU, 0x9c0b3399LU, 0xc44c2dc3LU, 0x2c850f2dLU, 0x74c21177LU,
0xebf8bbf6LU, 0xb3bfa5acLU, 0x5b768742LU, 0x03319918LU, 0xc6a9c3d3LU, 0x9eeedd89LU, 0x7627ff67LU, 0x2e60e13dLU,
0x0553e628LU, 0x5d14f872LU, 0xb5ddda9cLU, 0xed9ac4c6LU, 0x28029e0dLU, 0x70458057LU, 0x988ca2b9LU, 0xc0cbbce3LU,
0x5ff11662LU, 0x07b60838LU, 0xef7f2ad6LU, 0xb738348cLU, 0x72a06e47LU, 0x2ae7701dLU, 0xc22e52f3LU, 0x9a694ca9LU,
0xde6c7213LU, 0x862b6c49LU, 0x6ee24ea7LU, 0x36a550fdLU, 0xf33d0a36LU, 0xab7a146cLU, 0x43b33682LU, 0x1bf428d8LU,
0x84ce8259LU, 0xdc899c03LU, 0x3440beedLU, 0x6c07a0b7LU, 0xa99ffa7cLU, 0xf1d8e426LU, 0x1911c6c8LU, 0x4156d892LU,
0x6a65df87LU, 0x3222c1ddLU, 0xdaebe333LU, 0x82acfd69LU, 0x4734a7a2LU, 0x1f73b9f8LU, 0xf7ba9b16LU, 0xaffd854cLU,
0x30c72fcdLU, 0x68803197LU, 0x80491379LU, 0xd80e0d23LU, 0x1d9657e8LU, 0x45d149b2LU, 0xad186b5cLU, 0xf55f7506LU,
0xfb7e6576LU, 0xa3397b2cLU, 0x4bf059c2LU, 0x13b74798LU, 0xd62f1d53LU, 0x8e680309LU, 0x66a121e7LU, 0x3ee63fbdLU,
0xa1dc953cLU, 0xf99b8b66LU, 0x1152a988LU, 0x4915b7d2LU, 0x8c8ded19LU, 0xd4caf343LU, 0x3c03d1adLU, 0x6444cff7LU,
0x4f77c8e2LU, 0x1730d6b8LU, 0xfff9f456LU, 0xa7beea0cLU, 0x6226b0c7LU, 0x3a61ae9dLU, 0xd2a88c73LU, 0x8aef9229LU,
0x15d538a8LU, 0x4d9226f2LU, 0xa55b041cLU, 0xfd1c1a46LU, 0x3884408dLU, 0x60c35ed7LU, 0x880a7c39LU, 0xd04d6263LU };
static const ulong32 rs_tab5[256] = {
0x00000000LU, 0xdbaec658LU, 0xfb11c1b0LU, 0x20bf07e8LU, 0xbb22cf2dLU, 0x608c0975LU, 0x40330e9dLU, 0x9b9dc8c5LU,
0x3b44d35aLU, 0xe0ea1502LU, 0xc05512eaLU, 0x1bfbd4b2LU, 0x80661c77LU, 0x5bc8da2fLU, 0x7b77ddc7LU, 0xa0d91b9fLU,
0x7688ebb4LU, 0xad262decLU, 0x8d992a04LU, 0x5637ec5cLU, 0xcdaa2499LU, 0x1604e2c1LU, 0x36bbe529LU, 0xed152371LU,
0x4dcc38eeLU, 0x9662feb6LU, 0xb6ddf95eLU, 0x6d733f06LU, 0xf6eef7c3LU, 0x2d40319bLU, 0x0dff3673LU, 0xd651f02bLU,
0xec5d9b25LU, 0x37f35d7dLU, 0x174c5a95LU, 0xcce29ccdLU, 0x577f5408LU, 0x8cd19250LU, 0xac6e95b8LU, 0x77c053e0LU,
0xd719487fLU, 0x0cb78e27LU, 0x2c0889cfLU, 0xf7a64f97LU, 0x6c3b8752LU, 0xb795410aLU, 0x972a46e2LU, 0x4c8480baLU,
0x9ad57091LU, 0x417bb6c9LU, 0x61c4b121LU, 0xba6a7779LU, 0x21f7bfbcLU, 0xfa5979e4LU, 0xdae67e0cLU, 0x0148b854LU,
0xa191a3cbLU, 0x7a3f6593LU, 0x5a80627bLU, 0x812ea423LU, 0x1ab36ce6LU, 0xc11daabeLU, 0xe1a2ad56LU, 0x3a0c6b0eLU,
0x95ba7b4aLU, 0x4e14bd12LU, 0x6eabbafaLU, 0xb5057ca2LU, 0x2e98b467LU, 0xf536723fLU, 0xd58975d7LU, 0x0e27b38fLU,
0xaefea810LU, 0x75506e48LU, 0x55ef69a0LU, 0x8e41aff8LU, 0x15dc673dLU, 0xce72a165LU, 0xeecda68dLU, 0x356360d5LU,
0xe33290feLU, 0x389c56a6LU, 0x1823514eLU, 0xc38d9716LU, 0x58105fd3LU, 0x83be998bLU, 0xa3019e63LU, 0x78af583bLU,
0xd87643a4LU, 0x03d885fcLU, 0x23678214LU, 0xf8c9444cLU, 0x63548c89LU, 0xb8fa4ad1LU, 0x98454d39LU, 0x43eb8b61LU,
0x79e7e06fLU, 0xa2492637LU, 0x82f621dfLU, 0x5958e787LU, 0xc2c52f42LU, 0x196be91aLU, 0x39d4eef2LU, 0xe27a28aaLU,
0x42a33335LU, 0x990df56dLU, 0xb9b2f285LU, 0x621c34ddLU, 0xf981fc18LU, 0x222f3a40LU, 0x02903da8LU, 0xd93efbf0LU,
0x0f6f0bdbLU, 0xd4c1cd83LU, 0xf47eca6bLU, 0x2fd00c33LU, 0xb44dc4f6LU, 0x6fe302aeLU, 0x4f5c0546LU, 0x94f2c31eLU,
0x342bd881LU, 0xef851ed9LU, 0xcf3a1931LU, 0x1494df69LU, 0x8f0917acLU, 0x54a7d1f4LU, 0x7418d61cLU, 0xafb61044LU,
0x6739f694LU, 0xbc9730ccLU, 0x9c283724LU, 0x4786f17cLU, 0xdc1b39b9LU, 0x07b5ffe1LU, 0x270af809LU, 0xfca43e51LU,
0x5c7d25ceLU, 0x87d3e396LU, 0xa76ce47eLU, 0x7cc22226LU, 0xe75feae3LU, 0x3cf12cbbLU, 0x1c4e2b53LU, 0xc7e0ed0bLU,
0x11b11d20LU, 0xca1fdb78LU, 0xeaa0dc90LU, 0x310e1ac8LU, 0xaa93d20dLU, 0x713d1455LU, 0x518213bdLU, 0x8a2cd5e5LU,
0x2af5ce7aLU, 0xf15b0822LU, 0xd1e40fcaLU, 0x0a4ac992LU, 0x91d70157LU, 0x4a79c70fLU, 0x6ac6c0e7LU, 0xb16806bfLU,
0x8b646db1LU, 0x50caabe9LU, 0x7075ac01LU, 0xabdb6a59LU, 0x3046a29cLU, 0xebe864c4LU, 0xcb57632cLU, 0x10f9a574LU,
0xb020beebLU, 0x6b8e78b3LU, 0x4b317f5bLU, 0x909fb903LU, 0x0b0271c6LU, 0xd0acb79eLU, 0xf013b076LU, 0x2bbd762eLU,
0xfdec8605LU, 0x2642405dLU, 0x06fd47b5LU, 0xdd5381edLU, 0x46ce4928LU, 0x9d608f70LU, 0xbddf8898LU, 0x66714ec0LU,
0xc6a8555fLU, 0x1d069307LU, 0x3db994efLU, 0xe61752b7LU, 0x7d8a9a72LU, 0xa6245c2aLU, 0x869b5bc2LU, 0x5d359d9aLU,
0xf2838ddeLU, 0x292d4b86LU, 0x09924c6eLU, 0xd23c8a36LU, 0x49a142f3LU, 0x920f84abLU, 0xb2b08343LU, 0x691e451bLU,
0xc9c75e84LU, 0x126998dcLU, 0x32d69f34LU, 0xe978596cLU, 0x72e591a9LU, 0xa94b57f1LU, 0x89f45019LU, 0x525a9641LU,
0x840b666aLU, 0x5fa5a032LU, 0x7f1aa7daLU, 0xa4b46182LU, 0x3f29a947LU, 0xe4876f1fLU, 0xc43868f7LU, 0x1f96aeafLU,
0xbf4fb530LU, 0x64e17368LU, 0x445e7480LU, 0x9ff0b2d8LU, 0x046d7a1dLU, 0xdfc3bc45LU, 0xff7cbbadLU, 0x24d27df5LU,
0x1ede16fbLU, 0xc570d0a3LU, 0xe5cfd74bLU, 0x3e611113LU, 0xa5fcd9d6LU, 0x7e521f8eLU, 0x5eed1866LU, 0x8543de3eLU,
0x259ac5a1LU, 0xfe3403f9LU, 0xde8b0411LU, 0x0525c249LU, 0x9eb80a8cLU, 0x4516ccd4LU, 0x65a9cb3cLU, 0xbe070d64LU,
0x6856fd4fLU, 0xb3f83b17LU, 0x93473cffLU, 0x48e9faa7LU, 0xd3743262LU, 0x08daf43aLU, 0x2865f3d2LU, 0xf3cb358aLU,
0x53122e15LU, 0x88bce84dLU, 0xa803efa5LU, 0x73ad29fdLU, 0xe830e138LU, 0x339e2760LU, 0x13212088LU, 0xc88fe6d0LU };
static const ulong32 rs_tab6[256] = {
0x00000000LU, 0x9e3d68dbLU, 0x717ad0fbLU, 0xef47b820LU, 0xe2f4edbbLU, 0x7cc98560LU, 0x938e3d40LU, 0x0db3559bLU,
0x89a5973bLU, 0x1798ffe0LU, 0xf8df47c0LU, 0x66e22f1bLU, 0x6b517a80LU, 0xf56c125bLU, 0x1a2baa7bLU, 0x8416c2a0LU,
0x5f076376LU, 0xc13a0badLU, 0x2e7db38dLU, 0xb040db56LU, 0xbdf38ecdLU, 0x23cee616LU, 0xcc895e36LU, 0x52b436edLU,
0xd6a2f44dLU, 0x489f9c96LU, 0xa7d824b6LU, 0x39e54c6dLU, 0x345619f6LU, 0xaa6b712dLU, 0x452cc90dLU, 0xdb11a1d6LU,
0xbe0ec6ecLU, 0x2033ae37LU, 0xcf741617LU, 0x51497eccLU, 0x5cfa2b57LU, 0xc2c7438cLU, 0x2d80fbacLU, 0xb3bd9377LU,
0x37ab51d7LU, 0xa996390cLU, 0x46d1812cLU, 0xd8ece9f7LU, 0xd55fbc6cLU, 0x4b62d4b7LU, 0xa4256c97LU, 0x3a18044cLU,
0xe109a59aLU, 0x7f34cd41LU, 0x90737561LU, 0x0e4e1dbaLU, 0x03fd4821LU, 0x9dc020faLU, 0x728798daLU, 0xecbaf001LU,
0x68ac32a1LU, 0xf6915a7aLU, 0x19d6e25aLU, 0x87eb8a81LU, 0x8a58df1aLU, 0x1465b7c1LU, 0xfb220fe1LU, 0x651f673aLU,
0x311cc195LU, 0xaf21a94eLU, 0x4066116eLU, 0xde5b79b5LU, 0xd3e82c2eLU, 0x4dd544f5LU, 0xa292fcd5LU, 0x3caf940eLU,
0xb8b956aeLU, 0x26843e75LU, 0xc9c38655LU, 0x57feee8eLU, 0x5a4dbb15LU, 0xc470d3ceLU, 0x2b376beeLU, 0xb50a0335LU,
0x6e1ba2e3LU, 0xf026ca38LU, 0x1f617218LU, 0x815c1ac3LU, 0x8cef4f58LU, 0x12d22783LU, 0xfd959fa3LU, 0x63a8f778LU,
0xe7be35d8LU, 0x79835d03LU, 0x96c4e523LU, 0x08f98df8LU, 0x054ad863LU, 0x9b77b0b8LU, 0x74300898LU, 0xea0d6043LU,
0x8f120779LU, 0x112f6fa2LU, 0xfe68d782LU, 0x6055bf59LU, 0x6de6eac2LU, 0xf3db8219LU, 0x1c9c3a39LU, 0x82a152e2LU,
0x06b79042LU, 0x988af899LU, 0x77cd40b9LU, 0xe9f02862LU, 0xe4437df9LU, 0x7a7e1522LU, 0x9539ad02LU, 0x0b04c5d9LU,
0xd015640fLU, 0x4e280cd4LU, 0xa16fb4f4LU, 0x3f52dc2fLU, 0x32e189b4LU, 0xacdce16fLU, 0x439b594fLU, 0xdda63194LU,
0x59b0f334LU, 0xc78d9befLU, 0x28ca23cfLU, 0xb6f74b14LU, 0xbb441e8fLU, 0x25797654LU, 0xca3ece74LU, 0x5403a6afLU,
0x6238cf67LU, 0xfc05a7bcLU, 0x13421f9cLU, 0x8d7f7747LU, 0x80cc22dcLU, 0x1ef14a07LU, 0xf1b6f227LU, 0x6f8b9afcLU,
0xeb9d585cLU, 0x75a03087LU, 0x9ae788a7LU, 0x04dae07cLU, 0x0969b5e7LU, 0x9754dd3cLU, 0x7813651cLU, 0xe62e0dc7LU,
0x3d3fac11LU, 0xa302c4caLU, 0x4c457ceaLU, 0xd2781431LU, 0xdfcb41aaLU, 0x41f62971LU, 0xaeb19151LU, 0x308cf98aLU,
0xb49a3b2aLU, 0x2aa753f1LU, 0xc5e0ebd1LU, 0x5bdd830aLU, 0x566ed691LU, 0xc853be4aLU, 0x2714066aLU, 0xb9296eb1LU,
0xdc36098bLU, 0x420b6150LU, 0xad4cd970LU, 0x3371b1abLU, 0x3ec2e430LU, 0xa0ff8cebLU, 0x4fb834cbLU, 0xd1855c10LU,
0x55939eb0LU, 0xcbaef66bLU, 0x24e94e4bLU, 0xbad42690LU, 0xb767730bLU, 0x295a1bd0LU, 0xc61da3f0LU, 0x5820cb2bLU,
0x83316afdLU, 0x1d0c0226LU, 0xf24bba06LU, 0x6c76d2ddLU, 0x61c58746LU, 0xfff8ef9dLU, 0x10bf57bdLU, 0x8e823f66LU,
0x0a94fdc6LU, 0x94a9951dLU, 0x7bee2d3dLU, 0xe5d345e6LU, 0xe860107dLU, 0x765d78a6LU, 0x991ac086LU, 0x0727a85dLU,
0x53240ef2LU, 0xcd196629LU, 0x225ede09LU, 0xbc63b6d2LU, 0xb1d0e349LU, 0x2fed8b92LU, 0xc0aa33b2LU, 0x5e975b69LU,
0xda8199c9LU, 0x44bcf112LU, 0xabfb4932LU, 0x35c621e9LU, 0x38757472LU, 0xa6481ca9LU, 0x490fa489LU, 0xd732cc52LU,
0x0c236d84LU, 0x921e055fLU, 0x7d59bd7fLU, 0xe364d5a4LU, 0xeed7803fLU, 0x70eae8e4LU, 0x9fad50c4LU, 0x0190381fLU,
0x8586fabfLU, 0x1bbb9264LU, 0xf4fc2a44LU, 0x6ac1429fLU, 0x67721704LU, 0xf94f7fdfLU, 0x1608c7ffLU, 0x8835af24LU,
0xed2ac81eLU, 0x7317a0c5LU, 0x9c5018e5LU, 0x026d703eLU, 0x0fde25a5LU, 0x91e34d7eLU, 0x7ea4f55eLU, 0xe0999d85LU,
0x648f5f25LU, 0xfab237feLU, 0x15f58fdeLU, 0x8bc8e705LU, 0x867bb29eLU, 0x1846da45LU, 0xf7016265LU, 0x693c0abeLU,
0xb22dab68LU, 0x2c10c3b3LU, 0xc3577b93LU, 0x5d6a1348LU, 0x50d946d3LU, 0xcee42e08LU, 0x21a39628LU, 0xbf9efef3LU,
0x3b883c53LU, 0xa5b55488LU, 0x4af2eca8LU, 0xd4cf8473LU, 0xd97cd1e8LU, 0x4741b933LU, 0xa8060113LU, 0x363b69c8LU };
static const ulong32 rs_tab7[256] = {
0x00000000LU, 0x0319e59eLU, 0x06328771LU, 0x052b62efLU, 0x0c6443e2LU, 0x0f7da67cLU, 0x0a56c493LU, 0x094f210dLU,
0x18c88689LU, 0x1bd16317LU, 0x1efa01f8LU, 0x1de3e466LU, 0x14acc56bLU, 0x17b520f5LU, 0x129e421aLU, 0x1187a784LU,
0x30dd415fLU, 0x33c4a4c1LU, 0x36efc62eLU, 0x35f623b0LU, 0x3cb902bdLU, 0x3fa0e723LU, 0x3a8b85ccLU, 0x39926052LU,
0x2815c7d6LU, 0x2b0c2248LU, 0x2e2740a7LU, 0x2d3ea539LU, 0x24718434LU, 0x276861aaLU, 0x22430345LU, 0x215ae6dbLU,
0x60f782beLU, 0x63ee6720LU, 0x66c505cfLU, 0x65dce051LU, 0x6c93c15cLU, 0x6f8a24c2LU, 0x6aa1462dLU, 0x69b8a3b3LU,
0x783f0437LU, 0x7b26e1a9LU, 0x7e0d8346LU, 0x7d1466d8LU, 0x745b47d5LU, 0x7742a24bLU, 0x7269c0a4LU, 0x7170253aLU,
0x502ac3e1LU, 0x5333267fLU, 0x56184490LU, 0x5501a10eLU, 0x5c4e8003LU, 0x5f57659dLU, 0x5a7c0772LU, 0x5965e2ecLU,
0x48e24568LU, 0x4bfba0f6LU, 0x4ed0c219LU, 0x4dc92787LU, 0x4486068aLU, 0x479fe314LU, 0x42b481fbLU, 0x41ad6465LU,
0xc0a34931LU, 0xc3baacafLU, 0xc691ce40LU, 0xc5882bdeLU, 0xccc70ad3LU, 0xcfdeef4dLU, 0xcaf58da2LU, 0xc9ec683cLU,
0xd86bcfb8LU, 0xdb722a26LU, 0xde5948c9LU, 0xdd40ad57LU, 0xd40f8c5aLU, 0xd71669c4LU, 0xd23d0b2bLU, 0xd124eeb5LU,
0xf07e086eLU, 0xf367edf0LU, 0xf64c8f1fLU, 0xf5556a81LU, 0xfc1a4b8cLU, 0xff03ae12LU, 0xfa28ccfdLU, 0xf9312963LU,
0xe8b68ee7LU, 0xebaf6b79LU, 0xee840996LU, 0xed9dec08LU, 0xe4d2cd05LU, 0xe7cb289bLU, 0xe2e04a74LU, 0xe1f9afeaLU,
0xa054cb8fLU, 0xa34d2e11LU, 0xa6664cfeLU, 0xa57fa960LU, 0xac30886dLU, 0xaf296df3LU, 0xaa020f1cLU, 0xa91bea82LU,
0xb89c4d06LU, 0xbb85a898LU, 0xbeaeca77LU, 0xbdb72fe9LU, 0xb4f80ee4LU, 0xb7e1eb7aLU, 0xb2ca8995LU, 0xb1d36c0bLU,
0x90898ad0LU, 0x93906f4eLU, 0x96bb0da1LU, 0x95a2e83fLU, 0x9cedc932LU, 0x9ff42cacLU, 0x9adf4e43LU, 0x99c6abddLU,
0x88410c59LU, 0x8b58e9c7LU, 0x8e738b28LU, 0x8d6a6eb6LU, 0x84254fbbLU, 0x873caa25LU, 0x8217c8caLU, 0x810e2d54LU,
0xcd0b9262LU, 0xce1277fcLU, 0xcb391513LU, 0xc820f08dLU, 0xc16fd180LU, 0xc276341eLU, 0xc75d56f1LU, 0xc444b36fLU,
0xd5c314ebLU, 0xd6daf175LU, 0xd3f1939aLU, 0xd0e87604LU, 0xd9a75709LU, 0xdabeb297LU, 0xdf95d078LU, 0xdc8c35e6LU,
0xfdd6d33dLU, 0xfecf36a3LU, 0xfbe4544cLU, 0xf8fdb1d2LU, 0xf1b290dfLU, 0xf2ab7541LU, 0xf78017aeLU, 0xf499f230LU,
0xe51e55b4LU, 0xe607b02aLU, 0xe32cd2c5LU, 0xe035375bLU, 0xe97a1656LU, 0xea63f3c8LU, 0xef489127LU, 0xec5174b9LU,
0xadfc10dcLU, 0xaee5f542LU, 0xabce97adLU, 0xa8d77233LU, 0xa198533eLU, 0xa281b6a0LU, 0xa7aad44fLU, 0xa4b331d1LU,
0xb5349655LU, 0xb62d73cbLU, 0xb3061124LU, 0xb01ff4baLU, 0xb950d5b7LU, 0xba493029LU, 0xbf6252c6LU, 0xbc7bb758LU,
0x9d215183LU, 0x9e38b41dLU, 0x9b13d6f2LU, 0x980a336cLU, 0x91451261LU, 0x925cf7ffLU, 0x97779510LU, 0x946e708eLU,
0x85e9d70aLU, 0x86f03294LU, 0x83db507bLU, 0x80c2b5e5LU, 0x898d94e8LU, 0x8a947176LU, 0x8fbf1399LU, 0x8ca6f607LU,
0x0da8db53LU, 0x0eb13ecdLU, 0x0b9a5c22LU, 0x0883b9bcLU, 0x01cc98b1LU, 0x02d57d2fLU, 0x07fe1fc0LU, 0x04e7fa5eLU,
0x15605ddaLU, 0x1679b844LU, 0x1352daabLU, 0x104b3f35LU, 0x19041e38LU, 0x1a1dfba6LU, 0x1f369949LU, 0x1c2f7cd7LU,
0x3d759a0cLU, 0x3e6c7f92LU, 0x3b471d7dLU, 0x385ef8e3LU, 0x3111d9eeLU, 0x32083c70LU, 0x37235e9fLU, 0x343abb01LU,
0x25bd1c85LU, 0x26a4f91bLU, 0x238f9bf4LU, 0x20967e6aLU, 0x29d95f67LU, 0x2ac0baf9LU, 0x2febd816LU, 0x2cf23d88LU,
0x6d5f59edLU, 0x6e46bc73LU, 0x6b6dde9cLU, 0x68743b02LU, 0x613b1a0fLU, 0x6222ff91LU, 0x67099d7eLU, 0x641078e0LU,
0x7597df64LU, 0x768e3afaLU, 0x73a55815LU, 0x70bcbd8bLU, 0x79f39c86LU, 0x7aea7918LU, 0x7fc11bf7LU, 0x7cd8fe69LU,
0x5d8218b2LU, 0x5e9bfd2cLU, 0x5bb09fc3LU, 0x58a97a5dLU, 0x51e65b50LU, 0x52ffbeceLU, 0x57d4dc21LU, 0x54cd39bfLU,
0x454a9e3bLU, 0x46537ba5LU, 0x4378194aLU, 0x4061fcd4LU, 0x492eddd9LU, 0x4a373847LU, 0x4f1c5aa8LU, 0x4c05bf36LU };
#endif /* LTC_TWOFISH_ALL_TABLES */
#endif /* LTC_TWOFISH_TAB_C */
#endif

View File

@@ -0,0 +1,251 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file xtea.c
Implementation of eXtended TEA, Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_XTEA
const struct ltc_cipher_descriptor xtea_desc =
{
"xtea",
1,
16, 16, 8, 32,
&xtea_setup,
&xtea_ecb_encrypt,
&xtea_ecb_decrypt,
&xtea_test,
&xtea_done,
&xtea_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
int xtea_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
ulong32 x, sum, K[4];
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
/* check arguments */
if (keylen != 16) {
return CRYPT_INVALID_KEYSIZE;
}
if (num_rounds != 0 && num_rounds != 32) {
return CRYPT_INVALID_ROUNDS;
}
/* load key */
LOAD32H(K[0], key+0);
LOAD32H(K[1], key+4);
LOAD32H(K[2], key+8);
LOAD32H(K[3], key+12);
for (x = sum = 0; x < 32; x++) {
skey->xtea.A[x] = (sum + K[sum&3]) & 0xFFFFFFFFUL;
sum = (sum + 0x9E3779B9UL) & 0xFFFFFFFFUL;
skey->xtea.B[x] = (sum + K[(sum>>11)&3]) & 0xFFFFFFFFUL;
}
#ifdef LTC_CLEAN_STACK
zeromem(&K, sizeof(K));
#endif
return CRYPT_OK;
}
/**
Encrypts a block of text with LTC_XTEA
@param pt The input plaintext (8 bytes)
@param ct The output ciphertext (8 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
int xtea_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
{
ulong32 y, z;
int r;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
LOAD32H(y, &pt[0]);
LOAD32H(z, &pt[4]);
for (r = 0; r < 32; r += 4) {
y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r])) & 0xFFFFFFFFUL;
z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r])) & 0xFFFFFFFFUL;
y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r+1])) & 0xFFFFFFFFUL;
z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r+1])) & 0xFFFFFFFFUL;
y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r+2])) & 0xFFFFFFFFUL;
z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r+2])) & 0xFFFFFFFFUL;
y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r+3])) & 0xFFFFFFFFUL;
z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r+3])) & 0xFFFFFFFFUL;
}
STORE32H(y, &ct[0]);
STORE32H(z, &ct[4]);
return CRYPT_OK;
}
/**
Decrypts a block of text with LTC_XTEA
@param ct The input ciphertext (8 bytes)
@param pt The output plaintext (8 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
int xtea_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
{
ulong32 y, z;
int r;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
LOAD32H(y, &ct[0]);
LOAD32H(z, &ct[4]);
for (r = 31; r >= 0; r -= 4) {
z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r])) & 0xFFFFFFFFUL;
y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r])) & 0xFFFFFFFFUL;
z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r-1])) & 0xFFFFFFFFUL;
y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r-1])) & 0xFFFFFFFFUL;
z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r-2])) & 0xFFFFFFFFUL;
y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r-2])) & 0xFFFFFFFFUL;
z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r-3])) & 0xFFFFFFFFUL;
y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r-3])) & 0xFFFFFFFFUL;
}
STORE32H(y, &pt[0]);
STORE32H(z, &pt[4]);
return CRYPT_OK;
}
/**
Performs a self-test of the LTC_XTEA block cipher
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int xtea_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
unsigned char key[16], pt[8], ct[8];
} tests[] = {
{
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xde, 0xe9, 0xd4, 0xd8, 0xf7, 0x13, 0x1e, 0xd9 }
}, {
{ 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02,
0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x04 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0xa5, 0x97, 0xab, 0x41, 0x76, 0x01, 0x4d, 0x72 }
}, {
{ 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x04,
0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x06 },
{ 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02 },
{ 0xb1, 0xfd, 0x5d, 0xa9, 0xcc, 0x6d, 0xc9, 0xdc }
}, {
{ 0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f,
0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87 },
{ 0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87 },
{ 0x70, 0x4b, 0x31, 0x34, 0x47, 0x44, 0xdf, 0xab }
}, {
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
{ 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48 },
{ 0x49, 0x7d, 0xf3, 0xd0, 0x72, 0x61, 0x2c, 0xb5 }
}, {
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
{ 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 },
{ 0xe7, 0x8f, 0x2d, 0x13, 0x74, 0x43, 0x41, 0xd8 }
}, {
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
{ 0x5a, 0x5b, 0x6e, 0x27, 0x89, 0x48, 0xd7, 0x7f },
{ 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 }
}, {
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48 },
{ 0xa0, 0x39, 0x05, 0x89, 0xf8, 0xb8, 0xef, 0xa5 }
}, {
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 },
{ 0xed, 0x23, 0x37, 0x5a, 0x82, 0x1a, 0x8c, 0x2d }
}, {
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x70, 0xe1, 0x22, 0x5d, 0x6e, 0x4e, 0x76, 0x55 },
{ 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41 }
}
};
unsigned char tmp[2][8];
symmetric_key skey;
int i, err, y;
for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
zeromem(&skey, sizeof(skey));
if ((err = xtea_setup(tests[i].key, 16, 0, &skey)) != CRYPT_OK) {
return err;
}
xtea_ecb_encrypt(tests[i].pt, tmp[0], &skey);
xtea_ecb_decrypt(tmp[0], tmp[1], &skey);
if (compare_testvector(tmp[0], 8, tests[i].ct, 8, "XTEA Encrypt", i) != 0 ||
compare_testvector(tmp[1], 8, tests[i].pt, 8, "XTEA Decrypt", i) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
for (y = 0; y < 8; y++) tmp[0][y] = 0;
for (y = 0; y < 1000; y++) xtea_ecb_encrypt(tmp[0], tmp[0], &skey);
for (y = 0; y < 1000; y++) xtea_ecb_decrypt(tmp[0], tmp[0], &skey);
for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
} /* for */
return CRYPT_OK;
#endif
}
/** Terminate the context
@param skey The scheduled key
*/
void xtea_done(symmetric_key *skey)
{
LTC_UNUSED_PARAM(skey);
}
/**
Gets suitable key size
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
@return CRYPT_OK if the input key size is acceptable.
*/
int xtea_keysize(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize < 16) {
return CRYPT_INVALID_KEYSIZE;
}
*keysize = 16;
return CRYPT_OK;
}
#endif

View File

@@ -0,0 +1,53 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#ifdef LTC_CCM_MODE
/**
Add AAD to the CCM state
@param ccm The CCM state
@param adata The additional authentication data to add to the CCM state
@param adatalen The length of the AAD data.
@return CRYPT_OK on success
*/
int ccm_add_aad(ccm_state *ccm,
const unsigned char *adata, unsigned long adatalen)
{
unsigned long y;
int err;
LTC_ARGCHK(ccm != NULL);
LTC_ARGCHK(adata != NULL);
if (ccm->aadlen < ccm->current_aadlen + adatalen) {
return CRYPT_INVALID_ARG;
}
ccm->current_aadlen += adatalen;
/* now add the data */
for (y = 0; y < adatalen; y++) {
if (ccm->x == 16) {
/* full block so let's encrypt it */
if ((err = cipher_descriptor[ccm->cipher].ecb_encrypt(ccm->PAD, ccm->PAD, &ccm->K)) != CRYPT_OK) {
return err;
}
ccm->x = 0;
}
ccm->PAD[ccm->x++] ^= adata[y];
}
/* remainder? */
if (ccm->aadlen == ccm->current_aadlen) {
if (ccm->x != 0) {
if ((err = cipher_descriptor[ccm->cipher].ecb_encrypt(ccm->PAD, ccm->PAD, &ccm->K)) != CRYPT_OK) {
return err;
}
}
ccm->x = 0;
}
return CRYPT_OK;
}
#endif

View File

@@ -0,0 +1,109 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#ifdef LTC_CCM_MODE
/**
Add nonce data to the CCM state
@param ccm The CCM state
@param nonce The nonce data to add
@param noncelen The length of the nonce
@return CRYPT_OK on success
*/
int ccm_add_nonce(ccm_state *ccm,
const unsigned char *nonce, unsigned long noncelen)
{
unsigned long x, y, len;
int err;
LTC_ARGCHK(ccm != NULL);
LTC_ARGCHK(nonce != NULL);
/* increase L to match the nonce len */
ccm->noncelen = (noncelen > 13) ? 13 : noncelen;
if ((15 - ccm->noncelen) > ccm->L) {
ccm->L = 15 - ccm->noncelen;
}
if (ccm->L > 8) {
return CRYPT_INVALID_ARG;
}
/* decrease noncelen to match L */
if ((ccm->noncelen + ccm->L) > 15) {
ccm->noncelen = 15 - ccm->L;
}
/* form B_0 == flags | Nonce N | l(m) */
x = 0;
ccm->PAD[x++] = (unsigned char)(((ccm->aadlen > 0) ? (1<<6) : 0) |
(((ccm->taglen - 2)>>1)<<3) |
(ccm->L-1));
/* nonce */
for (y = 0; y < 15 - ccm->L; y++) {
ccm->PAD[x++] = nonce[y];
}
/* store len */
len = ccm->ptlen;
/* shift len so the upper bytes of len are the contents of the length */
for (y = ccm->L; y < 4; y++) {
len <<= 8;
}
/* store l(m) (only store 32-bits) */
for (y = 0; ccm->L > 4 && (ccm->L-y)>4; y++) {
ccm->PAD[x++] = 0;
}
for (; y < ccm->L; y++) {
if (x >= sizeof(ccm->PAD)) {
return CRYPT_INVALID_ARG;
}
ccm->PAD[x++] = (unsigned char)((len >> 24) & 255);
len <<= 8;
}
/* encrypt PAD */
if ((err = cipher_descriptor[ccm->cipher].ecb_encrypt(ccm->PAD, ccm->PAD, &ccm->K)) != CRYPT_OK) {
return err;
}
/* handle header */
ccm->x = 0;
if (ccm->aadlen > 0) {
/* store length */
if (ccm->aadlen < ((1UL<<16) - (1UL<<8))) {
ccm->PAD[ccm->x++] ^= (ccm->aadlen>>8) & 255;
ccm->PAD[ccm->x++] ^= ccm->aadlen & 255;
} else {
ccm->PAD[ccm->x++] ^= 0xFF;
ccm->PAD[ccm->x++] ^= 0xFE;
ccm->PAD[ccm->x++] ^= (ccm->aadlen>>24) & 255;
ccm->PAD[ccm->x++] ^= (ccm->aadlen>>16) & 255;
ccm->PAD[ccm->x++] ^= (ccm->aadlen>>8) & 255;
ccm->PAD[ccm->x++] ^= ccm->aadlen & 255;
}
}
/* setup the ctr counter */
x = 0;
/* flags */
ccm->ctr[x++] = (unsigned char)ccm->L-1;
/* nonce */
for (y = 0; y < (16 - (ccm->L+1)); ++y) {
ccm->ctr[x++] = nonce[y];
}
/* offset */
while (x < 16) {
ccm->ctr[x++] = 0;
}
ccm->CTRlen = 16;
return CRYPT_OK;
}
#endif

View File

@@ -0,0 +1,55 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#ifdef LTC_CCM_MODE
/**
Terminate a CCM stream
@param ccm The CCM state
@param tag [out] The destination for the MAC tag
@param taglen [in/out] The length of the MAC tag
@return CRYPT_OK on success
*/
int ccm_done(ccm_state *ccm,
unsigned char *tag, unsigned long *taglen)
{
unsigned long x, y;
int err;
LTC_ARGCHK(ccm != NULL);
/* Check all data have been processed */
if (ccm->ptlen != ccm->current_ptlen) {
return CRYPT_ERROR;
}
LTC_ARGCHK(tag != NULL);
LTC_ARGCHK(taglen != NULL);
if (ccm->x != 0) {
if ((err = cipher_descriptor[ccm->cipher].ecb_encrypt(ccm->PAD, ccm->PAD, &ccm->K)) != CRYPT_OK) {
return err;
}
}
/* setup CTR for the TAG (zero the count) */
for (y = 15; y > 15 - ccm->L; y--) {
ccm->ctr[y] = 0x00;
}
if ((err = cipher_descriptor[ccm->cipher].ecb_encrypt(ccm->ctr, ccm->CTRPAD, &ccm->K)) != CRYPT_OK) {
return err;
}
cipher_descriptor[ccm->cipher].done(&ccm->K);
/* store the TAG */
for (x = 0; x < 16 && x < *taglen; x++) {
tag[x] = ccm->PAD[x] ^ ccm->CTRPAD[x];
}
*taglen = x;
return CRYPT_OK;
}
#endif

View File

@@ -0,0 +1,64 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#ifdef LTC_CCM_MODE
/**
Initialize a CCM state
@param ccm The CCM state to initialize
@param cipher The index of the cipher to use
@param key The secret key
@param keylen The length of the secret key
@param ptlen The length of the plain/cipher text that will be processed
@param taglen The max length of the MAC tag
@param aadlen The length of the AAD
@return CRYPT_OK on success
*/
int ccm_init(ccm_state *ccm, int cipher,
const unsigned char *key, int keylen, int ptlen, int taglen, int aadlen)
{
int err;
LTC_ARGCHK(ccm != NULL);
LTC_ARGCHK(key != NULL);
XMEMSET(ccm, 0, sizeof(ccm_state));
/* check cipher input */
if ((err = cipher_is_valid(cipher)) != CRYPT_OK) {
return err;
}
if (cipher_descriptor[cipher].block_length != 16) {
return CRYPT_INVALID_CIPHER;
}
/* make sure the taglen is valid */
if (taglen < 4 || taglen > 16 || (taglen % 2) == 1 || aadlen < 0 || ptlen < 0) {
return CRYPT_INVALID_ARG;
}
ccm->taglen = taglen;
/* schedule key */
if ((err = cipher_descriptor[cipher].setup(key, keylen, 0, &ccm->K)) != CRYPT_OK) {
return err;
}
ccm->cipher = cipher;
/* let's get the L value */
ccm->ptlen = ptlen;
ccm->L = 0;
while (ptlen) {
++ccm->L;
ptlen >>= 8;
}
if (ccm->L <= 1) {
ccm->L = 2;
}
ccm->aadlen = aadlen;
return CRYPT_OK;
}
#endif

View File

@@ -0,0 +1,376 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file ccm_memory.c
CCM support, process a block of memory, Tom St Denis
*/
#ifdef LTC_CCM_MODE
/**
CCM encrypt/decrypt and produce an authentication tag
*1 'pt', 'ct' and 'tag' can both be 'in' or 'out', depending on 'direction'
@param cipher The index of the cipher desired
@param key The secret key to use
@param keylen The length of the secret key (octets)
@param uskey A previously scheduled key [optional can be NULL]
@param nonce The session nonce [use once]
@param noncelen The length of the nonce
@param header The header for the session
@param headerlen The length of the header (octets)
@param pt [*1] The plaintext
@param ptlen The length of the plaintext (octets)
@param ct [*1] The ciphertext
@param tag [*1] The destination tag
@param taglen The max size and resulting size of the authentication tag
@param direction Encrypt or Decrypt direction (0 or 1)
@return CRYPT_OK if successful
*/
int ccm_memory(int cipher,
const unsigned char *key, unsigned long keylen,
symmetric_key *uskey,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *header, unsigned long headerlen,
unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen,
int direction)
{
unsigned char PAD[16], ctr[16], CTRPAD[16], ptTag[16], b, *pt_real;
unsigned char *pt_work = NULL;
symmetric_key *skey;
int err;
unsigned long len, L, x, y, z, CTRlen;
if (uskey == NULL) {
LTC_ARGCHK(key != NULL);
}
LTC_ARGCHK(nonce != NULL);
if (headerlen > 0) {
LTC_ARGCHK(header != NULL);
}
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(tag != NULL);
LTC_ARGCHK(taglen != NULL);
pt_real = pt;
#ifdef LTC_FAST
if (16 % sizeof(LTC_FAST_TYPE)) {
return CRYPT_INVALID_ARG;
}
#endif
/* check cipher input */
if ((err = cipher_is_valid(cipher)) != CRYPT_OK) {
return err;
}
if (cipher_descriptor[cipher].block_length != 16) {
return CRYPT_INVALID_CIPHER;
}
/* make sure the taglen is valid */
if (*taglen < 4 || *taglen > 16 || (*taglen % 2) == 1 || headerlen > 0x7fffffffu) {
return CRYPT_INVALID_ARG;
}
/* is there an accelerator? */
if (cipher_descriptor[cipher].accel_ccm_memory != NULL) {
return cipher_descriptor[cipher].accel_ccm_memory(
key, keylen,
uskey,
nonce, noncelen,
header, headerlen,
pt, ptlen,
ct,
tag, taglen,
direction);
}
/* let's get the L value */
len = ptlen;
L = 0;
while (len) {
++L;
len >>= 8;
}
if (L <= 1) {
L = 2;
}
/* increase L to match the nonce len */
noncelen = (noncelen > 13) ? 13 : noncelen;
if ((15 - noncelen) > L) {
L = 15 - noncelen;
}
if (L > 8) {
return CRYPT_INVALID_ARG;
}
/* allocate mem for the symmetric key */
if (uskey == NULL) {
skey = XMALLOC(sizeof(*skey));
if (skey == NULL) {
return CRYPT_MEM;
}
/* initialize the cipher */
if ((err = cipher_descriptor[cipher].setup(key, (int)keylen, 0, skey)) != CRYPT_OK) {
XFREE(skey);
return err;
}
} else {
skey = uskey;
}
/* initialize buffer for pt */
if (direction == CCM_DECRYPT && ptlen > 0) {
pt_work = XMALLOC(ptlen);
if (pt_work == NULL) {
goto error;
}
pt = pt_work;
}
/* form B_0 == flags | Nonce N | l(m) */
x = 0;
PAD[x++] = (unsigned char)(((headerlen > 0) ? (1<<6) : 0) |
(((*taglen - 2)>>1)<<3) |
(L-1));
/* nonce */
for (y = 0; y < 15 - L; y++) {
PAD[x++] = nonce[y];
}
/* store len */
len = ptlen;
/* shift len so the upper bytes of len are the contents of the length */
for (y = L; y < 4; y++) {
len <<= 8;
}
/* store l(m) (only store 32-bits) */
for (y = 0; L > 4 && (L-y)>4; y++) {
PAD[x++] = 0;
}
for (; y < L; y++) {
if (x >= sizeof(PAD)) {
err = CRYPT_INVALID_ARG;
goto error;
}
PAD[x++] = (unsigned char)((len >> 24) & 255);
len <<= 8;
}
/* encrypt PAD */
if ((err = cipher_descriptor[cipher].ecb_encrypt(PAD, PAD, skey)) != CRYPT_OK) {
goto error;
}
/* handle header */
if (headerlen > 0) {
x = 0;
/* store length */
if (headerlen < ((1UL<<16) - (1UL<<8))) {
PAD[x++] ^= (headerlen>>8) & 255;
PAD[x++] ^= headerlen & 255;
} else {
PAD[x++] ^= 0xFF;
PAD[x++] ^= 0xFE;
PAD[x++] ^= (headerlen>>24) & 255;
PAD[x++] ^= (headerlen>>16) & 255;
PAD[x++] ^= (headerlen>>8) & 255;
PAD[x++] ^= headerlen & 255;
}
/* now add the data */
for (y = 0; y < headerlen; y++) {
if (x == 16) {
/* full block so let's encrypt it */
if ((err = cipher_descriptor[cipher].ecb_encrypt(PAD, PAD, skey)) != CRYPT_OK) {
goto error;
}
x = 0;
}
PAD[x++] ^= header[y];
}
/* remainder */
if ((err = cipher_descriptor[cipher].ecb_encrypt(PAD, PAD, skey)) != CRYPT_OK) {
goto error;
}
}
/* setup the ctr counter */
x = 0;
/* flags */
ctr[x++] = (unsigned char)L-1;
/* nonce */
for (y = 0; y < (16 - (L+1)); ++y) {
ctr[x++] = nonce[y];
}
/* offset */
while (x < 16) {
ctr[x++] = 0;
}
x = 0;
CTRlen = 16;
/* now handle the PT */
if (ptlen > 0) {
y = 0;
#ifdef LTC_FAST
if (ptlen & ~15) {
if (direction == CCM_ENCRYPT) {
for (; y < (ptlen & ~15); y += 16) {
/* increment the ctr? */
for (z = 15; z > 15-L; z--) {
ctr[z] = (ctr[z] + 1) & 255;
if (ctr[z]) break;
}
if ((err = cipher_descriptor[cipher].ecb_encrypt(ctr, CTRPAD, skey)) != CRYPT_OK) {
goto error;
}
/* xor the PT against the pad first */
for (z = 0; z < 16; z += sizeof(LTC_FAST_TYPE)) {
*(LTC_FAST_TYPE_PTR_CAST(&PAD[z])) ^= *(LTC_FAST_TYPE_PTR_CAST(&pt[y+z]));
*(LTC_FAST_TYPE_PTR_CAST(&ct[y+z])) = *(LTC_FAST_TYPE_PTR_CAST(&pt[y+z])) ^ *(LTC_FAST_TYPE_PTR_CAST(&CTRPAD[z]));
}
if ((err = cipher_descriptor[cipher].ecb_encrypt(PAD, PAD, skey)) != CRYPT_OK) {
goto error;
}
}
} else { /* direction == CCM_DECRYPT */
for (; y < (ptlen & ~15); y += 16) {
/* increment the ctr? */
for (z = 15; z > 15-L; z--) {
ctr[z] = (ctr[z] + 1) & 255;
if (ctr[z]) break;
}
if ((err = cipher_descriptor[cipher].ecb_encrypt(ctr, CTRPAD, skey)) != CRYPT_OK) {
goto error;
}
/* xor the PT against the pad last */
for (z = 0; z < 16; z += sizeof(LTC_FAST_TYPE)) {
*(LTC_FAST_TYPE_PTR_CAST(&pt[y+z])) = *(LTC_FAST_TYPE_PTR_CAST(&ct[y+z])) ^ *(LTC_FAST_TYPE_PTR_CAST(&CTRPAD[z]));
*(LTC_FAST_TYPE_PTR_CAST(&PAD[z])) ^= *(LTC_FAST_TYPE_PTR_CAST(&pt[y+z]));
}
if ((err = cipher_descriptor[cipher].ecb_encrypt(PAD, PAD, skey)) != CRYPT_OK) {
goto error;
}
}
}
}
#endif
for (; y < ptlen; y++) {
/* increment the ctr? */
if (CTRlen == 16) {
for (z = 15; z > 15-L; z--) {
ctr[z] = (ctr[z] + 1) & 255;
if (ctr[z]) break;
}
if ((err = cipher_descriptor[cipher].ecb_encrypt(ctr, CTRPAD, skey)) != CRYPT_OK) {
goto error;
}
CTRlen = 0;
}
/* if we encrypt we add the bytes to the MAC first */
if (direction == CCM_ENCRYPT) {
b = pt[y];
ct[y] = b ^ CTRPAD[CTRlen++];
} else {
b = ct[y] ^ CTRPAD[CTRlen++];
pt[y] = b;
}
if (x == 16) {
if ((err = cipher_descriptor[cipher].ecb_encrypt(PAD, PAD, skey)) != CRYPT_OK) {
goto error;
}
x = 0;
}
PAD[x++] ^= b;
}
if (x != 0) {
if ((err = cipher_descriptor[cipher].ecb_encrypt(PAD, PAD, skey)) != CRYPT_OK) {
goto error;
}
}
}
/* setup CTR for the TAG (zero the count) */
for (y = 15; y > 15 - L; y--) {
ctr[y] = 0x00;
}
if ((err = cipher_descriptor[cipher].ecb_encrypt(ctr, CTRPAD, skey)) != CRYPT_OK) {
goto error;
}
if (skey != uskey) {
cipher_descriptor[cipher].done(skey);
#ifdef LTC_CLEAN_STACK
zeromem(skey, sizeof(*skey));
#endif
}
if (direction == CCM_ENCRYPT) {
/* store the TAG */
for (x = 0; x < 16 && x < *taglen; x++) {
tag[x] = PAD[x] ^ CTRPAD[x];
}
*taglen = x;
} else { /* direction == CCM_DECRYPT */
/* decrypt the tag */
for (x = 0; x < 16 && x < *taglen; x++) {
ptTag[x] = tag[x] ^ CTRPAD[x];
}
*taglen = x;
/* check validity of the decrypted tag against the computed PAD (in constant time) */
/* HACK: the boolean value of XMEM_NEQ becomes either 0 (CRYPT_OK) or 1 (CRYPT_ERR).
* there should be a better way of setting the correct error code in constant
* time.
*/
err = XMEM_NEQ(ptTag, PAD, *taglen);
/* Zero the plaintext if the tag was invalid (in constant time) */
if (ptlen > 0) {
copy_or_zeromem(pt, pt_real, ptlen, err);
}
}
#ifdef LTC_CLEAN_STACK
zeromem(PAD, sizeof(PAD));
zeromem(CTRPAD, sizeof(CTRPAD));
if (pt_work != NULL) {
zeromem(pt_work, ptlen);
}
#endif
error:
if (pt_work) {
XFREE(pt_work);
}
if (skey != uskey) {
XFREE(skey);
}
return err;
}
#endif

View File

@@ -0,0 +1,78 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#ifdef LTC_CCM_MODE
/**
Process plaintext/ciphertext through CCM
@param ccm The CCM state
@param pt The plaintext
@param ptlen The plaintext length (ciphertext length is the same)
@param ct The ciphertext
@param direction Encrypt or Decrypt mode (CCM_ENCRYPT or CCM_DECRYPT)
@return CRYPT_OK on success
*/
int ccm_process(ccm_state *ccm,
unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
int direction)
{
unsigned char z, b;
unsigned long y;
int err;
LTC_ARGCHK(ccm != NULL);
/* Check aad has been correctly added */
if (ccm->aadlen != ccm->current_aadlen) {
return CRYPT_ERROR;
}
/* Check we do not process too much data */
if (ccm->ptlen < ccm->current_ptlen + ptlen) {
return CRYPT_ERROR;
}
ccm->current_ptlen += ptlen;
/* now handle the PT */
if (ptlen > 0) {
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
for (y = 0; y < ptlen; y++) {
/* increment the ctr? */
if (ccm->CTRlen == 16) {
for (z = 15; z > 15-ccm->L; z--) {
ccm->ctr[z] = (ccm->ctr[z] + 1) & 255;
if (ccm->ctr[z]) break;
}
if ((err = cipher_descriptor[ccm->cipher].ecb_encrypt(ccm->ctr, ccm->CTRPAD, &ccm->K)) != CRYPT_OK) {
return err;
}
ccm->CTRlen = 0;
}
/* if we encrypt we add the bytes to the MAC first */
if (direction == CCM_ENCRYPT) {
b = pt[y];
ct[y] = b ^ ccm->CTRPAD[ccm->CTRlen++];
} else {
b = ct[y] ^ ccm->CTRPAD[ccm->CTRlen++];
pt[y] = b;
}
if (ccm->x == 16) {
if ((err = cipher_descriptor[ccm->cipher].ecb_encrypt(ccm->PAD, ccm->PAD, &ccm->K)) != CRYPT_OK) {
return err;
}
ccm->x = 0;
}
ccm->PAD[ccm->x++] ^= b;
}
}
return CRYPT_OK;
}
#endif

View File

@@ -0,0 +1,25 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#ifdef LTC_CCM_MODE
/**
Reset a CCM state to as if you just called ccm_init(). This saves the initialization time.
@param ccm The CCM state to reset
@return CRYPT_OK on success
*/
int ccm_reset(ccm_state *ccm)
{
LTC_ARGCHK(ccm != NULL);
zeromem(ccm->PAD, sizeof(ccm->PAD));
zeromem(ccm->ctr, sizeof(ccm->ctr));
zeromem(ccm->CTRPAD, sizeof(ccm->CTRPAD));
ccm->CTRlen = 0;
ccm->current_ptlen = 0;
ccm->current_aadlen = 0;
return CRYPT_OK;
}
#endif

View File

@@ -0,0 +1,274 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file ccm_test.c
CCM support, process a block of memory, Tom St Denis
*/
#ifdef LTC_CCM_MODE
int ccm_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
unsigned char key[16];
unsigned char nonce[16];
int noncelen;
unsigned char header[64];
int headerlen;
unsigned char pt[64];
int ptlen;
unsigned char ct[64];
unsigned char tag[16];
unsigned long taglen;
} tests[] = {
/* 13 byte nonce, 8 byte auth, 23 byte pt */
{
{ 0xC0, 0xC1, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7,
0xC8, 0xC9, 0xCA, 0xCB, 0xCC, 0xCD, 0xCE, 0xCF },
{ 0x00, 0x00, 0x00, 0x03, 0x02, 0x01, 0x00, 0xA0,
0xA1, 0xA2, 0xA3, 0xA4, 0xA5 },
13,
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 },
8,
{ 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E },
23,
{ 0x58, 0x8C, 0x97, 0x9A, 0x61, 0xC6, 0x63, 0xD2,
0xF0, 0x66, 0xD0, 0xC2, 0xC0, 0xF9, 0x89, 0x80,
0x6D, 0x5F, 0x6B, 0x61, 0xDA, 0xC3, 0x84 },
{ 0x17, 0xe8, 0xd1, 0x2c, 0xfd, 0xf9, 0x26, 0xe0 },
8
},
/* 13 byte nonce, 12 byte header, 19 byte pt */
{
{ 0xC0, 0xC1, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7,
0xC8, 0xC9, 0xCA, 0xCB, 0xCC, 0xCD, 0xCE, 0xCF },
{ 0x00, 0x00, 0x00, 0x06, 0x05, 0x04, 0x03, 0xA0,
0xA1, 0xA2, 0xA3, 0xA4, 0xA5 },
13,
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0A, 0x0B },
12,
{ 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13,
0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B,
0x1C, 0x1D, 0x1E },
19,
{ 0xA2, 0x8C, 0x68, 0x65, 0x93, 0x9A, 0x9A, 0x79,
0xFA, 0xAA, 0x5C, 0x4C, 0x2A, 0x9D, 0x4A, 0x91,
0xCD, 0xAC, 0x8C },
{ 0x96, 0xC8, 0x61, 0xB9, 0xC9, 0xE6, 0x1E, 0xF1 },
8
},
/* supplied by Brian Gladman */
{
{ 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f },
{ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16 },
7,
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 },
8,
{ 0x20, 0x21, 0x22, 0x23 },
4,
{ 0x71, 0x62, 0x01, 0x5b },
{ 0x4d, 0xac, 0x25, 0x5d },
4
},
{
{ 0xc9, 0x7c, 0x1f, 0x67, 0xce, 0x37, 0x11, 0x85,
0x51, 0x4a, 0x8a, 0x19, 0xf2, 0xbd, 0xd5, 0x2f },
{ 0x00, 0x50, 0x30, 0xf1, 0x84, 0x44, 0x08, 0xb5,
0x03, 0x97, 0x76, 0xe7, 0x0c },
13,
{ 0x08, 0x40, 0x0f, 0xd2, 0xe1, 0x28, 0xa5, 0x7c,
0x50, 0x30, 0xf1, 0x84, 0x44, 0x08, 0xab, 0xae,
0xa5, 0xb8, 0xfc, 0xba, 0x00, 0x00 },
22,
{ 0xf8, 0xba, 0x1a, 0x55, 0xd0, 0x2f, 0x85, 0xae,
0x96, 0x7b, 0xb6, 0x2f, 0xb6, 0xcd, 0xa8, 0xeb,
0x7e, 0x78, 0xa0, 0x50 },
20,
{ 0xf3, 0xd0, 0xa2, 0xfe, 0x9a, 0x3d, 0xbf, 0x23,
0x42, 0xa6, 0x43, 0xe4, 0x32, 0x46, 0xe8, 0x0c,
0x3c, 0x04, 0xd0, 0x19 },
{ 0x78, 0x45, 0xce, 0x0b, 0x16, 0xf9, 0x76, 0x23 },
8
},
};
unsigned long taglen, x, y;
unsigned char buf[64], buf2[64], tag[16], tag2[16], tag3[16], zero[64];
int err, idx;
symmetric_key skey;
ccm_state ccm;
zeromem(zero, 64);
idx = find_cipher("aes");
if (idx == -1) {
idx = find_cipher("rijndael");
if (idx == -1) {
return CRYPT_NOP;
}
}
for (x = 0; x < (sizeof(tests)/sizeof(tests[0])); x++) {
for (y = 0; y < 2; y++) {
taglen = tests[x].taglen;
if (y == 0) {
if ((err = cipher_descriptor[idx].setup(tests[x].key, 16, 0, &skey)) != CRYPT_OK) {
return err;
}
if ((err = ccm_memory(idx,
tests[x].key, 16,
&skey,
tests[x].nonce, tests[x].noncelen,
tests[x].header, tests[x].headerlen,
(unsigned char*)tests[x].pt, tests[x].ptlen,
buf,
tag, &taglen, 0)) != CRYPT_OK) {
return err;
}
/* run a second time to make sure skey is not touched */
if ((err = ccm_memory(idx,
tests[x].key, 16,
&skey,
tests[x].nonce, tests[x].noncelen,
tests[x].header, tests[x].headerlen,
(unsigned char*)tests[x].pt, tests[x].ptlen,
buf,
tag, &taglen, 0)) != CRYPT_OK) {
return err;
}
} else {
if ((err = ccm_init(&ccm, idx, tests[x].key, 16, tests[x].ptlen, (int)tests[x].taglen, tests[x].headerlen)) != CRYPT_OK) {
return err;
}
if ((err = ccm_add_nonce(&ccm, tests[x].nonce, tests[x].noncelen)) != CRYPT_OK) {
return err;
}
if ((err = ccm_add_aad(&ccm, tests[x].header, tests[x].headerlen)) != CRYPT_OK) {
return err;
}
if ((err = ccm_process(&ccm, (unsigned char*)tests[x].pt, tests[x].ptlen, buf, CCM_ENCRYPT)) != CRYPT_OK) {
return err;
}
if ((err = ccm_done(&ccm, tag, &taglen)) != CRYPT_OK) {
return err;
}
}
if (compare_testvector(buf, tests[x].ptlen, tests[x].ct, tests[x].ptlen, "CCM encrypt data", (int)x)) {
return CRYPT_FAIL_TESTVECTOR;
}
if (compare_testvector(tag, taglen, tests[x].tag, tests[x].taglen, "CCM encrypt tag", (int)x)) {
return CRYPT_FAIL_TESTVECTOR;
}
if (y == 0) {
XMEMCPY(tag3, tests[x].tag, tests[x].taglen);
taglen = tests[x].taglen;
if ((err = ccm_memory(idx,
tests[x].key, 16,
NULL,
tests[x].nonce, tests[x].noncelen,
tests[x].header, tests[x].headerlen,
buf2, tests[x].ptlen,
buf,
tag3, &taglen, 1 )) != CRYPT_OK) {
return err;
}
} else {
if ((err = ccm_init(&ccm, idx, tests[x].key, 16, tests[x].ptlen, (int)tests[x].taglen, tests[x].headerlen)) != CRYPT_OK) {
return err;
}
if ((err = ccm_add_nonce(&ccm, tests[x].nonce, tests[x].noncelen)) != CRYPT_OK) {
return err;
}
if ((err = ccm_add_aad(&ccm, tests[x].header, tests[x].headerlen)) != CRYPT_OK) {
return err;
}
if ((err = ccm_process(&ccm, buf2, tests[x].ptlen, buf, CCM_DECRYPT)) != CRYPT_OK) {
return err;
}
if ((err = ccm_done(&ccm, tag2, &taglen)) != CRYPT_OK) {
return err;
}
}
if (compare_testvector(buf2, tests[x].ptlen, tests[x].pt, tests[x].ptlen, "CCM decrypt data", (int)x)) {
return CRYPT_FAIL_TESTVECTOR;
}
if (y == 0) {
/* check if decryption with the wrong tag does not reveal the plaintext */
XMEMCPY(tag3, tests[x].tag, tests[x].taglen);
tag3[0] ^= 0xff; /* set the tag to the wrong value */
taglen = tests[x].taglen;
if (ccm_memory(idx,
tests[x].key, 16,
NULL,
tests[x].nonce, tests[x].noncelen,
tests[x].header, tests[x].headerlen,
buf2, tests[x].ptlen,
buf,
tag3, &taglen, 1 ) != CRYPT_ERROR) {
return CRYPT_FAIL_TESTVECTOR;
}
if (compare_testvector(buf2, tests[x].ptlen, zero, tests[x].ptlen, "CCM decrypt wrong tag", (int)x)) {
return CRYPT_FAIL_TESTVECTOR;
}
} else {
if (compare_testvector(tag2, taglen, tests[x].tag, tests[x].taglen, "CCM decrypt tag", (int)x)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
if (y == 0) {
cipher_descriptor[idx].done(&skey);
}
}
}
/* wycheproof failing test - https://github.com/libtom/libtomcrypt/pull/452 */
{
unsigned char key[] = { 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f };
unsigned char iv[] = { 0x46,0x47,0x48,0x49,0x4a,0x4b,0x4c,0x4d,0x4e,0x4f,0x50,0x51 };
unsigned char valid_tag[] = { 0x23,0x1a,0x2d,0x8f };
unsigned char invalid_tag[] = { 0x23,0x1a,0x2d,0x8f,0x6a };
unsigned char msg[] = { 0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28,0x29,0x2a,0x2b,0x2c,0x2d,0x2e,0x2f };
unsigned char ct[] = { 0xd3,0xda,0xb1,0xee,0x49,0x4c,0xc2,0x29,0x09,0x9d,0x6c,0xac,0x7d,0xf1,0x4a,0xdd };
unsigned char pt[20] = { 0 };
/* VALID tag */
taglen = sizeof(valid_tag);
err = ccm_memory(idx, key, sizeof(key), NULL, iv, sizeof(iv), NULL, 0,
pt, sizeof(ct), ct, valid_tag, &taglen, CCM_DECRYPT);
if ((err != CRYPT_OK) || (XMEMCMP(msg, pt, sizeof(msg)) != 0)) {
return CRYPT_FAIL_TESTVECTOR;
}
/* INVALID tag */
taglen = sizeof(invalid_tag);
err = ccm_memory(idx, key, sizeof(key), NULL, iv, sizeof(iv), NULL, 0,
pt, sizeof(ct), ct, invalid_tag, &taglen, CCM_DECRYPT);
if (err == CRYPT_OK) {
return CRYPT_FAIL_TESTVECTOR; /* should fail */
}
}
return CRYPT_OK;
#endif
}
#endif

View File

@@ -0,0 +1,28 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#ifdef LTC_CHACHA20POLY1305_MODE
/**
Add AAD to the ChaCha20Poly1305 state
@param st The ChaCha20Poly1305 state
@param in The additional authentication data to add to the ChaCha20Poly1305 state
@param inlen The length of the ChaCha20Poly1305 data.
@return CRYPT_OK on success
*/
int chacha20poly1305_add_aad(chacha20poly1305_state *st, const unsigned char *in, unsigned long inlen)
{
int err;
if (inlen == 0) return CRYPT_OK; /* nothing to do */
LTC_ARGCHK(st != NULL);
if (st->aadflg == 0) return CRYPT_ERROR;
if ((err = poly1305_process(&st->poly, in, inlen)) != CRYPT_OK) return err;
st->aadlen += (ulong64)inlen;
return CRYPT_OK;
}
#endif

View File

@@ -0,0 +1,38 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#ifdef LTC_CHACHA20POLY1305_MODE
/**
Decrypt bytes of ciphertext with ChaCha20Poly1305
@param st The ChaCha20Poly1305 state
@param in The ciphertext
@param inlen The length of the input (octets)
@param out [out] The plaintext (length inlen)
@return CRYPT_OK if successful
*/
int chacha20poly1305_decrypt(chacha20poly1305_state *st, const unsigned char *in, unsigned long inlen, unsigned char *out)
{
unsigned char padzero[16] = { 0 };
unsigned long padlen;
int err;
LTC_ARGCHK(st != NULL);
if (st->aadflg) {
padlen = 16 - (unsigned long)(st->aadlen % 16);
if (padlen < 16) {
if ((err = poly1305_process(&st->poly, padzero, padlen)) != CRYPT_OK) return err;
}
st->aadflg = 0; /* no more AAD */
}
if (st->aadflg) st->aadflg = 0; /* no more AAD */
if ((err = poly1305_process(&st->poly, in, inlen)) != CRYPT_OK) return err;
if ((err = chacha_crypt(&st->chacha, in, inlen, out)) != CRYPT_OK) return err;
st->ctlen += (ulong64)inlen;
return CRYPT_OK;
}
#endif

View File

@@ -0,0 +1,38 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#ifdef LTC_CHACHA20POLY1305_MODE
/**
Terminate a ChaCha20Poly1305 stream
@param st The ChaCha20Poly1305 state
@param tag [out] The destination for the MAC tag
@param taglen [in/out] The length of the MAC tag
@return CRYPT_OK on success
*/
int chacha20poly1305_done(chacha20poly1305_state *st, unsigned char *tag, unsigned long *taglen)
{
unsigned char padzero[16] = { 0 };
unsigned long padlen;
unsigned char buf[16];
int err;
LTC_ARGCHK(st != NULL);
if (!st->openssh_compat) {
padlen = 16 - (unsigned long)(st->ctlen % 16);
if (padlen < 16) {
if ((err = poly1305_process(&st->poly, padzero, padlen)) != CRYPT_OK) return err;
}
STORE64L(st->aadlen, buf);
STORE64L(st->ctlen, buf + 8);
if ((err = poly1305_process(&st->poly, buf, 16)) != CRYPT_OK) return err;
}
if ((err = poly1305_done(&st->poly, tag, taglen)) != CRYPT_OK) return err;
if ((err = chacha_done(&st->chacha)) != CRYPT_OK) return err;
return CRYPT_OK;
}
#endif

View File

@@ -0,0 +1,37 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#ifdef LTC_CHACHA20POLY1305_MODE
/**
Encrypt bytes of ciphertext with ChaCha20Poly1305
@param st The ChaCha20Poly1305 state
@param in The plaintext
@param inlen The length of the input (octets)
@param out [out] The ciphertext (length inlen)
@return CRYPT_OK if successful
*/
int chacha20poly1305_encrypt(chacha20poly1305_state *st, const unsigned char *in, unsigned long inlen, unsigned char *out)
{
unsigned char padzero[16] = { 0 };
unsigned long padlen;
int err;
LTC_ARGCHK(st != NULL);
if ((err = chacha_crypt(&st->chacha, in, inlen, out)) != CRYPT_OK) return err;
if (st->aadflg) {
padlen = 16 - (unsigned long)(st->aadlen % 16);
if (padlen < 16) {
if ((err = poly1305_process(&st->poly, padzero, padlen)) != CRYPT_OK) return err;
}
st->aadflg = 0; /* no more AAD */
}
if ((err = poly1305_process(&st->poly, out, inlen)) != CRYPT_OK) return err;
st->ctlen += (ulong64)inlen;
return CRYPT_OK;
}
#endif

View File

@@ -0,0 +1,21 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#ifdef LTC_CHACHA20POLY1305_MODE
/**
Initialize an ChaCha20Poly1305 context (only the key)
@param st [out] The destination of the ChaCha20Poly1305 state
@param key The secret key
@param keylen The length of the secret key (octets)
@return CRYPT_OK if successful
*/
int chacha20poly1305_init(chacha20poly1305_state *st, const unsigned char *key, unsigned long keylen)
{
XMEMSET(st, 0, sizeof(*st));
return chacha_setup(&st->chacha, key, keylen, 20);
}
#endif

View File

@@ -0,0 +1,76 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#ifdef LTC_CHACHA20POLY1305_MODE
/**
Process an entire ChaCha20Poly1305 packet in one call.
@param key The secret key
@param keylen The length of the secret key
@param iv The initialization vector
@param ivlen The length of the initialization vector
@param aad The additional authentication data (header)
@param aadlen The length of the aad
@param in The plaintext
@param inlen The length of the plaintext (ciphertext length is the same)
@param out The ciphertext
@param tag [out] The MAC tag
@param taglen [in/out] The MAC tag length
@param direction Encrypt or Decrypt mode (CHACHA20POLY1305_ENCRYPT or CHACHA20POLY1305_DECRYPT)
@return CRYPT_OK on success
*/
int chacha20poly1305_memory(const unsigned char *key, unsigned long keylen,
const unsigned char *iv, unsigned long ivlen,
const unsigned char *aad, unsigned long aadlen,
const unsigned char *in, unsigned long inlen,
unsigned char *out,
unsigned char *tag, unsigned long *taglen,
int direction)
{
chacha20poly1305_state st;
int err;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(iv != NULL);
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(tag != NULL);
LTC_ARGCHK(taglen != NULL);
if ((err = chacha20poly1305_init(&st, key, keylen)) != CRYPT_OK) { goto LBL_ERR; }
st.openssh_compat = (direction & CHACHA20POLY1305_OPENSSH_COMPAT) ? 1 : 0;
direction &= ~(CHACHA20POLY1305_OPENSSH_COMPAT);
if ((err = chacha20poly1305_setiv(&st, iv, ivlen)) != CRYPT_OK) { goto LBL_ERR; }
if (aad && aadlen > 0) {
if ((err = chacha20poly1305_add_aad(&st, aad, aadlen)) != CRYPT_OK) { goto LBL_ERR; }
}
if (direction == CHACHA20POLY1305_ENCRYPT) {
if ((err = chacha20poly1305_encrypt(&st, in, inlen, out)) != CRYPT_OK) { goto LBL_ERR; }
if ((err = chacha20poly1305_done(&st, tag, taglen)) != CRYPT_OK) { goto LBL_ERR; }
}
else if (direction == CHACHA20POLY1305_DECRYPT) {
unsigned char buf[MAXBLOCKSIZE];
unsigned long buflen = sizeof(buf);
if ((err = chacha20poly1305_decrypt(&st, in, inlen, out)) != CRYPT_OK) { goto LBL_ERR; }
if ((err = chacha20poly1305_done(&st, buf, &buflen)) != CRYPT_OK) { goto LBL_ERR; }
if (buflen != *taglen || XMEM_NEQ(buf, tag, buflen) != 0) {
err = CRYPT_ERROR;
goto LBL_ERR;
}
}
else {
err = CRYPT_INVALID_ARG;
goto LBL_ERR;
}
LBL_ERR:
#ifdef LTC_CLEAN_STACK
zeromem(&st, sizeof(chacha20poly1305_state));
#endif
return err;
}
#endif

View File

@@ -0,0 +1,58 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#ifdef LTC_CHACHA20POLY1305_MODE
/**
Set IV + counter data to the ChaCha20Poly1305 state and reset the context
@param st The ChaCha20Poly1305 state
@param iv The IV data to add
@param ivlen The length of the IV (must be 12 or 8)
@return CRYPT_OK on success
*/
int chacha20poly1305_setiv(chacha20poly1305_state *st, const unsigned char *iv, unsigned long ivlen)
{
chacha_state tmp_st;
int i, err;
unsigned char polykey[32];
LTC_ARGCHK(st != NULL);
LTC_ARGCHK(iv != NULL);
LTC_ARGCHK(ivlen == 12 || ivlen == 8);
/* set IV for chacha20 */
if (ivlen == 12) {
/* IV 96bit */
if ((err = chacha_ivctr32(&st->chacha, iv, ivlen, 1)) != CRYPT_OK) return err;
}
else {
/* IV 64bit */
if ((err = chacha_ivctr64(&st->chacha, iv, ivlen, 1)) != CRYPT_OK) return err;
}
/* copy chacha20 key to temporary state */
for(i = 0; i < 12; i++) tmp_st.input[i] = st->chacha.input[i];
tmp_st.rounds = 20;
/* set IV */
if (ivlen == 12) {
/* IV 32bit */
if ((err = chacha_ivctr32(&tmp_st, iv, ivlen, 0)) != CRYPT_OK) return err;
}
else {
/* IV 64bit */
if ((err = chacha_ivctr64(&tmp_st, iv, ivlen, 0)) != CRYPT_OK) return err;
}
/* (re)generate new poly1305 key */
if ((err = chacha_keystream(&tmp_st, polykey, 32)) != CRYPT_OK) return err;
/* (re)initialise poly1305 */
if ((err = poly1305_init(&st->poly, polykey, 32)) != CRYPT_OK) return err;
st->ctlen = 0;
st->aadlen = 0;
st->aadflg = 1;
return CRYPT_OK;
}
#endif

View File

@@ -0,0 +1,30 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#ifdef LTC_CHACHA20POLY1305_MODE
/**
Set IV + counter data (with RFC7905-magic) to the ChaCha20Poly1305 state and reset the context
@param st The ChaCha20Poly1305 state
@param iv The IV data to add
@param ivlen The length of the IV (must be 12 or 8)
@param sequence_number 64bit sequence number which is incorporated into IV as described in RFC7905
@return CRYPT_OK on success
*/
int chacha20poly1305_setiv_rfc7905(chacha20poly1305_state *st, const unsigned char *iv, unsigned long ivlen, ulong64 sequence_number)
{
int i;
unsigned char combined_iv[12] = { 0 };
LTC_ARGCHK(st != NULL);
LTC_ARGCHK(iv != NULL);
LTC_ARGCHK(ivlen == 12);
STORE64L(sequence_number, combined_iv + 4);
for (i = 0; i < 12; i++) combined_iv[i] = iv[i] ^ combined_iv[i];
return chacha20poly1305_setiv(st, combined_iv, 12);
}
#endif

View File

@@ -0,0 +1,159 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#ifdef LTC_CHACHA20POLY1305_MODE
int chacha20poly1305_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
chacha20poly1305_state st1, st2;
unsigned char k[] = { 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f };
unsigned char i12[] = { 0x07, 0x00, 0x00, 0x00, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47 };
unsigned char i8[] = { 0x07, 0x00, 0x00, 0x00, 0x40, 0x41, 0x42, 0x43 };
unsigned char aad[] = { 0x50, 0x51, 0x52, 0x53, 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7 };
unsigned char enc[] = { 0xD3, 0x1A, 0x8D, 0x34, 0x64, 0x8E, 0x60, 0xDB, 0x7B, 0x86, 0xAF, 0xBC, 0x53, 0xEF, 0x7E, 0xC2,
0xA4, 0xAD, 0xED, 0x51, 0x29, 0x6E, 0x08, 0xFE, 0xA9, 0xE2, 0xB5, 0xA7, 0x36, 0xEE, 0x62, 0xD6,
0x3D, 0xBE, 0xA4, 0x5E, 0x8C, 0xA9, 0x67, 0x12, 0x82, 0xFA, 0xFB, 0x69, 0xDA, 0x92, 0x72, 0x8B,
0x1A, 0x71, 0xDE, 0x0A, 0x9E, 0x06, 0x0B, 0x29, 0x05, 0xD6, 0xA5, 0xB6, 0x7E, 0xCD, 0x3B, 0x36,
0x92, 0xDD, 0xBD, 0x7F, 0x2D, 0x77, 0x8B, 0x8C, 0x98, 0x03, 0xAE, 0xE3, 0x28, 0x09, 0x1B, 0x58,
0xFA, 0xB3, 0x24, 0xE4, 0xFA, 0xD6, 0x75, 0x94, 0x55, 0x85, 0x80, 0x8B, 0x48, 0x31, 0xD7, 0xBC,
0x3F, 0xF4, 0xDE, 0xF0, 0x8E, 0x4B, 0x7A, 0x9D, 0xE5, 0x76, 0xD2, 0x65, 0x86, 0xCE, 0xC6, 0x4B,
0x61, 0x16 };
unsigned char tag[] = { 0x1A, 0xE1, 0x0B, 0x59, 0x4F, 0x09, 0xE2, 0x6A, 0x7E, 0x90, 0x2E, 0xCB, 0xD0, 0x60, 0x06, 0x91 };
char m[] = "Ladies and Gentlemen of the class of '99: If I could offer you only one tip for the future, sunscreen would be it.";
unsigned long mlen = XSTRLEN(m);
unsigned long len;
unsigned char rfc7905_pt[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F };
unsigned char rfc7905_enc[] = { 0xE4, 0x62, 0x85, 0xB4, 0x29, 0x95, 0x34, 0x96, 0xAB, 0xFB, 0x67, 0xCD, 0xAE, 0xAC, 0x94, 0x1E };
unsigned char rfc7905_tag[] = { 0x16, 0x2C, 0x92, 0x48, 0x2A, 0xDB, 0xD3, 0x5D, 0x48, 0xBE, 0xC6, 0xFF, 0x10, 0x9C, 0xBA, 0xE4 };
unsigned char ct[1000], pt[1000], emac[16], dmac[16];
int err;
/* encrypt IV 96bit */
if ((err = chacha20poly1305_init(&st1, k, sizeof(k))) != CRYPT_OK) return err;
if ((err = chacha20poly1305_setiv(&st1, i12, sizeof(i12))) != CRYPT_OK) return err;
if ((err = chacha20poly1305_add_aad(&st1, aad, sizeof(aad))) != CRYPT_OK) return err;
/* encrypt piece by piece */
if ((err = chacha20poly1305_encrypt(&st1, (unsigned char *)m, 25, ct)) != CRYPT_OK) return err;
if ((err = chacha20poly1305_encrypt(&st1, (unsigned char *)m + 25, 10, ct + 25)) != CRYPT_OK) return err;
if ((err = chacha20poly1305_encrypt(&st1, (unsigned char *)m + 35, 35, ct + 35)) != CRYPT_OK) return err;
if ((err = chacha20poly1305_encrypt(&st1, (unsigned char *)m + 70, 5, ct + 70)) != CRYPT_OK) return err;
if ((err = chacha20poly1305_encrypt(&st1, (unsigned char *)m + 75, 5, ct + 75)) != CRYPT_OK) return err;
if ((err = chacha20poly1305_encrypt(&st1, (unsigned char *)m + 80, mlen - 80, ct + 80)) != CRYPT_OK) return err;
len = sizeof(emac);
if ((err = chacha20poly1305_done(&st1, emac, &len)) != CRYPT_OK) return err;
if (compare_testvector(ct, mlen, enc, sizeof(enc), "ENC-CT", 1) != 0) return CRYPT_FAIL_TESTVECTOR;
if (compare_testvector(emac, len, tag, sizeof(tag), "ENC-TAG", 2) != 0) return CRYPT_FAIL_TESTVECTOR;
/* decrypt IV 96bit */
if ((err = chacha20poly1305_init(&st2, k, sizeof(k))) != CRYPT_OK) return err;
if ((err = chacha20poly1305_setiv(&st2, i12, sizeof(i12))) != CRYPT_OK) return err;
if ((err = chacha20poly1305_add_aad(&st2, aad, sizeof(aad))) != CRYPT_OK) return err;
if ((err = chacha20poly1305_decrypt(&st2, ct, 21, pt)) != CRYPT_OK) return err;
if ((err = chacha20poly1305_decrypt(&st2, ct + 21, mlen - 21, pt + 21)) != CRYPT_OK) return err;
len = sizeof(dmac);
if ((err = chacha20poly1305_done(&st2, dmac, &len)) != CRYPT_OK) return err;
if (compare_testvector(pt, mlen, m, mlen, "DEC-PT", 3) != 0) return CRYPT_FAIL_TESTVECTOR;
if (compare_testvector(dmac, len, tag, sizeof(tag), "DEC-TAG", 4) != 0) return CRYPT_FAIL_TESTVECTOR;
/* chacha20poly1305_memory - encrypt */
len = sizeof(emac);
if ((err = chacha20poly1305_memory(k, sizeof(k), i12, sizeof(i12), aad, sizeof(aad), (unsigned char *)m,
mlen, ct, emac, &len, CHACHA20POLY1305_ENCRYPT)) != CRYPT_OK) return err;
if (compare_testvector(ct, mlen, enc, sizeof(enc), "ENC-CT2", 1) != 0) return CRYPT_FAIL_TESTVECTOR;
if (compare_testvector(emac, len, tag, sizeof(tag), "ENC-TAG2", 2) != 0) return CRYPT_FAIL_TESTVECTOR;
/* chacha20poly1305_memory - decrypt */
len = sizeof(dmac);
XMEMCPY(dmac, tag, sizeof(tag));
if ((err = chacha20poly1305_memory(k, sizeof(k), i12, sizeof(i12), aad, sizeof(aad),
ct, mlen, pt, dmac, &len, CHACHA20POLY1305_DECRYPT)) != CRYPT_OK) return err;
if (compare_testvector(pt, mlen, m, mlen, "DEC-PT2", 3) != 0) return CRYPT_FAIL_TESTVECTOR;
/* encrypt - rfc7905 */
if ((err = chacha20poly1305_init(&st1, k, sizeof(k))) != CRYPT_OK) return err;
if ((err = chacha20poly1305_setiv_rfc7905(&st1, i12, sizeof(i12), CONST64(0x1122334455667788))) != CRYPT_OK) return err;
if ((err = chacha20poly1305_add_aad(&st1, aad, sizeof(aad))) != CRYPT_OK) return err;
if ((err = chacha20poly1305_encrypt(&st1, rfc7905_pt, 16, ct)) != CRYPT_OK) return err;
len = sizeof(emac);
if ((err = chacha20poly1305_done(&st1, emac, &len)) != CRYPT_OK) return err;
if (compare_testvector(ct, 16, rfc7905_enc, 16, "ENC-CT3", 1) != 0) return CRYPT_FAIL_TESTVECTOR;
if (compare_testvector(emac, len, rfc7905_tag, 16, "ENC-TAG3", 2) != 0) return CRYPT_FAIL_TESTVECTOR;
/* decrypt - rfc7905 */
if ((err = chacha20poly1305_init(&st1, k, sizeof(k))) != CRYPT_OK) return err;
if ((err = chacha20poly1305_setiv_rfc7905(&st1, i12, sizeof(i12), CONST64(0x1122334455667788))) != CRYPT_OK) return err;
if ((err = chacha20poly1305_add_aad(&st1, aad, sizeof(aad))) != CRYPT_OK) return err;
if ((err = chacha20poly1305_decrypt(&st1, ct, 16, pt)) != CRYPT_OK) return err;
len = sizeof(dmac);
if ((err = chacha20poly1305_done(&st1, dmac, &len)) != CRYPT_OK) return err;
if (compare_testvector(pt, 16, rfc7905_pt, 16, "DEC-CT3", 1) != 0) return CRYPT_FAIL_TESTVECTOR;
if (compare_testvector(dmac, len, rfc7905_tag, 16, "DEC-TAG3", 2) != 0) return CRYPT_FAIL_TESTVECTOR;
/* encrypt IV 64bit */
if ((err = chacha20poly1305_init(&st1, k, sizeof(k))) != CRYPT_OK) return err;
if ((err = chacha20poly1305_setiv(&st1, i8, sizeof(i8))) != CRYPT_OK) return err;
if ((err = chacha20poly1305_add_aad(&st1, aad, sizeof(aad))) != CRYPT_OK) return err;
if ((err = chacha20poly1305_encrypt(&st1, (unsigned char *)m, mlen, ct)) != CRYPT_OK) return err;
len = sizeof(emac);
if ((err = chacha20poly1305_done(&st1, emac, &len)) != CRYPT_OK) return err;
/* decrypt IV 64bit */
if ((err = chacha20poly1305_init(&st2, k, sizeof(k))) != CRYPT_OK) return err;
if ((err = chacha20poly1305_setiv(&st2, i8, sizeof(i8))) != CRYPT_OK) return err;
if ((err = chacha20poly1305_add_aad(&st2, aad, sizeof(aad))) != CRYPT_OK) return err;
if ((err = chacha20poly1305_decrypt(&st2, ct, mlen, pt)) != CRYPT_OK) return err;
len = sizeof(dmac);
if ((err = chacha20poly1305_done(&st2, dmac, &len)) != CRYPT_OK) return err;
if (compare_testvector(pt, mlen, m, mlen, "DEC-PT4", 1) != 0) return CRYPT_FAIL_TESTVECTOR;
if (compare_testvector(dmac, len, emac, len, "DEC-TAG4", 2) != 0) return CRYPT_FAIL_TESTVECTOR;
/* wycheproof failing test - https://github.com/libtom/libtomcrypt/pull/451 */
{
unsigned char key[] = { 0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xaa,0xbb,0xcc,0xdd,0xee,0xff,
0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xaa,0xbb,0xcc,0xdd,0xee,0xff };
unsigned char iv[] = { 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b };
unsigned char valid_tag[] = { 0xa3,0xe3,0xfd,0xf9,0xfb,0xa6,0x86,0x1b,0x5a,0xd2,0x60,0x7f,0x40,0xb7,0xf4,0x47 };
unsigned char invalid_tag[] = { 0xa2,0xe3,0xfd,0xf9,0xfb,0xa6,0x86,0x1b,0x5a,0xd2,0x60,0x7f,0x40,0xb7,0xf4,0x47 };
unsigned char waad[] = { 0x61,0x61,0x64 };
unsigned char wct[] = { 0x00 };
unsigned char wpt[20] = { 0 };
unsigned char wtag[20] = { 0 };
unsigned long taglen;
/* encrypt */
taglen = sizeof(wtag);
err = chacha20poly1305_memory(key, sizeof(key), iv, sizeof(iv), waad, sizeof(waad),
wpt, 0, wct, wtag, &taglen, CHACHA20POLY1305_ENCRYPT);
if (err != CRYPT_OK) return CRYPT_FAIL_TESTVECTOR;
if (compare_testvector(wtag, taglen, valid_tag, sizeof(valid_tag), "WYCH", 1) != 0) return CRYPT_FAIL_TESTVECTOR;
/* VALID tag */
taglen = sizeof(valid_tag);
err = chacha20poly1305_memory(key, sizeof(key), iv, sizeof(iv), waad, sizeof(waad),
wpt, 0, wct, valid_tag, &taglen, CHACHA20POLY1305_DECRYPT);
if (err != CRYPT_OK) return CRYPT_FAIL_TESTVECTOR;
/* INVALID tag */
taglen = sizeof(invalid_tag);
err = chacha20poly1305_memory(key, sizeof(key), iv, sizeof(iv), waad, sizeof(waad),
wpt, 0, wct, invalid_tag, &taglen, CHACHA20POLY1305_DECRYPT);
if (err == CRYPT_OK) {
return CRYPT_FAIL_TESTVECTOR; /* should fail */
}
}
return CRYPT_OK;
#endif
}
#endif

View File

@@ -0,0 +1,26 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file eax_addheader.c
EAX implementation, add meta-data, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_EAX_MODE
/**
add header (metadata) to the stream
@param eax The current EAX state
@param header The header (meta-data) data you wish to add to the state
@param length The length of the header data
@return CRYPT_OK if successful
*/
int eax_addheader(eax_state *eax, const unsigned char *header,
unsigned long length)
{
LTC_ARGCHK(eax != NULL);
LTC_ARGCHK(header != NULL);
return omac_process(&eax->headeromac, header, length);
}
#endif

View File

@@ -0,0 +1,38 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file eax_decrypt.c
EAX implementation, decrypt block, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_EAX_MODE
/**
Decrypt data with the EAX protocol
@param eax The EAX state
@param ct The ciphertext
@param pt [out] The plaintext
@param length The length (octets) of the ciphertext
@return CRYPT_OK if successful
*/
int eax_decrypt(eax_state *eax, const unsigned char *ct, unsigned char *pt,
unsigned long length)
{
int err;
LTC_ARGCHK(eax != NULL);
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
/* omac ciphertext */
if ((err = omac_process(&eax->ctomac, ct, length)) != CRYPT_OK) {
return err;
}
/* decrypt */
return ctr_decrypt(ct, pt, length, &eax->ctr);
}
#endif

View File

@@ -0,0 +1,99 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file eax_decrypt_verify_memory.c
EAX implementation, decrypt block of memory, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_EAX_MODE
/**
Decrypt a block of memory and verify the provided MAC tag with EAX
@param cipher The index of the cipher desired
@param key The secret key
@param keylen The length of the key (octets)
@param nonce The nonce data (use once) for the session
@param noncelen The length of the nonce data.
@param header The session header data
@param headerlen The length of the header (octets)
@param ct The ciphertext
@param ctlen The length of the ciphertext (octets)
@param pt [out] The plaintext
@param tag The authentication tag provided by the encoder
@param taglen [in/out] The length of the tag (octets)
@param stat [out] The result of the decryption (1==valid tag, 0==invalid)
@return CRYPT_OK if successful regardless of the resulting tag comparison
*/
int eax_decrypt_verify_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *header, unsigned long headerlen,
const unsigned char *ct, unsigned long ctlen,
unsigned char *pt,
const unsigned char *tag, unsigned long taglen,
int *stat)
{
int err;
eax_state *eax;
unsigned char *buf;
unsigned long buflen;
LTC_ARGCHK(stat != NULL);
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(tag != NULL);
/* default to zero */
*stat = 0;
/* limit taglen */
taglen = MIN(taglen, MAXBLOCKSIZE);
/* allocate ram */
buf = XMALLOC(taglen);
eax = XMALLOC(sizeof(*eax));
if (eax == NULL || buf == NULL) {
if (eax != NULL) {
XFREE(eax);
}
if (buf != NULL) {
XFREE(buf);
}
return CRYPT_MEM;
}
if ((err = eax_init(eax, cipher, key, keylen, nonce, noncelen, header, headerlen)) != CRYPT_OK) {
goto LBL_ERR;
}
if ((err = eax_decrypt(eax, ct, pt, ctlen)) != CRYPT_OK) {
goto LBL_ERR;
}
buflen = taglen;
if ((err = eax_done(eax, buf, &buflen)) != CRYPT_OK) {
goto LBL_ERR;
}
/* compare tags */
if (buflen >= taglen && XMEM_NEQ(buf, tag, taglen) == 0) {
*stat = 1;
}
err = CRYPT_OK;
LBL_ERR:
#ifdef LTC_CLEAN_STACK
zeromem(buf, taglen);
zeromem(eax, sizeof(*eax));
#endif
XFREE(eax);
XFREE(buf);
return err;
}
#endif

View File

@@ -0,0 +1,82 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file eax_done.c
EAX implementation, terminate session, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_EAX_MODE
/**
Terminate an EAX session and get the tag.
@param eax The EAX state
@param tag [out] The destination of the authentication tag
@param taglen [in/out] The max length and resulting length of the authentication tag
@return CRYPT_OK if successful
*/
int eax_done(eax_state *eax, unsigned char *tag, unsigned long *taglen)
{
int err;
unsigned char *headermac, *ctmac;
unsigned long x, len;
LTC_ARGCHK(eax != NULL);
LTC_ARGCHK(tag != NULL);
LTC_ARGCHK(taglen != NULL);
/* allocate ram */
headermac = XMALLOC(MAXBLOCKSIZE);
ctmac = XMALLOC(MAXBLOCKSIZE);
if (headermac == NULL || ctmac == NULL) {
if (headermac != NULL) {
XFREE(headermac);
}
if (ctmac != NULL) {
XFREE(ctmac);
}
return CRYPT_MEM;
}
/* finish ctomac */
len = MAXBLOCKSIZE;
if ((err = omac_done(&eax->ctomac, ctmac, &len)) != CRYPT_OK) {
goto LBL_ERR;
}
/* finish headeromac */
/* note we specifically don't reset len so the two lens are minimal */
if ((err = omac_done(&eax->headeromac, headermac, &len)) != CRYPT_OK) {
goto LBL_ERR;
}
/* terminate the CTR chain */
if ((err = ctr_done(&eax->ctr)) != CRYPT_OK) {
goto LBL_ERR;
}
/* compute N xor H xor C */
for (x = 0; x < len && x < *taglen; x++) {
tag[x] = eax->N[x] ^ headermac[x] ^ ctmac[x];
}
*taglen = x;
err = CRYPT_OK;
LBL_ERR:
#ifdef LTC_CLEAN_STACK
zeromem(ctmac, MAXBLOCKSIZE);
zeromem(headermac, MAXBLOCKSIZE);
zeromem(eax, sizeof(*eax));
#endif
XFREE(ctmac);
XFREE(headermac);
return err;
}
#endif

View File

@@ -0,0 +1,39 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file eax_encrypt.c
EAX implementation, encrypt block by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_EAX_MODE
/**
Encrypt with EAX a block of data.
@param eax The EAX state
@param pt The plaintext to encrypt
@param ct [out] The ciphertext as encrypted
@param length The length of the plaintext (octets)
@return CRYPT_OK if successful
*/
int eax_encrypt(eax_state *eax, const unsigned char *pt, unsigned char *ct,
unsigned long length)
{
int err;
LTC_ARGCHK(eax != NULL);
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
/* encrypt */
if ((err = ctr_encrypt(pt, ct, length, &eax->ctr)) != CRYPT_OK) {
return err;
}
/* omac ciphertext */
return omac_process(&eax->ctomac, ct, length);
}
#endif

View File

@@ -0,0 +1,70 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file eax_encrypt_authenticate_memory.c
EAX implementation, encrypt a block of memory, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_EAX_MODE
/**
EAX encrypt and produce an authentication tag
@param cipher The index of the cipher desired
@param key The secret key to use
@param keylen The length of the secret key (octets)
@param nonce The session nonce [use once]
@param noncelen The length of the nonce
@param header The header for the session
@param headerlen The length of the header (octets)
@param pt The plaintext
@param ptlen The length of the plaintext (octets)
@param ct [out] The ciphertext
@param tag [out] The destination tag
@param taglen [in/out] The max size and resulting size of the authentication tag
@return CRYPT_OK if successful
*/
int eax_encrypt_authenticate_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *header, unsigned long headerlen,
const unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen)
{
int err;
eax_state *eax;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(tag != NULL);
LTC_ARGCHK(taglen != NULL);
eax = XMALLOC(sizeof(*eax));
if ((err = eax_init(eax, cipher, key, keylen, nonce, noncelen, header, headerlen)) != CRYPT_OK) {
goto LBL_ERR;
}
if ((err = eax_encrypt(eax, pt, ct, ptlen)) != CRYPT_OK) {
goto LBL_ERR;
}
if ((err = eax_done(eax, tag, taglen)) != CRYPT_OK) {
goto LBL_ERR;
}
err = CRYPT_OK;
LBL_ERR:
#ifdef LTC_CLEAN_STACK
zeromem(eax, sizeof(*eax));
#endif
XFREE(eax);
return err;
}
#endif

View File

@@ -0,0 +1,138 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file eax_init.c
EAX implementation, initialized EAX state, by Tom St Denis
*/
#include "tomcrypt_private.h"
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
#pragma clang diagnostic ignored "-Wshorten-64-to-32"
#ifdef LTC_EAX_MODE
/**
Initialized an EAX state
@param eax [out] The EAX state to initialize
@param cipher The index of the desired cipher
@param key The secret key
@param keylen The length of the secret key (octets)
@param nonce The use-once nonce for the session
@param noncelen The length of the nonce (octets)
@param header The header for the EAX state
@param headerlen The header length (octets)
@return CRYPT_OK if successful
*/
int eax_init(eax_state *eax, int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *header, unsigned long headerlen)
{
unsigned char *buf;
int err, blklen;
omac_state *omac;
unsigned long len;
LTC_ARGCHK(eax != NULL);
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(nonce != NULL);
if (headerlen > 0) {
LTC_ARGCHK(header != NULL);
}
if ((err = cipher_is_valid(cipher)) != CRYPT_OK) {
return err;
}
blklen = cipher_descriptor[cipher].block_length;
/* allocate ram */
buf = XMALLOC(MAXBLOCKSIZE);
omac = XMALLOC(sizeof(*omac));
if (buf == NULL || omac == NULL) {
if (buf != NULL) {
XFREE(buf);
}
if (omac != NULL) {
XFREE(omac);
}
return CRYPT_MEM;
}
/* N = LTC_OMAC_0K(nonce) */
zeromem(buf, MAXBLOCKSIZE);
if ((err = omac_init(omac, cipher, key, keylen)) != CRYPT_OK) {
goto LBL_ERR;
}
/* omac the [0]_n */
if ((err = omac_process(omac, buf, blklen)) != CRYPT_OK) {
goto LBL_ERR;
}
/* omac the nonce */
if ((err = omac_process(omac, nonce, noncelen)) != CRYPT_OK) {
goto LBL_ERR;
}
/* store result */
len = sizeof(eax->N);
if ((err = omac_done(omac, eax->N, &len)) != CRYPT_OK) {
goto LBL_ERR;
}
/* H = LTC_OMAC_1K(header) */
zeromem(buf, MAXBLOCKSIZE);
buf[blklen - 1] = 1;
if ((err = omac_init(&eax->headeromac, cipher, key, keylen)) != CRYPT_OK) {
goto LBL_ERR;
}
/* omac the [1]_n */
if ((err = omac_process(&eax->headeromac, buf, blklen)) != CRYPT_OK) {
goto LBL_ERR;
}
/* omac the header */
if (headerlen != 0) {
if ((err = omac_process(&eax->headeromac, header, headerlen)) != CRYPT_OK) {
goto LBL_ERR;
}
}
/* note we don't finish the headeromac, this allows us to add more header later */
/* setup the CTR mode */
if ((err = ctr_start(cipher, eax->N, key, keylen, 0, CTR_COUNTER_BIG_ENDIAN, &eax->ctr)) != CRYPT_OK) {
goto LBL_ERR;
}
/* setup the LTC_OMAC for the ciphertext */
if ((err = omac_init(&eax->ctomac, cipher, key, keylen)) != CRYPT_OK) {
goto LBL_ERR;
}
/* omac [2]_n */
zeromem(buf, MAXBLOCKSIZE);
buf[blklen-1] = 2;
if ((err = omac_process(&eax->ctomac, buf, blklen)) != CRYPT_OK) {
goto LBL_ERR;
}
err = CRYPT_OK;
LBL_ERR:
#ifdef LTC_CLEAN_STACK
zeromem(buf, MAXBLOCKSIZE);
zeromem(omac, sizeof(*omac));
#endif
XFREE(omac);
XFREE(buf);
return err;
}
#endif
#pragma clang diagnostic pop

View File

@@ -0,0 +1,249 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file eax_test.c
EAX implementation, self-test, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_EAX_MODE
/**
Test the EAX implementation
@return CRYPT_OK if successful, CRYPT_NOP if self-testing has been disabled
*/
int eax_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
int keylen,
noncelen,
headerlen,
msglen;
unsigned char key[MAXBLOCKSIZE],
nonce[MAXBLOCKSIZE],
header[MAXBLOCKSIZE],
plaintext[MAXBLOCKSIZE],
ciphertext[MAXBLOCKSIZE],
tag[MAXBLOCKSIZE];
} tests[] = {
/* NULL message */
{
16, 0, 0, 0,
/* key */
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
/* nonce */
{ 0 },
/* header */
{ 0 },
/* plaintext */
{ 0 },
/* ciphertext */
{ 0 },
/* tag */
{ 0x9a, 0xd0, 0x7e, 0x7d, 0xbf, 0xf3, 0x01, 0xf5,
0x05, 0xde, 0x59, 0x6b, 0x96, 0x15, 0xdf, 0xff }
},
/* test with nonce */
{
16, 16, 0, 0,
/* key */
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
/* nonce */
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
/* header */
{ 0 },
/* plaintext */
{ 0 },
/* ciphertext */
{ 0 },
/* tag */
{ 0x1c, 0xe1, 0x0d, 0x3e, 0xff, 0xd4, 0xca, 0xdb,
0xe2, 0xe4, 0x4b, 0x58, 0xd6, 0x0a, 0xb9, 0xec }
},
/* test with header [no nonce] */
{
16, 0, 16, 0,
/* key */
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
/* nonce */
{ 0 },
/* header */
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
/* plaintext */
{ 0 },
/* ciphertext */
{ 0 },
/* tag */
{ 0x3a, 0x69, 0x8f, 0x7a, 0x27, 0x0e, 0x51, 0xb0,
0xf6, 0x5b, 0x3d, 0x3e, 0x47, 0x19, 0x3c, 0xff }
},
/* test with header + nonce + plaintext */
{
16, 16, 16, 32,
/* key */
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
/* nonce */
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
/* header */
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
/* plaintext */
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f },
/* ciphertext */
{ 0x29, 0xd8, 0x78, 0xd1, 0xa3, 0xbe, 0x85, 0x7b,
0x6f, 0xb8, 0xc8, 0xea, 0x59, 0x50, 0xa7, 0x78,
0x33, 0x1f, 0xbf, 0x2c, 0xcf, 0x33, 0x98, 0x6f,
0x35, 0xe8, 0xcf, 0x12, 0x1d, 0xcb, 0x30, 0xbc },
/* tag */
{ 0x4f, 0xbe, 0x03, 0x38, 0xbe, 0x1c, 0x8c, 0x7e,
0x1d, 0x7a, 0xe7, 0xe4, 0x5b, 0x92, 0xc5, 0x87 }
},
/* test with header + nonce + plaintext [not even sizes!] */
{
16, 15, 14, 29,
/* key */
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
/* nonce */
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e },
/* header */
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d },
/* plaintext */
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c },
/* ciphertext */
{ 0xdd, 0x25, 0xc7, 0x54, 0xc5, 0xb1, 0x7c, 0x59,
0x28, 0xb6, 0x9b, 0x73, 0x15, 0x5f, 0x7b, 0xb8,
0x88, 0x8f, 0xaf, 0x37, 0x09, 0x1a, 0xd9, 0x2c,
0x8a, 0x24, 0xdb, 0x86, 0x8b },
/* tag */
{ 0x0d, 0x1a, 0x14, 0xe5, 0x22, 0x24, 0xff, 0xd2,
0x3a, 0x05, 0xfa, 0x02, 0xcd, 0xef, 0x52, 0xda }
},
/* Vectors from Brian Gladman */
{
16, 16, 8, 0,
/* key */
{ 0x23, 0x39, 0x52, 0xde, 0xe4, 0xd5, 0xed, 0x5f,
0x9b, 0x9c, 0x6d, 0x6f, 0xf8, 0x0f, 0xf4, 0x78 },
/* nonce */
{ 0x62, 0xec, 0x67, 0xf9, 0xc3, 0xa4, 0xa4, 0x07,
0xfc, 0xb2, 0xa8, 0xc4, 0x90, 0x31, 0xa8, 0xb3 },
/* header */
{ 0x6b, 0xfb, 0x91, 0x4f, 0xd0, 0x7e, 0xae, 0x6b },
/* PT */
{ 0x00 },
/* CT */
{ 0x00 },
/* tag */
{ 0xe0, 0x37, 0x83, 0x0e, 0x83, 0x89, 0xf2, 0x7b,
0x02, 0x5a, 0x2d, 0x65, 0x27, 0xe7, 0x9d, 0x01 }
},
{
16, 16, 8, 2,
/* key */
{ 0x91, 0x94, 0x5d, 0x3f, 0x4d, 0xcb, 0xee, 0x0b,
0xf4, 0x5e, 0xf5, 0x22, 0x55, 0xf0, 0x95, 0xa4 },
/* nonce */
{ 0xbe, 0xca, 0xf0, 0x43, 0xb0, 0xa2, 0x3d, 0x84,
0x31, 0x94, 0xba, 0x97, 0x2c, 0x66, 0xde, 0xbd },
/* header */
{ 0xfa, 0x3b, 0xfd, 0x48, 0x06, 0xeb, 0x53, 0xfa },
/* PT */
{ 0xf7, 0xfb },
/* CT */
{ 0x19, 0xdd },
/* tag */
{ 0x5c, 0x4c, 0x93, 0x31, 0x04, 0x9d, 0x0b, 0xda,
0xb0, 0x27, 0x74, 0x08, 0xf6, 0x79, 0x67, 0xe5 }
},
{
16, 16, 8, 5,
/* key */
{ 0x01, 0xf7, 0x4a, 0xd6, 0x40, 0x77, 0xf2, 0xe7,
0x04, 0xc0, 0xf6, 0x0a, 0xda, 0x3d, 0xd5, 0x23 },
/* nonce */
{ 0x70, 0xc3, 0xdb, 0x4f, 0x0d, 0x26, 0x36, 0x84,
0x00, 0xa1, 0x0e, 0xd0, 0x5d, 0x2b, 0xff, 0x5e },
/* header */
{ 0x23, 0x4a, 0x34, 0x63, 0xc1, 0x26, 0x4a, 0xc6 },
/* PT */
{ 0x1a, 0x47, 0xcb, 0x49, 0x33 },
/* CT */
{ 0xd8, 0x51, 0xd5, 0xba, 0xe0 },
/* Tag */
{ 0x3a, 0x59, 0xf2, 0x38, 0xa2, 0x3e, 0x39, 0x19,
0x9d, 0xc9, 0x26, 0x66, 0x26, 0xc4, 0x0f, 0x80 }
}
};
int err, x, idx, res;
unsigned long len;
unsigned char outct[MAXBLOCKSIZE], outtag[MAXBLOCKSIZE];
/* AES can be under rijndael or aes... try to find it */
if ((idx = find_cipher("aes")) == -1) {
if ((idx = find_cipher("rijndael")) == -1) {
return CRYPT_NOP;
}
}
for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) {
len = sizeof(outtag);
if ((err = eax_encrypt_authenticate_memory(idx, tests[x].key, tests[x].keylen,
tests[x].nonce, tests[x].noncelen, tests[x].header, tests[x].headerlen,
tests[x].plaintext, tests[x].msglen, outct, outtag, &len)) != CRYPT_OK) {
return err;
}
if (compare_testvector(outtag, len, tests[x].tag, len, "EAX Tag", x) ||
compare_testvector(outct, tests[x].msglen, tests[x].ciphertext, tests[x].msglen, "EAX CT", x)) {
return CRYPT_FAIL_TESTVECTOR;
}
/* test decrypt */
if ((err = eax_decrypt_verify_memory(idx, tests[x].key, tests[x].keylen,
tests[x].nonce, tests[x].noncelen, tests[x].header, tests[x].headerlen,
outct, tests[x].msglen, outct, outtag, len, &res)) != CRYPT_OK) {
return err;
}
if ((res != 1) || compare_testvector(outct, tests[x].msglen, tests[x].plaintext, tests[x].msglen, "EAX", x)) {
#ifdef LTC_TEST_DBG
printf("\n\nEAX: Failure-decrypt - res = %d\n", res);
#endif
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif /* LTC_TEST */
}
#endif /* LTC_EAX_MODE */

View File

@@ -0,0 +1,114 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file gcm_add_aad.c
GCM implementation, Add AAD data to the stream, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_GCM_MODE
/**
Add AAD to the GCM state
@param gcm The GCM state
@param adata The additional authentication data to add to the GCM state
@param adatalen The length of the AAD data.
@return CRYPT_OK on success
*/
int gcm_add_aad(gcm_state *gcm,
const unsigned char *adata, unsigned long adatalen)
{
unsigned long x;
int err;
#ifdef LTC_FAST
unsigned long y;
#endif
LTC_ARGCHK(gcm != NULL);
if (adatalen > 0) {
LTC_ARGCHK(adata != NULL);
}
if (gcm->buflen > 16 || gcm->buflen < 0) {
return CRYPT_INVALID_ARG;
}
if ((err = cipher_is_valid(gcm->cipher)) != CRYPT_OK) {
return err;
}
/* in IV mode? */
if (gcm->mode == LTC_GCM_MODE_IV) {
/* IV length must be > 0 */
if (gcm->buflen == 0 && gcm->totlen == 0) return CRYPT_ERROR;
/* let's process the IV */
if (gcm->ivmode || gcm->buflen != 12) {
for (x = 0; x < (unsigned long)gcm->buflen; x++) {
gcm->X[x] ^= gcm->buf[x];
}
if (gcm->buflen) {
gcm->totlen += gcm->buflen * CONST64(8);
gcm_mult_h(gcm, gcm->X);
}
/* mix in the length */
zeromem(gcm->buf, 8);
STORE64H(gcm->totlen, gcm->buf+8);
for (x = 0; x < 16; x++) {
gcm->X[x] ^= gcm->buf[x];
}
gcm_mult_h(gcm, gcm->X);
/* copy counter out */
XMEMCPY(gcm->Y, gcm->X, 16);
zeromem(gcm->X, 16);
} else {
XMEMCPY(gcm->Y, gcm->buf, 12);
gcm->Y[12] = 0;
gcm->Y[13] = 0;
gcm->Y[14] = 0;
gcm->Y[15] = 1;
}
XMEMCPY(gcm->Y_0, gcm->Y, 16);
zeromem(gcm->buf, 16);
gcm->buflen = 0;
gcm->totlen = 0;
gcm->mode = LTC_GCM_MODE_AAD;
}
if (gcm->mode != LTC_GCM_MODE_AAD || gcm->buflen >= 16) {
return CRYPT_INVALID_ARG;
}
x = 0;
#ifdef LTC_FAST
if (gcm->buflen == 0 && adatalen > 15) {
for (x = 0; x < (adatalen & ~15); x += 16) {
for (y = 0; y < 16; y += sizeof(LTC_FAST_TYPE)) {
*(LTC_FAST_TYPE_PTR_CAST(&gcm->X[y])) ^= *(LTC_FAST_TYPE_PTR_CAST(&adata[x + y]));
}
gcm_mult_h(gcm, gcm->X);
gcm->totlen += 128;
}
adata += x;
}
#endif
/* start adding AAD data to the state */
for (; x < adatalen; x++) {
gcm->X[gcm->buflen++] ^= *adata++;
if (gcm->buflen == 16) {
/* GF mult it */
gcm_mult_h(gcm, gcm->X);
gcm->buflen = 0;
gcm->totlen += 128;
}
}
return CRYPT_OK;
}
#endif

View File

@@ -0,0 +1,82 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file gcm_add_iv.c
GCM implementation, add IV data to the state, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_GCM_MODE
/**
Add IV data to the GCM state
@param gcm The GCM state
@param IV The initial value data to add
@param IVlen The length of the IV
@return CRYPT_OK on success
*/
int gcm_add_iv(gcm_state *gcm,
const unsigned char *IV, unsigned long IVlen)
{
unsigned long x, y;
int err;
LTC_ARGCHK(gcm != NULL);
if (IVlen > 0) {
LTC_ARGCHK(IV != NULL);
}
/* must be in IV mode */
if (gcm->mode != LTC_GCM_MODE_IV) {
return CRYPT_INVALID_ARG;
}
if (gcm->buflen >= 16 || gcm->buflen < 0) {
return CRYPT_INVALID_ARG;
}
if ((err = cipher_is_valid(gcm->cipher)) != CRYPT_OK) {
return err;
}
/* trip the ivmode flag */
if (IVlen + gcm->buflen > 12) {
gcm->ivmode |= 1;
}
x = 0;
#ifdef LTC_FAST
if (gcm->buflen == 0) {
for (x = 0; x < (IVlen & ~15); x += 16) {
for (y = 0; y < 16; y += sizeof(LTC_FAST_TYPE)) {
*(LTC_FAST_TYPE_PTR_CAST(&gcm->X[y])) ^= *(LTC_FAST_TYPE_PTR_CAST(&IV[x + y]));
}
gcm_mult_h(gcm, gcm->X);
gcm->totlen += 128;
}
IV += x;
}
#endif
/* start adding IV data to the state */
for (; x < IVlen; x++) {
gcm->buf[gcm->buflen++] = *IV++;
if (gcm->buflen == 16) {
/* GF mult it */
for (y = 0; y < 16; y++) {
gcm->X[y] ^= gcm->buf[y];
}
gcm_mult_h(gcm, gcm->X);
gcm->buflen = 0;
gcm->totlen += 128;
}
}
return CRYPT_OK;
}
#endif

View File

@@ -0,0 +1,80 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file gcm_done.c
GCM implementation, Terminate the stream, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_GCM_MODE
/**
Terminate a GCM stream
@param gcm The GCM state
@param tag [out] The destination for the MAC tag
@param taglen [in/out] The length of the MAC tag
@return CRYPT_OK on success
*/
int gcm_done(gcm_state *gcm,
unsigned char *tag, unsigned long *taglen)
{
unsigned long x;
int err;
LTC_ARGCHK(gcm != NULL);
LTC_ARGCHK(tag != NULL);
LTC_ARGCHK(taglen != NULL);
if (gcm->buflen > 16 || gcm->buflen < 0) {
return CRYPT_INVALID_ARG;
}
if ((err = cipher_is_valid(gcm->cipher)) != CRYPT_OK) {
return err;
}
if (gcm->mode == LTC_GCM_MODE_IV) {
/* let's process the IV */
if ((err = gcm_add_aad(gcm, NULL, 0)) != CRYPT_OK) return err;
}
if (gcm->mode == LTC_GCM_MODE_AAD) {
/* let's process the AAD */
if ((err = gcm_process(gcm, NULL, 0, NULL, 0)) != CRYPT_OK) return err;
}
if (gcm->mode != LTC_GCM_MODE_TEXT) {
return CRYPT_INVALID_ARG;
}
/* handle remaining ciphertext */
if (gcm->buflen) {
gcm->pttotlen += gcm->buflen * CONST64(8);
gcm_mult_h(gcm, gcm->X);
}
/* length */
STORE64H(gcm->totlen, gcm->buf);
STORE64H(gcm->pttotlen, gcm->buf+8);
for (x = 0; x < 16; x++) {
gcm->X[x] ^= gcm->buf[x];
}
gcm_mult_h(gcm, gcm->X);
/* encrypt original counter */
if ((err = cipher_descriptor[gcm->cipher].ecb_encrypt(gcm->Y_0, gcm->buf, &gcm->K)) != CRYPT_OK) {
return err;
}
for (x = 0; x < 16 && x < *taglen; x++) {
tag[x] = gcm->buf[x] ^ gcm->X[x];
}
*taglen = x;
cipher_descriptor[gcm->cipher].done(&gcm->K);
return CRYPT_OK;
}
#endif

View File

@@ -0,0 +1,213 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file gcm_gf_mult.c
GCM implementation, do the GF mult, by Tom St Denis
*/
#include "tomcrypt_private.h"
#if defined(LTC_GCM_TABLES) || defined(LTC_LRW_TABLES) || (defined(LTC_GCM_MODE) && defined(LTC_FAST))
/* this is x*2^128 mod p(x) ... the results are 16 bytes each stored in a packed format. Since only the
* lower 16 bits are not zero'ed I removed the upper 14 bytes */
const unsigned char gcm_shift_table[256*2] = {
0x00, 0x00, 0x01, 0xc2, 0x03, 0x84, 0x02, 0x46, 0x07, 0x08, 0x06, 0xca, 0x04, 0x8c, 0x05, 0x4e,
0x0e, 0x10, 0x0f, 0xd2, 0x0d, 0x94, 0x0c, 0x56, 0x09, 0x18, 0x08, 0xda, 0x0a, 0x9c, 0x0b, 0x5e,
0x1c, 0x20, 0x1d, 0xe2, 0x1f, 0xa4, 0x1e, 0x66, 0x1b, 0x28, 0x1a, 0xea, 0x18, 0xac, 0x19, 0x6e,
0x12, 0x30, 0x13, 0xf2, 0x11, 0xb4, 0x10, 0x76, 0x15, 0x38, 0x14, 0xfa, 0x16, 0xbc, 0x17, 0x7e,
0x38, 0x40, 0x39, 0x82, 0x3b, 0xc4, 0x3a, 0x06, 0x3f, 0x48, 0x3e, 0x8a, 0x3c, 0xcc, 0x3d, 0x0e,
0x36, 0x50, 0x37, 0x92, 0x35, 0xd4, 0x34, 0x16, 0x31, 0x58, 0x30, 0x9a, 0x32, 0xdc, 0x33, 0x1e,
0x24, 0x60, 0x25, 0xa2, 0x27, 0xe4, 0x26, 0x26, 0x23, 0x68, 0x22, 0xaa, 0x20, 0xec, 0x21, 0x2e,
0x2a, 0x70, 0x2b, 0xb2, 0x29, 0xf4, 0x28, 0x36, 0x2d, 0x78, 0x2c, 0xba, 0x2e, 0xfc, 0x2f, 0x3e,
0x70, 0x80, 0x71, 0x42, 0x73, 0x04, 0x72, 0xc6, 0x77, 0x88, 0x76, 0x4a, 0x74, 0x0c, 0x75, 0xce,
0x7e, 0x90, 0x7f, 0x52, 0x7d, 0x14, 0x7c, 0xd6, 0x79, 0x98, 0x78, 0x5a, 0x7a, 0x1c, 0x7b, 0xde,
0x6c, 0xa0, 0x6d, 0x62, 0x6f, 0x24, 0x6e, 0xe6, 0x6b, 0xa8, 0x6a, 0x6a, 0x68, 0x2c, 0x69, 0xee,
0x62, 0xb0, 0x63, 0x72, 0x61, 0x34, 0x60, 0xf6, 0x65, 0xb8, 0x64, 0x7a, 0x66, 0x3c, 0x67, 0xfe,
0x48, 0xc0, 0x49, 0x02, 0x4b, 0x44, 0x4a, 0x86, 0x4f, 0xc8, 0x4e, 0x0a, 0x4c, 0x4c, 0x4d, 0x8e,
0x46, 0xd0, 0x47, 0x12, 0x45, 0x54, 0x44, 0x96, 0x41, 0xd8, 0x40, 0x1a, 0x42, 0x5c, 0x43, 0x9e,
0x54, 0xe0, 0x55, 0x22, 0x57, 0x64, 0x56, 0xa6, 0x53, 0xe8, 0x52, 0x2a, 0x50, 0x6c, 0x51, 0xae,
0x5a, 0xf0, 0x5b, 0x32, 0x59, 0x74, 0x58, 0xb6, 0x5d, 0xf8, 0x5c, 0x3a, 0x5e, 0x7c, 0x5f, 0xbe,
0xe1, 0x00, 0xe0, 0xc2, 0xe2, 0x84, 0xe3, 0x46, 0xe6, 0x08, 0xe7, 0xca, 0xe5, 0x8c, 0xe4, 0x4e,
0xef, 0x10, 0xee, 0xd2, 0xec, 0x94, 0xed, 0x56, 0xe8, 0x18, 0xe9, 0xda, 0xeb, 0x9c, 0xea, 0x5e,
0xfd, 0x20, 0xfc, 0xe2, 0xfe, 0xa4, 0xff, 0x66, 0xfa, 0x28, 0xfb, 0xea, 0xf9, 0xac, 0xf8, 0x6e,
0xf3, 0x30, 0xf2, 0xf2, 0xf0, 0xb4, 0xf1, 0x76, 0xf4, 0x38, 0xf5, 0xfa, 0xf7, 0xbc, 0xf6, 0x7e,
0xd9, 0x40, 0xd8, 0x82, 0xda, 0xc4, 0xdb, 0x06, 0xde, 0x48, 0xdf, 0x8a, 0xdd, 0xcc, 0xdc, 0x0e,
0xd7, 0x50, 0xd6, 0x92, 0xd4, 0xd4, 0xd5, 0x16, 0xd0, 0x58, 0xd1, 0x9a, 0xd3, 0xdc, 0xd2, 0x1e,
0xc5, 0x60, 0xc4, 0xa2, 0xc6, 0xe4, 0xc7, 0x26, 0xc2, 0x68, 0xc3, 0xaa, 0xc1, 0xec, 0xc0, 0x2e,
0xcb, 0x70, 0xca, 0xb2, 0xc8, 0xf4, 0xc9, 0x36, 0xcc, 0x78, 0xcd, 0xba, 0xcf, 0xfc, 0xce, 0x3e,
0x91, 0x80, 0x90, 0x42, 0x92, 0x04, 0x93, 0xc6, 0x96, 0x88, 0x97, 0x4a, 0x95, 0x0c, 0x94, 0xce,
0x9f, 0x90, 0x9e, 0x52, 0x9c, 0x14, 0x9d, 0xd6, 0x98, 0x98, 0x99, 0x5a, 0x9b, 0x1c, 0x9a, 0xde,
0x8d, 0xa0, 0x8c, 0x62, 0x8e, 0x24, 0x8f, 0xe6, 0x8a, 0xa8, 0x8b, 0x6a, 0x89, 0x2c, 0x88, 0xee,
0x83, 0xb0, 0x82, 0x72, 0x80, 0x34, 0x81, 0xf6, 0x84, 0xb8, 0x85, 0x7a, 0x87, 0x3c, 0x86, 0xfe,
0xa9, 0xc0, 0xa8, 0x02, 0xaa, 0x44, 0xab, 0x86, 0xae, 0xc8, 0xaf, 0x0a, 0xad, 0x4c, 0xac, 0x8e,
0xa7, 0xd0, 0xa6, 0x12, 0xa4, 0x54, 0xa5, 0x96, 0xa0, 0xd8, 0xa1, 0x1a, 0xa3, 0x5c, 0xa2, 0x9e,
0xb5, 0xe0, 0xb4, 0x22, 0xb6, 0x64, 0xb7, 0xa6, 0xb2, 0xe8, 0xb3, 0x2a, 0xb1, 0x6c, 0xb0, 0xae,
0xbb, 0xf0, 0xba, 0x32, 0xb8, 0x74, 0xb9, 0xb6, 0xbc, 0xf8, 0xbd, 0x3a, 0xbf, 0x7c, 0xbe, 0xbe };
#endif
#if defined(LTC_GCM_MODE) || defined(LTC_LRW_MODE)
#ifndef LTC_FAST
/* right shift */
static void s_gcm_rightshift(unsigned char *a)
{
int x;
for (x = 15; x > 0; x--) {
a[x] = (a[x]>>1) | ((a[x-1]<<7)&0x80);
}
a[0] >>= 1;
}
/* c = b*a */
static const unsigned char mask[] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
static const unsigned char poly[] = { 0x00, 0xE1 };
/**
GCM GF multiplier (internal use only) bitserial
@param a First value
@param b Second value
@param c Destination for a * b
*/
void gcm_gf_mult(const unsigned char *a, const unsigned char *b, unsigned char *c)
{
unsigned char Z[16], V[16];
unsigned char x, y, z;
zeromem(Z, 16);
XMEMCPY(V, a, 16);
for (x = 0; x < 128; x++) {
if (b[x>>3] & mask[x&7]) {
for (y = 0; y < 16; y++) {
Z[y] ^= V[y];
}
}
z = V[15] & 0x01;
s_gcm_rightshift(V);
V[0] ^= poly[z];
}
XMEMCPY(c, Z, 16);
}
#else
/* map normal numbers to "ieee" way ... e.g. bit reversed */
#define M(x) ( ((x&8)>>3) | ((x&4)>>1) | ((x&2)<<1) | ((x&1)<<3) )
#define BPD (sizeof(LTC_FAST_TYPE) * 8)
#define WPV (1 + (16 / sizeof(LTC_FAST_TYPE)))
/**
GCM GF multiplier (internal use only) word oriented
@param a First value
@param b Second value
@param c Destination for a * b
*/
void gcm_gf_mult(const unsigned char *a, const unsigned char *b, unsigned char *c)
{
int i, j, k, u;
LTC_FAST_TYPE B[16][WPV], tmp[32 / sizeof(LTC_FAST_TYPE)], pB[16 / sizeof(LTC_FAST_TYPE)], zz, z;
unsigned char pTmp[32];
/* create simple tables */
zeromem(B[0], sizeof(B[0]));
zeromem(B[M(1)], sizeof(B[M(1)]));
#ifdef ENDIAN_32BITWORD
for (i = 0; i < 4; i++) {
LOAD32H(B[M(1)][i], a + (i<<2));
LOAD32L(pB[i], b + (i<<2));
}
#else
for (i = 0; i < 2; i++) {
LOAD64H(B[M(1)][i], a + (i<<3));
LOAD64L(pB[i], b + (i<<3));
}
#endif
/* now create 2, 4 and 8 */
B[M(2)][0] = B[M(1)][0] >> 1;
B[M(4)][0] = B[M(1)][0] >> 2;
B[M(8)][0] = B[M(1)][0] >> 3;
for (i = 1; i < (int)WPV; i++) {
B[M(2)][i] = (B[M(1)][i-1] << (BPD-1)) | (B[M(1)][i] >> 1);
B[M(4)][i] = (B[M(1)][i-1] << (BPD-2)) | (B[M(1)][i] >> 2);
B[M(8)][i] = (B[M(1)][i-1] << (BPD-3)) | (B[M(1)][i] >> 3);
}
/* now all values with two bits which are 3, 5, 6, 9, 10, 12 */
for (i = 0; i < (int)WPV; i++) {
B[M(3)][i] = B[M(1)][i] ^ B[M(2)][i];
B[M(5)][i] = B[M(1)][i] ^ B[M(4)][i];
B[M(6)][i] = B[M(2)][i] ^ B[M(4)][i];
B[M(9)][i] = B[M(1)][i] ^ B[M(8)][i];
B[M(10)][i] = B[M(2)][i] ^ B[M(8)][i];
B[M(12)][i] = B[M(8)][i] ^ B[M(4)][i];
/* now all 3 bit values and the only 4 bit value: 7, 11, 13, 14, 15 */
B[M(7)][i] = B[M(3)][i] ^ B[M(4)][i];
B[M(11)][i] = B[M(3)][i] ^ B[M(8)][i];
B[M(13)][i] = B[M(1)][i] ^ B[M(12)][i];
B[M(14)][i] = B[M(6)][i] ^ B[M(8)][i];
B[M(15)][i] = B[M(7)][i] ^ B[M(8)][i];
}
zeromem(tmp, sizeof(tmp));
/* compute product four bits of each word at a time */
/* for each nibble */
for (i = (BPD/4)-1; i >= 0; i--) {
/* for each word */
for (j = 0; j < (int)(WPV-1); j++) {
/* grab the 4 bits recall the nibbles are backwards so it's a shift by (i^1)*4 */
u = (pB[j] >> ((i^1)<<2)) & 15;
/* add offset by the word count the table looked up value to the result */
for (k = 0; k < (int)WPV; k++) {
tmp[k+j] ^= B[u][k];
}
}
/* shift result up by 4 bits */
if (i != 0) {
for (z = j = 0; j < (int)(32 / sizeof(LTC_FAST_TYPE)); j++) {
zz = tmp[j] << (BPD-4);
tmp[j] = (tmp[j] >> 4) | z;
z = zz;
}
}
}
/* store product */
#ifdef ENDIAN_32BITWORD
for (i = 0; i < 8; i++) {
STORE32H(tmp[i], pTmp + (i<<2));
}
#else
for (i = 0; i < 4; i++) {
STORE64H(tmp[i], pTmp + (i<<3));
}
#endif
/* reduce by taking most significant byte and adding the appropriate two byte sequence 16 bytes down */
for (i = 31; i >= 16; i--) {
pTmp[i-16] ^= gcm_shift_table[((unsigned)pTmp[i]<<1)];
pTmp[i-15] ^= gcm_shift_table[((unsigned)pTmp[i]<<1)+1];
}
for (i = 0; i < 16; i++) {
c[i] = pTmp[i];
}
}
#undef M
#undef BPD
#undef WPV
#endif
#endif

View File

@@ -0,0 +1,95 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file gcm_init.c
GCM implementation, initialize state, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_GCM_MODE
/**
Initialize a GCM state
@param gcm The GCM state to initialize
@param cipher The index of the cipher to use
@param key The secret key
@param keylen The length of the secret key
@return CRYPT_OK on success
*/
int gcm_init(gcm_state *gcm, int cipher,
const unsigned char *key, int keylen)
{
int err;
unsigned char B[16];
#ifdef LTC_GCM_TABLES
int x, y, z, t;
#endif
LTC_ARGCHK(gcm != NULL);
LTC_ARGCHK(key != NULL);
#ifdef LTC_FAST
if (16 % sizeof(LTC_FAST_TYPE)) {
return CRYPT_INVALID_ARG;
}
#endif
/* is cipher valid? */
if ((err = cipher_is_valid(cipher)) != CRYPT_OK) {
return err;
}
if (cipher_descriptor[cipher].block_length != 16) {
return CRYPT_INVALID_CIPHER;
}
/* schedule key */
if ((err = cipher_descriptor[cipher].setup(key, keylen, 0, &gcm->K)) != CRYPT_OK) {
return err;
}
/* H = E(0) */
zeromem(B, 16);
if ((err = cipher_descriptor[cipher].ecb_encrypt(B, gcm->H, &gcm->K)) != CRYPT_OK) {
return err;
}
/* setup state */
zeromem(gcm->buf, sizeof(gcm->buf));
zeromem(gcm->X, sizeof(gcm->X));
gcm->cipher = cipher;
gcm->mode = LTC_GCM_MODE_IV;
gcm->ivmode = 0;
gcm->buflen = 0;
gcm->totlen = 0;
gcm->pttotlen = 0;
#ifdef LTC_GCM_TABLES
/* setup tables */
/* generate the first table as it has no shifting (from which we make the other tables) */
zeromem(B, 16);
for (y = 0; y < 256; y++) {
B[0] = y;
gcm_gf_mult(gcm->H, B, &gcm->PC[0][y][0]);
}
/* now generate the rest of the tables based the previous table */
for (x = 1; x < 16; x++) {
for (y = 0; y < 256; y++) {
/* now shift it right by 8 bits */
t = gcm->PC[x-1][y][15];
for (z = 15; z > 0; z--) {
gcm->PC[x][y][z] = gcm->PC[x-1][y][z-1];
}
gcm->PC[x][y][0] = gcm_shift_table[t<<1];
gcm->PC[x][y][1] ^= gcm_shift_table[(t<<1)+1];
}
}
#endif
return CRYPT_OK;
}
#endif

View File

@@ -0,0 +1,117 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file gcm_memory.c
GCM implementation, process a packet, by Tom St Denis
*/
#include "tomcrypt_private.h"
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
#pragma clang diagnostic ignored "-Wshorten-64-to-32"
#ifdef LTC_GCM_MODE
/**
Process an entire GCM packet in one call.
@param cipher Index of cipher to use
@param key The secret key
@param keylen The length of the secret key
@param IV The initialization vector
@param IVlen The length of the initialization vector
@param adata The additional authentication data (header)
@param adatalen The length of the adata
@param pt The plaintext
@param ptlen The length of the plaintext (ciphertext length is the same)
@param ct The ciphertext
@param tag [out] The MAC tag
@param taglen [in/out] The MAC tag length
@param direction Encrypt or Decrypt mode (GCM_ENCRYPT or GCM_DECRYPT)
@return CRYPT_OK on success
*/
int gcm_memory( int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *IV, unsigned long IVlen,
const unsigned char *adata, unsigned long adatalen,
unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen,
int direction)
{
void *orig;
gcm_state *gcm;
int err;
if ((err = cipher_is_valid(cipher)) != CRYPT_OK) {
return err;
}
if (cipher_descriptor[cipher].accel_gcm_memory != NULL) {
return cipher_descriptor[cipher].accel_gcm_memory
(key, keylen,
IV, IVlen,
adata, adatalen,
pt, ptlen,
ct,
tag, taglen,
direction);
}
#ifndef LTC_GCM_TABLES_SSE2
orig = gcm = XMALLOC(sizeof(*gcm));
#else
orig = gcm = XMALLOC(sizeof(*gcm) + 16);
#endif
if (gcm == NULL) {
return CRYPT_MEM;
}
/* Force GCM to be on a multiple of 16 so we can use 128-bit aligned operations
* note that we only modify gcm and keep orig intact. This code is not portable
* but again it's only for SSE2 anyways, so who cares?
*/
#ifdef LTC_GCM_TABLES_SSE2
gcm = LTC_ALIGN_BUF(gcm, 16);
#endif
if ((err = gcm_init(gcm, cipher, key, keylen)) != CRYPT_OK) {
goto LTC_ERR;
}
if ((err = gcm_add_iv(gcm, IV, IVlen)) != CRYPT_OK) {
goto LTC_ERR;
}
if ((err = gcm_add_aad(gcm, adata, adatalen)) != CRYPT_OK) {
goto LTC_ERR;
}
if ((err = gcm_process(gcm, pt, ptlen, ct, direction)) != CRYPT_OK) {
goto LTC_ERR;
}
if (direction == GCM_ENCRYPT) {
if ((err = gcm_done(gcm, tag, taglen)) != CRYPT_OK) {
goto LTC_ERR;
}
}
else if (direction == GCM_DECRYPT) {
unsigned char buf[MAXBLOCKSIZE];
unsigned long buflen = sizeof(buf);
if ((err = gcm_done(gcm, buf, &buflen)) != CRYPT_OK) {
goto LTC_ERR;
}
if (buflen != *taglen || XMEM_NEQ(buf, tag, buflen) != 0) {
err = CRYPT_ERROR;
}
}
else {
err = CRYPT_INVALID_ARG;
}
LTC_ERR:
gcm_reset(gcm);
XFREE(orig);
return err;
}
#endif
#pragma clang diagnostic pop

View File

@@ -0,0 +1,47 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file gcm_mult_h.c
GCM implementation, do the GF mult, by Tom St Denis
*/
#include "tomcrypt_private.h"
#if defined(LTC_GCM_MODE)
/**
GCM multiply by H
@param gcm The GCM state which holds the H value
@param I The value to multiply H by
*/
void gcm_mult_h(const gcm_state *gcm, unsigned char *I)
{
unsigned char T[16];
#ifdef LTC_GCM_TABLES
int x;
#ifdef LTC_GCM_TABLES_SSE2
__asm__("movdqa (%0),%%xmm0"::"r"(&gcm->PC[0][I[0]][0]));
for (x = 1; x < 16; x++) {
__asm__("pxor (%0),%%xmm0"::"r"(&gcm->PC[x][I[x]][0]));
}
__asm__("movdqa %%xmm0,(%0)"::"r"(&T));
#else
int y;
XMEMCPY(T, &gcm->PC[0][I[0]][0], 16);
for (x = 1; x < 16; x++) {
#ifdef LTC_FAST
for (y = 0; y < 16; y += sizeof(LTC_FAST_TYPE)) {
*(LTC_FAST_TYPE_PTR_CAST(T + y)) ^= *(LTC_FAST_TYPE_PTR_CAST(&gcm->PC[x][I[x]][y]));
}
#else
for (y = 0; y < 16; y++) {
T[y] ^= gcm->PC[x][I[x]][y];
}
#endif /* LTC_FAST */
}
#endif /* LTC_GCM_TABLES_SSE2 */
#else
gcm_gf_mult(gcm->H, I, T);
#endif
XMEMCPY(I, T, 16);
}
#endif

View File

@@ -0,0 +1,150 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file gcm_process.c
GCM implementation, process message data, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_GCM_MODE
/**
Process plaintext/ciphertext through GCM
@param gcm The GCM state
@param pt The plaintext
@param ptlen The plaintext length (ciphertext length is the same)
@param ct The ciphertext
@param direction Encrypt or Decrypt mode (GCM_ENCRYPT or GCM_DECRYPT)
@return CRYPT_OK on success
*/
int gcm_process(gcm_state *gcm,
unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
int direction)
{
unsigned long x;
int y, err;
unsigned char b;
LTC_ARGCHK(gcm != NULL);
if (ptlen > 0) {
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
}
if (gcm->buflen > 16 || gcm->buflen < 0) {
return CRYPT_INVALID_ARG;
}
if ((err = cipher_is_valid(gcm->cipher)) != CRYPT_OK) {
return err;
}
/* 0xFFFFFFFE0 = ((2^39)-256)/8 */
if (gcm->pttotlen / 8 + (ulong64)gcm->buflen + (ulong64)ptlen >= CONST64(0xFFFFFFFE0)) {
return CRYPT_INVALID_ARG;
}
if (gcm->mode == LTC_GCM_MODE_IV) {
/* let's process the IV */
if ((err = gcm_add_aad(gcm, NULL, 0)) != CRYPT_OK) return err;
}
/* in AAD mode? */
if (gcm->mode == LTC_GCM_MODE_AAD) {
/* let's process the AAD */
if (gcm->buflen) {
gcm->totlen += gcm->buflen * CONST64(8);
gcm_mult_h(gcm, gcm->X);
}
/* increment counter */
for (y = 15; y >= 12; y--) {
if (++gcm->Y[y] & 255) { break; }
}
/* encrypt the counter */
if ((err = cipher_descriptor[gcm->cipher].ecb_encrypt(gcm->Y, gcm->buf, &gcm->K)) != CRYPT_OK) {
return err;
}
gcm->buflen = 0;
gcm->mode = LTC_GCM_MODE_TEXT;
}
if (gcm->mode != LTC_GCM_MODE_TEXT) {
return CRYPT_INVALID_ARG;
}
x = 0;
#ifdef LTC_FAST
if (gcm->buflen == 0) {
if (direction == GCM_ENCRYPT) {
for (x = 0; x < (ptlen & ~15); x += 16) {
/* ctr encrypt */
for (y = 0; y < 16; y += sizeof(LTC_FAST_TYPE)) {
*(LTC_FAST_TYPE_PTR_CAST(&ct[x + y])) = *(LTC_FAST_TYPE_PTR_CAST(&pt[x+y])) ^ *(LTC_FAST_TYPE_PTR_CAST(&gcm->buf[y]));
*(LTC_FAST_TYPE_PTR_CAST(&gcm->X[y])) ^= *(LTC_FAST_TYPE_PTR_CAST(&ct[x+y]));
}
/* GMAC it */
gcm->pttotlen += 128;
gcm_mult_h(gcm, gcm->X);
/* increment counter */
for (y = 15; y >= 12; y--) {
if (++gcm->Y[y] & 255) { break; }
}
if ((err = cipher_descriptor[gcm->cipher].ecb_encrypt(gcm->Y, gcm->buf, &gcm->K)) != CRYPT_OK) {
return err;
}
}
} else {
for (x = 0; x < (ptlen & ~15); x += 16) {
/* ctr encrypt */
for (y = 0; y < 16; y += sizeof(LTC_FAST_TYPE)) {
*(LTC_FAST_TYPE_PTR_CAST(&gcm->X[y])) ^= *(LTC_FAST_TYPE_PTR_CAST(&ct[x+y]));
*(LTC_FAST_TYPE_PTR_CAST(&pt[x + y])) = *(LTC_FAST_TYPE_PTR_CAST(&ct[x+y])) ^ *(LTC_FAST_TYPE_PTR_CAST(&gcm->buf[y]));
}
/* GMAC it */
gcm->pttotlen += 128;
gcm_mult_h(gcm, gcm->X);
/* increment counter */
for (y = 15; y >= 12; y--) {
if (++gcm->Y[y] & 255) { break; }
}
if ((err = cipher_descriptor[gcm->cipher].ecb_encrypt(gcm->Y, gcm->buf, &gcm->K)) != CRYPT_OK) {
return err;
}
}
}
}
#endif
/* process text */
for (; x < ptlen; x++) {
if (gcm->buflen == 16) {
gcm->pttotlen += 128;
gcm_mult_h(gcm, gcm->X);
/* increment counter */
for (y = 15; y >= 12; y--) {
if (++gcm->Y[y] & 255) { break; }
}
if ((err = cipher_descriptor[gcm->cipher].ecb_encrypt(gcm->Y, gcm->buf, &gcm->K)) != CRYPT_OK) {
return err;
}
gcm->buflen = 0;
}
if (direction == GCM_ENCRYPT) {
b = ct[x] = pt[x] ^ gcm->buf[gcm->buflen];
} else {
b = ct[x];
pt[x] = ct[x] ^ gcm->buf[gcm->buflen];
}
gcm->X[gcm->buflen++] ^= b;
}
return CRYPT_OK;
}
#endif

View File

@@ -0,0 +1,32 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file gcm_reset.c
GCM implementation, reset a used state so it can accept IV data, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_GCM_MODE
/**
Reset a GCM state to as if you just called gcm_init(). This saves the initialization time.
@param gcm The GCM state to reset
@return CRYPT_OK on success
*/
int gcm_reset(gcm_state *gcm)
{
LTC_ARGCHK(gcm != NULL);
zeromem(gcm->buf, sizeof(gcm->buf));
zeromem(gcm->X, sizeof(gcm->X));
gcm->mode = LTC_GCM_MODE_IV;
gcm->ivmode = 0;
gcm->buflen = 0;
gcm->totlen = 0;
gcm->pttotlen = 0;
return CRYPT_OK;
}
#endif

View File

@@ -0,0 +1,407 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file gcm_test.c
GCM implementation, testing, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_GCM_MODE
/**
Test the GCM code
@return CRYPT_OK on success
*/
int gcm_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
unsigned char K[32];
int keylen;
unsigned char P[128];
unsigned long ptlen;
unsigned char A[128];
unsigned long alen;
unsigned char IV[128];
unsigned long IVlen;
unsigned char C[128];
unsigned char T[16];
} tests[] = {
/* test case #1 */
{
/* key */
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
16,
/* plaintext */
{ 0 },
0,
/* AAD data */
{ 0 },
0,
/* IV */
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00 },
12,
/* ciphertext */
{ 0 },
/* tag */
{ 0x58, 0xe2, 0xfc, 0xce, 0xfa, 0x7e, 0x30, 0x61,
0x36, 0x7f, 0x1d, 0x57, 0xa4, 0xe7, 0x45, 0x5a }
},
/* test case #2 */
{
/* key */
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
16,
/* PT */
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
16,
/* ADATA */
{ 0 },
0,
/* IV */
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00 },
12,
/* CT */
{ 0x03, 0x88, 0xda, 0xce, 0x60, 0xb6, 0xa3, 0x92,
0xf3, 0x28, 0xc2, 0xb9, 0x71, 0xb2, 0xfe, 0x78 },
/* TAG */
{ 0xab, 0x6e, 0x47, 0xd4, 0x2c, 0xec, 0x13, 0xbd,
0xf5, 0x3a, 0x67, 0xb2, 0x12, 0x57, 0xbd, 0xdf }
},
/* test case #3 */
{
/* key */
{ 0xfe, 0xff, 0xe9, 0x92, 0x86, 0x65, 0x73, 0x1c,
0x6d, 0x6a, 0x8f, 0x94, 0x67, 0x30, 0x83, 0x08, },
16,
/* PT */
{ 0xd9, 0x31, 0x32, 0x25, 0xf8, 0x84, 0x06, 0xe5,
0xa5, 0x59, 0x09, 0xc5, 0xaf, 0xf5, 0x26, 0x9a,
0x86, 0xa7, 0xa9, 0x53, 0x15, 0x34, 0xf7, 0xda,
0x2e, 0x4c, 0x30, 0x3d, 0x8a, 0x31, 0x8a, 0x72,
0x1c, 0x3c, 0x0c, 0x95, 0x95, 0x68, 0x09, 0x53,
0x2f, 0xcf, 0x0e, 0x24, 0x49, 0xa6, 0xb5, 0x25,
0xb1, 0x6a, 0xed, 0xf5, 0xaa, 0x0d, 0xe6, 0x57,
0xba, 0x63, 0x7b, 0x39, 0x1a, 0xaf, 0xd2, 0x55, },
64,
/* ADATA */
{ 0 },
0,
/* IV */
{ 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad,
0xde, 0xca, 0xf8, 0x88, },
12,
/* CT */
{ 0x42, 0x83, 0x1e, 0xc2, 0x21, 0x77, 0x74, 0x24,
0x4b, 0x72, 0x21, 0xb7, 0x84, 0xd0, 0xd4, 0x9c,
0xe3, 0xaa, 0x21, 0x2f, 0x2c, 0x02, 0xa4, 0xe0,
0x35, 0xc1, 0x7e, 0x23, 0x29, 0xac, 0xa1, 0x2e,
0x21, 0xd5, 0x14, 0xb2, 0x54, 0x66, 0x93, 0x1c,
0x7d, 0x8f, 0x6a, 0x5a, 0xac, 0x84, 0xaa, 0x05,
0x1b, 0xa3, 0x0b, 0x39, 0x6a, 0x0a, 0xac, 0x97,
0x3d, 0x58, 0xe0, 0x91, 0x47, 0x3f, 0x59, 0x85, },
/* TAG */
{ 0x4d, 0x5c, 0x2a, 0xf3, 0x27, 0xcd, 0x64, 0xa6,
0x2c, 0xf3, 0x5a, 0xbd, 0x2b, 0xa6, 0xfa, 0xb4, }
},
/* test case #4 */
{
/* key */
{ 0xfe, 0xff, 0xe9, 0x92, 0x86, 0x65, 0x73, 0x1c,
0x6d, 0x6a, 0x8f, 0x94, 0x67, 0x30, 0x83, 0x08, },
16,
/* PT */
{ 0xd9, 0x31, 0x32, 0x25, 0xf8, 0x84, 0x06, 0xe5,
0xa5, 0x59, 0x09, 0xc5, 0xaf, 0xf5, 0x26, 0x9a,
0x86, 0xa7, 0xa9, 0x53, 0x15, 0x34, 0xf7, 0xda,
0x2e, 0x4c, 0x30, 0x3d, 0x8a, 0x31, 0x8a, 0x72,
0x1c, 0x3c, 0x0c, 0x95, 0x95, 0x68, 0x09, 0x53,
0x2f, 0xcf, 0x0e, 0x24, 0x49, 0xa6, 0xb5, 0x25,
0xb1, 0x6a, 0xed, 0xf5, 0xaa, 0x0d, 0xe6, 0x57,
0xba, 0x63, 0x7b, 0x39, },
60,
/* ADATA */
{ 0xfe, 0xed, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef,
0xfe, 0xed, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef,
0xab, 0xad, 0xda, 0xd2, },
20,
/* IV */
{ 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad,
0xde, 0xca, 0xf8, 0x88, },
12,
/* CT */
{ 0x42, 0x83, 0x1e, 0xc2, 0x21, 0x77, 0x74, 0x24,
0x4b, 0x72, 0x21, 0xb7, 0x84, 0xd0, 0xd4, 0x9c,
0xe3, 0xaa, 0x21, 0x2f, 0x2c, 0x02, 0xa4, 0xe0,
0x35, 0xc1, 0x7e, 0x23, 0x29, 0xac, 0xa1, 0x2e,
0x21, 0xd5, 0x14, 0xb2, 0x54, 0x66, 0x93, 0x1c,
0x7d, 0x8f, 0x6a, 0x5a, 0xac, 0x84, 0xaa, 0x05,
0x1b, 0xa3, 0x0b, 0x39, 0x6a, 0x0a, 0xac, 0x97,
0x3d, 0x58, 0xe0, 0x91, },
/* TAG */
{ 0x5b, 0xc9, 0x4f, 0xbc, 0x32, 0x21, 0xa5, 0xdb,
0x94, 0xfa, 0xe9, 0x5a, 0xe7, 0x12, 0x1a, 0x47, }
},
/* test case #5 */
{
/* key */
{ 0xfe, 0xff, 0xe9, 0x92, 0x86, 0x65, 0x73, 0x1c,
0x6d, 0x6a, 0x8f, 0x94, 0x67, 0x30, 0x83, 0x08, },
16,
/* PT */
{ 0xd9, 0x31, 0x32, 0x25, 0xf8, 0x84, 0x06, 0xe5,
0xa5, 0x59, 0x09, 0xc5, 0xaf, 0xf5, 0x26, 0x9a,
0x86, 0xa7, 0xa9, 0x53, 0x15, 0x34, 0xf7, 0xda,
0x2e, 0x4c, 0x30, 0x3d, 0x8a, 0x31, 0x8a, 0x72,
0x1c, 0x3c, 0x0c, 0x95, 0x95, 0x68, 0x09, 0x53,
0x2f, 0xcf, 0x0e, 0x24, 0x49, 0xa6, 0xb5, 0x25,
0xb1, 0x6a, 0xed, 0xf5, 0xaa, 0x0d, 0xe6, 0x57,
0xba, 0x63, 0x7b, 0x39, },
60,
/* ADATA */
{ 0xfe, 0xed, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef,
0xfe, 0xed, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef,
0xab, 0xad, 0xda, 0xd2, },
20,
/* IV */
{ 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad, },
8,
/* CT */
{ 0x61, 0x35, 0x3b, 0x4c, 0x28, 0x06, 0x93, 0x4a,
0x77, 0x7f, 0xf5, 0x1f, 0xa2, 0x2a, 0x47, 0x55,
0x69, 0x9b, 0x2a, 0x71, 0x4f, 0xcd, 0xc6, 0xf8,
0x37, 0x66, 0xe5, 0xf9, 0x7b, 0x6c, 0x74, 0x23,
0x73, 0x80, 0x69, 0x00, 0xe4, 0x9f, 0x24, 0xb2,
0x2b, 0x09, 0x75, 0x44, 0xd4, 0x89, 0x6b, 0x42,
0x49, 0x89, 0xb5, 0xe1, 0xeb, 0xac, 0x0f, 0x07,
0xc2, 0x3f, 0x45, 0x98, },
/* TAG */
{ 0x36, 0x12, 0xd2, 0xe7, 0x9e, 0x3b, 0x07, 0x85,
0x56, 0x1b, 0xe1, 0x4a, 0xac, 0xa2, 0xfc, 0xcb, }
},
/* test case #6 */
{
/* key */
{ 0xfe, 0xff, 0xe9, 0x92, 0x86, 0x65, 0x73, 0x1c,
0x6d, 0x6a, 0x8f, 0x94, 0x67, 0x30, 0x83, 0x08, },
16,
/* PT */
{ 0xd9, 0x31, 0x32, 0x25, 0xf8, 0x84, 0x06, 0xe5,
0xa5, 0x59, 0x09, 0xc5, 0xaf, 0xf5, 0x26, 0x9a,
0x86, 0xa7, 0xa9, 0x53, 0x15, 0x34, 0xf7, 0xda,
0x2e, 0x4c, 0x30, 0x3d, 0x8a, 0x31, 0x8a, 0x72,
0x1c, 0x3c, 0x0c, 0x95, 0x95, 0x68, 0x09, 0x53,
0x2f, 0xcf, 0x0e, 0x24, 0x49, 0xa6, 0xb5, 0x25,
0xb1, 0x6a, 0xed, 0xf5, 0xaa, 0x0d, 0xe6, 0x57,
0xba, 0x63, 0x7b, 0x39, },
60,
/* ADATA */
{ 0xfe, 0xed, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef,
0xfe, 0xed, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef,
0xab, 0xad, 0xda, 0xd2, },
20,
/* IV */
{ 0x93, 0x13, 0x22, 0x5d, 0xf8, 0x84, 0x06, 0xe5,
0x55, 0x90, 0x9c, 0x5a, 0xff, 0x52, 0x69, 0xaa,
0x6a, 0x7a, 0x95, 0x38, 0x53, 0x4f, 0x7d, 0xa1,
0xe4, 0xc3, 0x03, 0xd2, 0xa3, 0x18, 0xa7, 0x28,
0xc3, 0xc0, 0xc9, 0x51, 0x56, 0x80, 0x95, 0x39,
0xfc, 0xf0, 0xe2, 0x42, 0x9a, 0x6b, 0x52, 0x54,
0x16, 0xae, 0xdb, 0xf5, 0xa0, 0xde, 0x6a, 0x57,
0xa6, 0x37, 0xb3, 0x9b, },
60,
/* CT */
{ 0x8c, 0xe2, 0x49, 0x98, 0x62, 0x56, 0x15, 0xb6,
0x03, 0xa0, 0x33, 0xac, 0xa1, 0x3f, 0xb8, 0x94,
0xbe, 0x91, 0x12, 0xa5, 0xc3, 0xa2, 0x11, 0xa8,
0xba, 0x26, 0x2a, 0x3c, 0xca, 0x7e, 0x2c, 0xa7,
0x01, 0xe4, 0xa9, 0xa4, 0xfb, 0xa4, 0x3c, 0x90,
0xcc, 0xdc, 0xb2, 0x81, 0xd4, 0x8c, 0x7c, 0x6f,
0xd6, 0x28, 0x75, 0xd2, 0xac, 0xa4, 0x17, 0x03,
0x4c, 0x34, 0xae, 0xe5, },
/* TAG */
{ 0x61, 0x9c, 0xc5, 0xae, 0xff, 0xfe, 0x0b, 0xfa,
0x46, 0x2a, 0xf4, 0x3c, 0x16, 0x99, 0xd0, 0x50, }
},
/* test case #46 from BG (catches the LTC bug of v1.15) */
{
/* key */
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
16,
/* PT */
{ 0xa2, 0xaa, 0xb3, 0xad, 0x8b, 0x17, 0xac, 0xdd,
0xa2, 0x88, 0x42, 0x6c, 0xd7, 0xc4, 0x29, 0xb7,
0xca, 0x86, 0xb7, 0xac, 0xa0, 0x58, 0x09, 0xc7,
0x0c, 0xe8, 0x2d, 0xb2, 0x57, 0x11, 0xcb, 0x53,
0x02, 0xeb, 0x27, 0x43, 0xb0, 0x36, 0xf3, 0xd7,
0x50, 0xd6, 0xcf, 0x0d, 0xc0, 0xac, 0xb9, 0x29,
0x50, 0xd5, 0x46, 0xdb, 0x30, 0x8f, 0x93, 0xb4,
0xff, 0x24, 0x4a, 0xfa, 0x9d, 0xc7, 0x2b, 0xcd,
0x75, 0x8d, 0x2c },
67,
/* ADATA */
{ 0x68, 0x8e, 0x1a, 0xa9, 0x84, 0xde, 0x92, 0x6d,
0xc7, 0xb4, 0xc4, 0x7f, 0x44 },
13,
/* IV */
{ 0xb7, 0x21, 0x38, 0xb5, 0xa0, 0x5f, 0xf5, 0x07,
0x0e, 0x8c, 0xd9, 0x41, 0x83, 0xf7, 0x61, 0xd8 },
16,
/* CT */
{ 0xcb, 0xc8, 0xd2, 0xf1, 0x54, 0x81, 0xa4, 0xcc,
0x7d, 0xd1, 0xe1, 0x9a, 0xaa, 0x83, 0xde, 0x56,
0x78, 0x48, 0x3e, 0xc3, 0x59, 0xae, 0x7d, 0xec,
0x2a, 0xb8, 0xd5, 0x34, 0xe0, 0x90, 0x6f, 0x4b,
0x46, 0x63, 0xfa, 0xff, 0x58, 0xa8, 0xb2, 0xd7,
0x33, 0xb8, 0x45, 0xee, 0xf7, 0xc9, 0xb3, 0x31,
0xe9, 0xe1, 0x0e, 0xb2, 0x61, 0x2c, 0x99, 0x5f,
0xeb, 0x1a, 0xc1, 0x5a, 0x62, 0x86, 0xcc, 0xe8,
0xb2, 0x97, 0xa8 },
/* TAG */
{ 0x8d, 0x2d, 0x2a, 0x93, 0x72, 0x62, 0x6f, 0x6b,
0xee, 0x85, 0x80, 0x27, 0x6a, 0x63, 0x66, 0xbf }
}
/* rest of test cases are the same except AES key size changes... ignored... */
};
int idx, err;
unsigned long x, y;
unsigned char out[2][128], T[2][16];
gcm_state gcm;
/* find aes */
idx = find_cipher("aes");
if (idx == -1) {
idx = find_cipher("rijndael");
if (idx == -1) {
return CRYPT_NOP;
}
}
/* Special test case for empty AAD + empty PT */
y = sizeof(T[0]);
if ((err = gcm_init(&gcm, idx, tests[0].K, tests[0].keylen)) != CRYPT_OK) return err;
if ((err = gcm_add_iv(&gcm, tests[0].IV, tests[0].IVlen)) != CRYPT_OK) return err;
/* intentionally skip gcm_add_aad + gcm_process */
if ((err = gcm_done(&gcm, T[0], &y)) != CRYPT_OK) return err;
if (compare_testvector(T[0], y, tests[0].T, 16, "GCM Encrypt Tag-special", 0)) return CRYPT_FAIL_TESTVECTOR;
for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) {
y = sizeof(T[0]);
if ((err = gcm_memory(idx, tests[x].K, tests[x].keylen,
tests[x].IV, tests[x].IVlen,
tests[x].A, tests[x].alen,
(unsigned char*)tests[x].P, tests[x].ptlen,
out[0], T[0], &y, GCM_ENCRYPT)) != CRYPT_OK) {
return err;
}
if (compare_testvector(out[0], tests[x].ptlen, tests[x].C, tests[x].ptlen, "GCM CT", x)) {
return CRYPT_FAIL_TESTVECTOR;
}
if (compare_testvector(T[0], y, tests[x].T, 16, "GCM Encrypt Tag", x)) {
return CRYPT_FAIL_TESTVECTOR;
}
y = sizeof(T[1]);
XMEMCPY(T[1], tests[x].T, 16);
if ((err = gcm_memory(idx, tests[x].K, tests[x].keylen,
tests[x].IV, tests[x].IVlen,
tests[x].A, tests[x].alen,
out[1], tests[x].ptlen,
out[0], T[1], &y, GCM_DECRYPT)) != CRYPT_OK) {
return err;
}
if (compare_testvector(out[1], tests[x].ptlen, tests[x].P, tests[x].ptlen, "GCM PT", x)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
/* wycheproof failing test - https://github.com/libtom/libtomcrypt/pull/451 */
{
unsigned char key[] = { 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f };
unsigned char iv[] = { 0x50,0x51,0x52,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x5b };
unsigned char valid_tag[] = { 0xd8,0x84,0x7d,0xbc,0x32,0x6a,0x06,0xe9,0x88,0xc7,0x7a,0xd3,0x86,0x3e,0x60,0x83 };
unsigned char invalid_tag[] = { 0xd9,0x84,0x7d,0xbc,0x32,0x6a,0x06,0xe9,0x88,0xc7,0x7a,0xd3,0x86,0x3e,0x60,0x83 };
unsigned char msg[] = { 0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28,0x29,0x2a,0x2b,0x2c,0x2d,0x2e,0x2f };
unsigned char ct[] = { 0xeb,0x15,0x6d,0x08,0x1e,0xd6,0xb6,0xb5,0x5f,0x46,0x12,0xf0,0x21,0xd8,0x7b,0x39 };
unsigned char pt[20] = { 0 };
unsigned long taglen;
/* VALID tag */
taglen = sizeof(valid_tag);
err = gcm_memory(idx, key, sizeof(key), iv, sizeof(iv), NULL, 0,
pt, sizeof(ct), ct, valid_tag, &taglen, GCM_DECRYPT);
if ((err != CRYPT_OK) || (XMEMCMP(msg, pt, sizeof(msg)) != 0)) {
return CRYPT_FAIL_TESTVECTOR;
}
/* INVALID tag */
taglen = sizeof(invalid_tag);
err = gcm_memory(idx, key, sizeof(key), iv, sizeof(iv), NULL, 0,
pt, sizeof(ct), ct, invalid_tag, &taglen, GCM_DECRYPT);
if (err == CRYPT_OK) {
return CRYPT_FAIL_TESTVECTOR; /* should fail */
}
}
return CRYPT_OK;
#endif
}
#endif

View File

@@ -0,0 +1,67 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file ocb_decrypt.c
OCB implementation, decrypt data, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_OCB_MODE
/**
Decrypt a block with OCB.
@param ocb The OCB state
@param ct The ciphertext (length of the block size of the block cipher)
@param pt [out] The plaintext (length of ct)
@return CRYPT_OK if successful
*/
int ocb_decrypt(ocb_state *ocb, const unsigned char *ct, unsigned char *pt)
{
unsigned char Z[MAXBLOCKSIZE], tmp[MAXBLOCKSIZE];
int err, x;
LTC_ARGCHK(ocb != NULL);
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
/* check if valid cipher */
if ((err = cipher_is_valid(ocb->cipher)) != CRYPT_OK) {
return err;
}
LTC_ARGCHK(cipher_descriptor[ocb->cipher].ecb_decrypt != NULL);
/* check length */
if (ocb->block_len != cipher_descriptor[ocb->cipher].block_length) {
return CRYPT_INVALID_ARG;
}
/* Get Z[i] value */
ocb_shift_xor(ocb, Z);
/* xor ct in, encrypt, xor Z out */
for (x = 0; x < ocb->block_len; x++) {
tmp[x] = ct[x] ^ Z[x];
}
if ((err = cipher_descriptor[ocb->cipher].ecb_decrypt(tmp, pt, &ocb->key)) != CRYPT_OK) {
return err;
}
for (x = 0; x < ocb->block_len; x++) {
pt[x] ^= Z[x];
}
/* compute checksum */
for (x = 0; x < ocb->block_len; x++) {
ocb->checksum[x] ^= pt[x];
}
#ifdef LTC_CLEAN_STACK
zeromem(Z, sizeof(Z));
zeromem(tmp, sizeof(tmp));
#endif
return CRYPT_OK;
}
#endif

View File

@@ -0,0 +1,74 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file ocb_decrypt_verify_memory.c
OCB implementation, helper to decrypt block of memory, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_OCB_MODE
/**
Decrypt and compare the tag with OCB.
@param cipher The index of the cipher desired
@param key The secret key
@param keylen The length of the secret key (octets)
@param nonce The session nonce (length of the block size of the block cipher)
@param ct The ciphertext
@param ctlen The length of the ciphertext (octets)
@param pt [out] The plaintext
@param tag The tag to compare against
@param taglen The length of the tag (octets)
@param stat [out] The result of the tag comparison (1==valid, 0==invalid)
@return CRYPT_OK if successful regardless of the tag comparison
*/
int ocb_decrypt_verify_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *nonce,
const unsigned char *ct, unsigned long ctlen,
unsigned char *pt,
const unsigned char *tag, unsigned long taglen,
int *stat)
{
int err;
ocb_state *ocb;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(nonce != NULL);
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(tag != NULL);
LTC_ARGCHK(stat != NULL);
/* allocate memory */
ocb = XMALLOC(sizeof(ocb_state));
if (ocb == NULL) {
return CRYPT_MEM;
}
if ((err = ocb_init(ocb, cipher, key, keylen, nonce)) != CRYPT_OK) {
goto LBL_ERR;
}
while (ctlen > (unsigned long)ocb->block_len) {
if ((err = ocb_decrypt(ocb, ct, pt)) != CRYPT_OK) {
goto LBL_ERR;
}
ctlen -= ocb->block_len;
pt += ocb->block_len;
ct += ocb->block_len;
}
err = ocb_done_decrypt(ocb, ct, ctlen, pt, tag, taglen, stat);
LBL_ERR:
#ifdef LTC_CLEAN_STACK
zeromem(ocb, sizeof(ocb_state));
#endif
XFREE(ocb);
return err;
}
#endif

View File

@@ -0,0 +1,68 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file ocb_done_decrypt.c
OCB implementation, terminate decryption, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_OCB_MODE
/**
Terminate a decrypting OCB state
@param ocb The OCB state
@param ct The ciphertext (if any)
@param ctlen The length of the ciphertext (octets)
@param pt [out] The plaintext
@param tag The authentication tag (to compare against)
@param taglen The length of the authentication tag provided
@param stat [out] The result of the tag comparison
@return CRYPT_OK if the process was successful regardless if the tag is valid
*/
int ocb_done_decrypt(ocb_state *ocb,
const unsigned char *ct, unsigned long ctlen,
unsigned char *pt,
const unsigned char *tag, unsigned long taglen, int *stat)
{
int err;
unsigned char *tagbuf;
unsigned long tagbuflen;
LTC_ARGCHK(ocb != NULL);
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(tag != NULL);
LTC_ARGCHK(stat != NULL);
/* default to failed */
*stat = 0;
/* allocate memory */
tagbuf = XMALLOC(MAXBLOCKSIZE);
if (tagbuf == NULL) {
return CRYPT_MEM;
}
tagbuflen = MAXBLOCKSIZE;
if ((err = s_ocb_done(ocb, ct, ctlen, pt, tagbuf, &tagbuflen, 1)) != CRYPT_OK) {
goto LBL_ERR;
}
if (taglen <= tagbuflen && XMEM_NEQ(tagbuf, tag, taglen) == 0) {
*stat = 1;
}
err = CRYPT_OK;
LBL_ERR:
#ifdef LTC_CLEAN_STACK
zeromem(tagbuf, MAXBLOCKSIZE);
#endif
XFREE(tagbuf);
return err;
}
#endif

View File

@@ -0,0 +1,34 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file ocb_done_encrypt.c
OCB implementation, terminate encryption, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_OCB_MODE
/**
Terminate an encryption OCB state
@param ocb The OCB state
@param pt Remaining plaintext (if any)
@param ptlen The length of the plaintext (octets)
@param ct [out] The ciphertext (if any)
@param tag [out] The tag for the OCB stream
@param taglen [in/out] The max size and resulting size of the tag
@return CRYPT_OK if successful
*/
int ocb_done_encrypt(ocb_state *ocb, const unsigned char *pt, unsigned long ptlen,
unsigned char *ct, unsigned char *tag, unsigned long *taglen)
{
LTC_ARGCHK(ocb != NULL);
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(tag != NULL);
LTC_ARGCHK(taglen != NULL);
return s_ocb_done(ocb, pt, ptlen, ct, tag, taglen, 0);
}
#endif

View File

@@ -0,0 +1,60 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file ocb_encrypt.c
OCB implementation, encrypt data, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_OCB_MODE
/**
Encrypt a block of data with OCB.
@param ocb The OCB state
@param pt The plaintext (length of the block size of the block cipher)
@param ct [out] The ciphertext (same size as the pt)
@return CRYPT_OK if successful
*/
int ocb_encrypt(ocb_state *ocb, const unsigned char *pt, unsigned char *ct)
{
unsigned char Z[MAXBLOCKSIZE], tmp[MAXBLOCKSIZE];
int err, x;
LTC_ARGCHK(ocb != NULL);
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
if ((err = cipher_is_valid(ocb->cipher)) != CRYPT_OK) {
return err;
}
if (ocb->block_len != cipher_descriptor[ocb->cipher].block_length) {
return CRYPT_INVALID_ARG;
}
/* compute checksum */
for (x = 0; x < ocb->block_len; x++) {
ocb->checksum[x] ^= pt[x];
}
/* Get Z[i] value */
ocb_shift_xor(ocb, Z);
/* xor pt in, encrypt, xor Z out */
for (x = 0; x < ocb->block_len; x++) {
tmp[x] = pt[x] ^ Z[x];
}
if ((err = cipher_descriptor[ocb->cipher].ecb_encrypt(tmp, ct, &ocb->key)) != CRYPT_OK) {
return err;
}
for (x = 0; x < ocb->block_len; x++) {
ct[x] ^= Z[x];
}
#ifdef LTC_CLEAN_STACK
zeromem(Z, sizeof(Z));
zeromem(tmp, sizeof(tmp));
#endif
return CRYPT_OK;
}
#endif

View File

@@ -0,0 +1,72 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file ocb_encrypt_authenticate_memory.c
OCB implementation, encrypt block of memory, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_OCB_MODE
/**
Encrypt and generate an authentication code for a buffer of memory
@param cipher The index of the cipher desired
@param key The secret key
@param keylen The length of the secret key (octets)
@param nonce The session nonce (length of the block ciphers block size)
@param pt The plaintext
@param ptlen The length of the plaintext (octets)
@param ct [out] The ciphertext
@param tag [out] The authentication tag
@param taglen [in/out] The max size and resulting size of the authentication tag
@return CRYPT_OK if successful
*/
int ocb_encrypt_authenticate_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *nonce,
const unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen)
{
int err;
ocb_state *ocb;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(nonce != NULL);
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(tag != NULL);
LTC_ARGCHK(taglen != NULL);
/* allocate ram */
ocb = XMALLOC(sizeof(ocb_state));
if (ocb == NULL) {
return CRYPT_MEM;
}
if ((err = ocb_init(ocb, cipher, key, keylen, nonce)) != CRYPT_OK) {
goto LBL_ERR;
}
while (ptlen > (unsigned long)ocb->block_len) {
if ((err = ocb_encrypt(ocb, pt, ct)) != CRYPT_OK) {
goto LBL_ERR;
}
ptlen -= ocb->block_len;
pt += ocb->block_len;
ct += ocb->block_len;
}
err = ocb_done_encrypt(ocb, pt, ptlen, ct, tag, taglen);
LBL_ERR:
#ifdef LTC_CLEAN_STACK
zeromem(ocb, sizeof(ocb_state));
#endif
XFREE(ocb);
return err;
}
#endif

View File

@@ -0,0 +1,138 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file ocb_init.c
OCB implementation, initialize state, by Tom St Denis
*/
#include "tomcrypt_private.h"
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
#pragma clang diagnostic ignored "-Wshorten-64-to-32"
#ifdef LTC_OCB_MODE
#define polys ocb_polys
static const struct {
int len;
unsigned char poly_div[MAXBLOCKSIZE],
poly_mul[MAXBLOCKSIZE];
} polys[] = {
{
8,
{ 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0D },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1B }
}, {
16,
{ 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x43 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x87 }
}
};
/**
Initialize an OCB context.
@param ocb [out] The destination of the OCB state
@param cipher The index of the desired cipher
@param key The secret key
@param keylen The length of the secret key (octets)
@param nonce The session nonce (length of the block size of the cipher)
@return CRYPT_OK if successful
*/
int ocb_init(ocb_state *ocb, int cipher,
const unsigned char *key, unsigned long keylen, const unsigned char *nonce)
{
int poly, x, y, m, err;
LTC_ARGCHK(ocb != NULL);
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(nonce != NULL);
/* valid cipher? */
if ((err = cipher_is_valid(cipher)) != CRYPT_OK) {
return err;
}
/* determine which polys to use */
ocb->block_len = cipher_descriptor[cipher].block_length;
x = (int)(sizeof(polys)/sizeof(polys[0]));
for (poly = 0; poly < x; poly++) {
if (polys[poly].len == ocb->block_len) {
break;
}
}
if (poly == x) {
return CRYPT_INVALID_ARG; /* block_len not found in polys */
}
if (polys[poly].len != ocb->block_len) {
return CRYPT_INVALID_ARG;
}
/* schedule the key */
if ((err = cipher_descriptor[cipher].setup(key, keylen, 0, &ocb->key)) != CRYPT_OK) {
return err;
}
/* find L = E[0] */
zeromem(ocb->L, ocb->block_len);
if ((err = cipher_descriptor[cipher].ecb_encrypt(ocb->L, ocb->L, &ocb->key)) != CRYPT_OK) {
return err;
}
/* find R = E[N xor L] */
for (x = 0; x < ocb->block_len; x++) {
ocb->R[x] = ocb->L[x] ^ nonce[x];
}
if ((err = cipher_descriptor[cipher].ecb_encrypt(ocb->R, ocb->R, &ocb->key)) != CRYPT_OK) {
return err;
}
/* find Ls[i] = L << i for i == 0..31 */
XMEMCPY(ocb->Ls[0], ocb->L, ocb->block_len);
for (x = 1; x < 32; x++) {
m = ocb->Ls[x-1][0] >> 7;
for (y = 0; y < ocb->block_len-1; y++) {
ocb->Ls[x][y] = ((ocb->Ls[x-1][y] << 1) | (ocb->Ls[x-1][y+1] >> 7)) & 255;
}
ocb->Ls[x][ocb->block_len-1] = (ocb->Ls[x-1][ocb->block_len-1] << 1) & 255;
if (m == 1) {
for (y = 0; y < ocb->block_len; y++) {
ocb->Ls[x][y] ^= polys[poly].poly_mul[y];
}
}
}
/* find Lr = L / x */
m = ocb->L[ocb->block_len-1] & 1;
/* shift right */
for (x = ocb->block_len - 1; x > 0; x--) {
ocb->Lr[x] = ((ocb->L[x] >> 1) | (ocb->L[x-1] << 7)) & 255;
}
ocb->Lr[0] = ocb->L[0] >> 1;
if (m == 1) {
for (x = 0; x < ocb->block_len; x++) {
ocb->Lr[x] ^= polys[poly].poly_div[x];
}
}
/* set Li, checksum */
zeromem(ocb->Li, ocb->block_len);
zeromem(ocb->checksum, ocb->block_len);
/* set other params */
ocb->block_index = 1;
ocb->cipher = cipher;
return CRYPT_OK;
}
#undef polys
#endif
#pragma clang diagnostic pop

View File

@@ -0,0 +1,30 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file ocb_ntz.c
OCB implementation, internal function, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_OCB_MODE
/**
Returns the number of leading zero bits [from lsb up]
@param x The 32-bit value to observe
@return The number of bits [from the lsb up] that are zero
*/
int ocb_ntz(unsigned long x)
{
int c;
x &= 0xFFFFFFFFUL;
c = 0;
while ((x & 1) == 0) {
++c;
x >>= 1;
}
return c;
}
#endif

View File

@@ -0,0 +1,27 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file ocb_shift_xor.c
OCB implementation, internal function, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_OCB_MODE
/**
Compute the shift/xor for OCB (internal function)
@param ocb The OCB state
@param Z The destination of the shift
*/
void ocb_shift_xor(ocb_state *ocb, unsigned char *Z)
{
int x, y;
y = ocb_ntz(ocb->block_index++);
for (x = 0; x < ocb->block_len; x++) {
ocb->Li[x] ^= ocb->Ls[y][x];
Z[x] = ocb->Li[x] ^ ocb->R[x];
}
}
#endif

View File

@@ -0,0 +1,205 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file ocb_test.c
OCB implementation, self-test by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_OCB_MODE
/**
Test the OCB protocol
@return CRYPT_OK if successful
*/
int ocb_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
int ptlen;
unsigned char key[16], nonce[16], pt[34], ct[34], tag[16];
} tests[] = {
/* OCB-AES-128-0B */
{
0,
/* key */
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
/* nonce */
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 },
/* pt */
{ 0 },
/* ct */
{ 0 },
/* tag */
{ 0x15, 0xd3, 0x7d, 0xd7, 0xc8, 0x90, 0xd5, 0xd6,
0xac, 0xab, 0x92, 0x7b, 0xc0, 0xdc, 0x60, 0xee },
},
/* OCB-AES-128-3B */
{
3,
/* key */
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
/* nonce */
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 },
/* pt */
{ 0x00, 0x01, 0x02 },
/* ct */
{ 0xfc, 0xd3, 0x7d },
/* tag */
{ 0x02, 0x25, 0x47, 0x39, 0xa5, 0xe3, 0x56, 0x5a,
0xe2, 0xdc, 0xd6, 0x2c, 0x65, 0x97, 0x46, 0xba },
},
/* OCB-AES-128-16B */
{
16,
/* key */
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
/* nonce */
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 },
/* pt */
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
/* ct */
{ 0x37, 0xdf, 0x8c, 0xe1, 0x5b, 0x48, 0x9b, 0xf3,
0x1d, 0x0f, 0xc4, 0x4d, 0xa1, 0xfa, 0xf6, 0xd6 },
/* tag */
{ 0xdf, 0xb7, 0x63, 0xeb, 0xdb, 0x5f, 0x0e, 0x71,
0x9c, 0x7b, 0x41, 0x61, 0x80, 0x80, 0x04, 0xdf },
},
/* OCB-AES-128-20B */
{
20,
/* key */
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
/* nonce */
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 },
/* pt */
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13 },
/* ct */
{ 0x01, 0xa0, 0x75, 0xf0, 0xd8, 0x15, 0xb1, 0xa4,
0xe9, 0xc8, 0x81, 0xa1, 0xbc, 0xff, 0xc3, 0xeb,
0x70, 0x03, 0xeb, 0x55},
/* tag */
{ 0x75, 0x30, 0x84, 0x14, 0x4e, 0xb6, 0x3b, 0x77,
0x0b, 0x06, 0x3c, 0x2e, 0x23, 0xcd, 0xa0, 0xbb },
},
/* OCB-AES-128-32B */
{
32,
/* key */
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
/* nonce */
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 },
/* pt */
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f },
/* ct */
{ 0x01, 0xa0, 0x75, 0xf0, 0xd8, 0x15, 0xb1, 0xa4,
0xe9, 0xc8, 0x81, 0xa1, 0xbc, 0xff, 0xc3, 0xeb,
0x4a, 0xfc, 0xbb, 0x7f, 0xed, 0xc0, 0x8c, 0xa8,
0x65, 0x4c, 0x6d, 0x30, 0x4d, 0x16, 0x12, 0xfa },
/* tag */
{ 0xc1, 0x4c, 0xbf, 0x2c, 0x1a, 0x1f, 0x1c, 0x3c,
0x13, 0x7e, 0xad, 0xea, 0x1f, 0x2f, 0x2f, 0xcf },
},
/* OCB-AES-128-34B */
{
34,
/* key */
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
/* nonce */
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 },
/* pt */
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x20, 0x21 },
/* ct */
{ 0x01, 0xa0, 0x75, 0xf0, 0xd8, 0x15, 0xb1, 0xa4,
0xe9, 0xc8, 0x81, 0xa1, 0xbc, 0xff, 0xc3, 0xeb,
0xd4, 0x90, 0x3d, 0xd0, 0x02, 0x5b, 0xa4, 0xaa,
0x83, 0x7c, 0x74, 0xf1, 0x21, 0xb0, 0x26, 0x0f,
0xa9, 0x5d },
/* tag */
{ 0xcf, 0x83, 0x41, 0xbb, 0x10, 0x82, 0x0c, 0xcf,
0x14, 0xbd, 0xec, 0x56, 0xb8, 0xd7, 0xd6, 0xab },
},
};
int err, x, idx, res;
unsigned long len;
unsigned char outct[MAXBLOCKSIZE], outtag[MAXBLOCKSIZE];
/* AES can be under rijndael or aes... try to find it */
if ((idx = find_cipher("aes")) == -1) {
if ((idx = find_cipher("rijndael")) == -1) {
return CRYPT_NOP;
}
}
for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) {
len = sizeof(outtag);
if ((err = ocb_encrypt_authenticate_memory(idx, tests[x].key, 16,
tests[x].nonce, tests[x].pt, tests[x].ptlen, outct, outtag, &len)) != CRYPT_OK) {
return err;
}
if (compare_testvector(outtag, len, tests[x].tag, sizeof(tests[x].tag), "OCB Tag", x) ||
compare_testvector(outct, tests[x].ptlen, tests[x].ct, tests[x].ptlen, "OCB CT", x)) {
return CRYPT_FAIL_TESTVECTOR;
}
if ((err = ocb_decrypt_verify_memory(idx, tests[x].key, 16, tests[x].nonce, outct, tests[x].ptlen,
outct, tests[x].tag, len, &res)) != CRYPT_OK) {
return err;
}
if ((res != 1) || compare_testvector(outct, tests[x].ptlen, tests[x].pt, tests[x].ptlen, "OCB", x)) {
#ifdef LTC_TEST_DBG
printf("\n\nOCB: Failure-decrypt - res = %d\n", res);
#endif
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif /* LTC_TEST */
}
#endif /* LTC_OCB_MODE */
/* some comments
-- it's hard to seek
-- hard to stream [you can't emit ciphertext until full block]
-- The setup is somewhat complicated...
*/

View File

@@ -0,0 +1,136 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file s_ocb_done.c
OCB implementation, internal helper, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_OCB_MODE
/* Since the last block is encrypted in CTR mode the same code can
* be used to finish a decrypt or encrypt stream. The only difference
* is we XOR the final ciphertext into the checksum so we have to xor it
* before we CTR [decrypt] or after [encrypt]
*
* the names pt/ptlen/ct really just mean in/inlen/out but this is the way I wrote it...
*/
/**
Shared code to finish an OCB stream
@param ocb The OCB state
@param pt The remaining plaintext [or input]
@param ptlen The length of the input (octets)
@param ct [out] The output buffer
@param tag [out] The destination for the authentication tag
@param taglen [in/out] The max size and resulting size of the authentication tag
@param mode The mode we are terminating, 0==encrypt, 1==decrypt
@return CRYPT_OK if successful
*/
int s_ocb_done(ocb_state *ocb, const unsigned char *pt, unsigned long ptlen,
unsigned char *ct, unsigned char *tag, unsigned long *taglen, int mode)
{
unsigned char *Z, *Y, *X;
int err, x;
LTC_ARGCHK(ocb != NULL);
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(tag != NULL);
LTC_ARGCHK(taglen != NULL);
if ((err = cipher_is_valid(ocb->cipher)) != CRYPT_OK) {
return err;
}
if (ocb->block_len != cipher_descriptor[ocb->cipher].block_length ||
(int)ptlen > ocb->block_len || (int)ptlen < 0) {
return CRYPT_INVALID_ARG;
}
/* allocate ram */
Z = XMALLOC(MAXBLOCKSIZE);
Y = XMALLOC(MAXBLOCKSIZE);
X = XMALLOC(MAXBLOCKSIZE);
if (X == NULL || Y == NULL || Z == NULL) {
if (X != NULL) {
XFREE(X);
}
if (Y != NULL) {
XFREE(Y);
}
if (Z != NULL) {
XFREE(Z);
}
return CRYPT_MEM;
}
/* compute X[m] = len(pt[m]) XOR Lr XOR Z[m] */
ocb_shift_xor(ocb, X);
XMEMCPY(Z, X, ocb->block_len);
X[ocb->block_len-1] ^= (ptlen*8)&255;
X[ocb->block_len-2] ^= ((ptlen*8)>>8)&255;
for (x = 0; x < ocb->block_len; x++) {
X[x] ^= ocb->Lr[x];
}
/* Y[m] = E(X[m])) */
if ((err = cipher_descriptor[ocb->cipher].ecb_encrypt(X, Y, &ocb->key)) != CRYPT_OK) {
goto error;
}
if (mode == 1) {
/* decrypt mode, so let's xor it first */
/* xor C[m] into checksum */
for (x = 0; x < (int)ptlen; x++) {
ocb->checksum[x] ^= ct[x];
}
}
/* C[m] = P[m] xor Y[m] */
for (x = 0; x < (int)ptlen; x++) {
ct[x] = pt[x] ^ Y[x];
}
if (mode == 0) {
/* encrypt mode */
/* xor C[m] into checksum */
for (x = 0; x < (int)ptlen; x++) {
ocb->checksum[x] ^= ct[x];
}
}
/* xor Y[m] and Z[m] into checksum */
for (x = 0; x < ocb->block_len; x++) {
ocb->checksum[x] ^= Y[x] ^ Z[x];
}
/* encrypt checksum, er... tag!! */
if ((err = cipher_descriptor[ocb->cipher].ecb_encrypt(ocb->checksum, X, &ocb->key)) != CRYPT_OK) {
goto error;
}
cipher_descriptor[ocb->cipher].done(&ocb->key);
/* now store it */
for (x = 0; x < ocb->block_len && x < (int)*taglen; x++) {
tag[x] = X[x];
}
*taglen = x;
#ifdef LTC_CLEAN_STACK
zeromem(X, MAXBLOCKSIZE);
zeromem(Y, MAXBLOCKSIZE);
zeromem(Z, MAXBLOCKSIZE);
zeromem(ocb, sizeof(*ocb));
#endif
error:
XFREE(X);
XFREE(Y);
XFREE(Z);
return err;
}
#endif

View File

@@ -0,0 +1,102 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file ocb3_add_aad.c
OCB implementation, add AAD data, by Karel Miko
*/
#include "tomcrypt_private.h"
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
#pragma clang diagnostic ignored "-Wshorten-64-to-32"
#ifdef LTC_OCB3_MODE
/**
Add one block of AAD data (internal function)
@param ocb The OCB state
@param aad_block [in] AAD data (block_len size)
@return CRYPT_OK if successful
*/
static int s_ocb3_int_aad_add_block(ocb3_state *ocb, const unsigned char *aad_block)
{
unsigned char tmp[MAXBLOCKSIZE];
int err;
/* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
ocb3_int_xor_blocks(ocb->aOffset_current, ocb->aOffset_current, ocb->L_[ocb3_int_ntz(ocb->ablock_index)], ocb->block_len);
/* Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i) */
ocb3_int_xor_blocks(tmp, aad_block, ocb->aOffset_current, ocb->block_len);
if ((err = cipher_descriptor[ocb->cipher].ecb_encrypt(tmp, tmp, &ocb->key)) != CRYPT_OK) {
return err;
}
ocb3_int_xor_blocks(ocb->aSum_current, ocb->aSum_current, tmp, ocb->block_len);
ocb->ablock_index++;
return CRYPT_OK;
}
/**
Add AAD - additional associated data
@param ocb The OCB state
@param aad The AAD data
@param aadlen The size of AAD data (octets)
@return CRYPT_OK if successful
*/
int ocb3_add_aad(ocb3_state *ocb, const unsigned char *aad, unsigned long aadlen)
{
int err, x, full_blocks, full_blocks_len, last_block_len;
unsigned char *data;
unsigned long datalen, l;
LTC_ARGCHK(ocb != NULL);
if (aadlen == 0) return CRYPT_OK;
LTC_ARGCHK(aad != NULL);
if (ocb->adata_buffer_bytes > 0) {
l = ocb->block_len - ocb->adata_buffer_bytes;
if (l > aadlen) l = aadlen;
XMEMCPY(ocb->adata_buffer+ocb->adata_buffer_bytes, aad, l);
ocb->adata_buffer_bytes += l;
if (ocb->adata_buffer_bytes == ocb->block_len) {
if ((err = s_ocb3_int_aad_add_block(ocb, ocb->adata_buffer)) != CRYPT_OK) {
return err;
}
ocb->adata_buffer_bytes = 0;
}
data = (unsigned char *)aad + l;
datalen = aadlen - l;
}
else {
data = (unsigned char *)aad;
datalen = aadlen;
}
if (datalen == 0) return CRYPT_OK;
full_blocks = datalen/ocb->block_len;
full_blocks_len = full_blocks * ocb->block_len;
last_block_len = datalen - full_blocks_len;
for (x=0; x<full_blocks; x++) {
if ((err = s_ocb3_int_aad_add_block(ocb, data+x*ocb->block_len)) != CRYPT_OK) {
return err;
}
}
if (last_block_len>0) {
XMEMCPY(ocb->adata_buffer, data+full_blocks_len, last_block_len);
ocb->adata_buffer_bytes = last_block_len;
}
return CRYPT_OK;
}
#endif
#pragma clang diagnostic pop

View File

@@ -0,0 +1,82 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file ocb3_decrypt.c
OCB implementation, decrypt data, by Tom St Denis
*/
#include "tomcrypt_private.h"
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
#pragma clang diagnostic ignored "-Wshorten-64-to-32"
#ifdef LTC_OCB3_MODE
/**
Decrypt blocks of ciphertext with OCB
@param ocb The OCB state
@param ct The ciphertext (length multiple of the block size of the block cipher)
@param ctlen The length of the input (octets)
@param pt [out] The plaintext (length of ct)
@return CRYPT_OK if successful
*/
int ocb3_decrypt(ocb3_state *ocb, const unsigned char *ct, unsigned long ctlen, unsigned char *pt)
{
unsigned char tmp[MAXBLOCKSIZE];
int err, i, full_blocks;
unsigned char *pt_b, *ct_b;
LTC_ARGCHK(ocb != NULL);
if (ctlen == 0) return CRYPT_OK; /* no data, nothing to do */
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(pt != NULL);
if ((err = cipher_is_valid(ocb->cipher)) != CRYPT_OK) {
return err;
}
if (ocb->block_len != cipher_descriptor[ocb->cipher].block_length) {
return CRYPT_INVALID_ARG;
}
if (ctlen % ocb->block_len) { /* ctlen has to bu multiple of block_len */
return CRYPT_INVALID_ARG;
}
full_blocks = ctlen/ocb->block_len;
for(i=0; i<full_blocks; i++) {
pt_b = (unsigned char *)pt+i*ocb->block_len;
ct_b = (unsigned char *)ct+i*ocb->block_len;
/* ocb->Offset_current[] = ocb->Offset_current[] ^ Offset_{ntz(block_index)} */
ocb3_int_xor_blocks(ocb->Offset_current, ocb->Offset_current, ocb->L_[ocb3_int_ntz(ocb->block_index)], ocb->block_len);
/* tmp[] = ct[] XOR ocb->Offset_current[] */
ocb3_int_xor_blocks(tmp, ct_b, ocb->Offset_current, ocb->block_len);
/* decrypt */
if ((err = cipher_descriptor[ocb->cipher].ecb_decrypt(tmp, tmp, &ocb->key)) != CRYPT_OK) {
goto LBL_ERR;
}
/* pt[] = tmp[] XOR ocb->Offset_current[] */
ocb3_int_xor_blocks(pt_b, tmp, ocb->Offset_current, ocb->block_len);
/* ocb->checksum[] = ocb->checksum[] XOR pt[] */
ocb3_int_xor_blocks(ocb->checksum, ocb->checksum, pt_b, ocb->block_len);
ocb->block_index++;
}
err = CRYPT_OK;
LBL_ERR:
#ifdef LTC_CLEAN_STACK
zeromem(tmp, sizeof(tmp));
#endif
return err;
}
#endif
#pragma clang diagnostic pop

View File

@@ -0,0 +1,107 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file ocb3_decrypt_last.c
OCB implementation, internal helper, by Karel Miko
*/
#include "tomcrypt_private.h"
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
#pragma clang diagnostic ignored "-Wshorten-64-to-32"
#ifdef LTC_OCB3_MODE
/**
Finish an OCB (decryption) stream
@param ocb The OCB state
@param ct The remaining ciphertext
@param ctlen The length of the ciphertext (octets)
@param pt [out] The output buffer
@return CRYPT_OK if successful
*/
int ocb3_decrypt_last(ocb3_state *ocb, const unsigned char *ct, unsigned long ctlen, unsigned char *pt)
{
unsigned char iOffset_star[MAXBLOCKSIZE];
unsigned char iPad[MAXBLOCKSIZE];
int err, x, full_blocks, full_blocks_len, last_block_len;
LTC_ARGCHK(ocb != NULL);
if (ct == NULL) LTC_ARGCHK(ctlen == 0);
if (ctlen != 0) {
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(pt != NULL);
}
if ((err = cipher_is_valid(ocb->cipher)) != CRYPT_OK) {
goto LBL_ERR;
}
full_blocks = ctlen/ocb->block_len;
full_blocks_len = full_blocks * ocb->block_len;
last_block_len = ctlen - full_blocks_len;
/* process full blocks first */
if (full_blocks>0) {
if ((err = ocb3_decrypt(ocb, ct, full_blocks_len, pt)) != CRYPT_OK) {
goto LBL_ERR;
}
}
if (last_block_len>0) {
/* Offset_* = Offset_m xor L_* */
ocb3_int_xor_blocks(iOffset_star, ocb->Offset_current, ocb->L_star, ocb->block_len);
/* Pad = ENCIPHER(K, Offset_*) */
if ((err = cipher_descriptor[ocb->cipher].ecb_encrypt(iOffset_star, iPad, &ocb->key)) != CRYPT_OK) {
goto LBL_ERR;
}
/* P_* = C_* xor Pad[1..bitlen(C_*)] */
ocb3_int_xor_blocks(pt+full_blocks_len, (unsigned char *)ct+full_blocks_len, iPad, last_block_len);
/* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */
ocb3_int_xor_blocks(ocb->checksum, ocb->checksum, pt+full_blocks_len, last_block_len);
for(x=last_block_len; x<ocb->block_len; x++) {
if (x == last_block_len) {
ocb->checksum[x] ^= 0x80;
} else {
ocb->checksum[x] ^= 0x00;
}
}
/* Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A) */
/* at this point we calculate only: Tag_part = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) */
for(x=0; x<ocb->block_len; x++) {
ocb->tag_part[x] = (ocb->checksum[x] ^ iOffset_star[x]) ^ ocb->L_dollar[x];
}
if ((err = cipher_descriptor[ocb->cipher].ecb_encrypt(ocb->tag_part, ocb->tag_part, &ocb->key)) != CRYPT_OK) {
goto LBL_ERR;
}
}
else {
/* Tag = ENCIPHER(K, Checksum_m xor Offset_m xor L_$) xor HASH(K,A) */
/* at this point we calculate only: Tag_part = ENCIPHER(K, Checksum_m xor Offset_m xor L_$) */
for(x=0; x<ocb->block_len; x++) {
ocb->tag_part[x] = (ocb->checksum[x] ^ ocb->Offset_current[x]) ^ ocb->L_dollar[x];
}
if ((err = cipher_descriptor[ocb->cipher].ecb_encrypt(ocb->tag_part, ocb->tag_part, &ocb->key)) != CRYPT_OK) {
goto LBL_ERR;
}
}
err = CRYPT_OK;
LBL_ERR:
#ifdef LTC_CLEAN_STACK
zeromem(iOffset_star, MAXBLOCKSIZE);
zeromem(iPad, MAXBLOCKSIZE);
#endif
return err;
}
#endif
#pragma clang diagnostic pop

View File

@@ -0,0 +1,100 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file ocb3_decrypt_verify_memory.c
OCB implementation, helper to decrypt block of memory, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_OCB3_MODE
/**
Decrypt and compare the tag with OCB
@param cipher The index of the cipher desired
@param key The secret key
@param keylen The length of the secret key (octets)
@param nonce The session nonce (length of the block size of the block cipher)
@param noncelen The length of the nonce (octets)
@param adata The AAD - additional associated data
@param adatalen The length of AAD (octets)
@param ct The ciphertext
@param ctlen The length of the ciphertext (octets)
@param pt [out] The plaintext
@param tag The tag to compare against
@param taglen The length of the tag (octets)
@param stat [out] The result of the tag comparison (1==valid, 0==invalid)
@return CRYPT_OK if successful regardless of the tag comparison
*/
int ocb3_decrypt_verify_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *adata, unsigned long adatalen,
const unsigned char *ct, unsigned long ctlen,
unsigned char *pt,
const unsigned char *tag, unsigned long taglen,
int *stat)
{
int err;
ocb3_state *ocb;
unsigned char *buf;
unsigned long buflen;
LTC_ARGCHK(stat != NULL);
/* default to zero */
*stat = 0;
/* limit taglen */
taglen = MIN(taglen, MAXBLOCKSIZE);
/* allocate memory */
buf = XMALLOC(taglen);
ocb = XMALLOC(sizeof(ocb3_state));
if (ocb == NULL || buf == NULL) {
if (ocb != NULL) {
XFREE(ocb);
}
if (buf != NULL) {
XFREE(buf);
}
return CRYPT_MEM;
}
if ((err = ocb3_init(ocb, cipher, key, keylen, nonce, noncelen, taglen)) != CRYPT_OK) {
goto LBL_ERR;
}
if (adata != NULL || adatalen != 0) {
if ((err = ocb3_add_aad(ocb, adata, adatalen)) != CRYPT_OK) {
goto LBL_ERR;
}
}
if ((err = ocb3_decrypt_last(ocb, ct, ctlen, pt)) != CRYPT_OK) {
goto LBL_ERR;
}
buflen = taglen;
if ((err = ocb3_done(ocb, buf, &buflen)) != CRYPT_OK) {
goto LBL_ERR;
}
/* compare tags */
if (buflen >= taglen && XMEM_NEQ(buf, tag, taglen) == 0) {
*stat = 1;
}
err = CRYPT_OK;
LBL_ERR:
#ifdef LTC_CLEAN_STACK
zeromem(ocb, sizeof(ocb3_state));
#endif
XFREE(ocb);
XFREE(buf);
return err;
}
#endif

View File

@@ -0,0 +1,82 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file ocb3_done.c
OCB implementation, INTERNAL ONLY helper, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_OCB3_MODE
/**
Finish OCB processing and compute the tag
@param ocb The OCB state
@param tag [out] The destination for the authentication tag
@param taglen [in/out] The max size and resulting size of the authentication tag
@return CRYPT_OK if successful
*/
int ocb3_done(ocb3_state *ocb, unsigned char *tag, unsigned long *taglen)
{
unsigned char tmp[MAXBLOCKSIZE];
int err, x;
LTC_ARGCHK(ocb != NULL);
LTC_ARGCHK(tag != NULL);
LTC_ARGCHK(taglen != NULL);
if ((err = cipher_is_valid(ocb->cipher)) != CRYPT_OK) {
goto LBL_ERR;
}
/* check taglen */
if ((int)*taglen < ocb->tag_len) {
*taglen = (unsigned long)ocb->tag_len;
return CRYPT_BUFFER_OVERFLOW;
}
/* finalize AAD processing */
if (ocb->adata_buffer_bytes>0) {
/* Offset_* = Offset_m xor L_* */
ocb3_int_xor_blocks(ocb->aOffset_current, ocb->aOffset_current, ocb->L_star, ocb->block_len);
/* CipherInput = (A_* || 1 || zeros(127-bitlen(A_*))) xor Offset_* */
ocb3_int_xor_blocks(tmp, ocb->adata_buffer, ocb->aOffset_current, ocb->adata_buffer_bytes);
for(x=ocb->adata_buffer_bytes; x<ocb->block_len; x++) {
if (x == ocb->adata_buffer_bytes) {
tmp[x] = 0x80 ^ ocb->aOffset_current[x];
}
else {
tmp[x] = 0x00 ^ ocb->aOffset_current[x];
}
}
/* Sum = Sum_m xor ENCIPHER(K, CipherInput) */
if ((err = cipher_descriptor[ocb->cipher].ecb_encrypt(tmp, tmp, &ocb->key)) != CRYPT_OK) {
goto LBL_ERR;
}
ocb3_int_xor_blocks(ocb->aSum_current, ocb->aSum_current, tmp, ocb->block_len);
}
/* finalize TAG computing */
/* at this point ocb->aSum_current = HASH(K, A) */
/* tag = tag ^ HASH(K, A) */
ocb3_int_xor_blocks(tmp, ocb->tag_part, ocb->aSum_current, ocb->block_len);
/* copy tag bytes */
for(x = 0; x < ocb->tag_len; x++) tag[x] = tmp[x];
*taglen = (unsigned long)ocb->tag_len;
err = CRYPT_OK;
LBL_ERR:
#ifdef LTC_CLEAN_STACK
zeromem(tmp, MAXBLOCKSIZE);
zeromem(ocb, sizeof(*ocb));
#endif
return err;
}
#endif

View File

@@ -0,0 +1,82 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file ocb3_encrypt.c
OCB implementation, encrypt data, by Tom St Denis
*/
#include "tomcrypt_private.h"
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
#pragma clang diagnostic ignored "-Wshorten-64-to-32"
#ifdef LTC_OCB3_MODE
/**
Encrypt blocks of data with OCB
@param ocb The OCB state
@param pt The plaintext (length multiple of the block size of the block cipher)
@param ptlen The length of the input (octets)
@param ct [out] The ciphertext (same size as the pt)
@return CRYPT_OK if successful
*/
int ocb3_encrypt(ocb3_state *ocb, const unsigned char *pt, unsigned long ptlen, unsigned char *ct)
{
unsigned char tmp[MAXBLOCKSIZE];
int err, i, full_blocks;
unsigned char *pt_b, *ct_b;
LTC_ARGCHK(ocb != NULL);
if (ptlen == 0) return CRYPT_OK; /* no data, nothing to do */
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
if ((err = cipher_is_valid(ocb->cipher)) != CRYPT_OK) {
return err;
}
if (ocb->block_len != cipher_descriptor[ocb->cipher].block_length) {
return CRYPT_INVALID_ARG;
}
if (ptlen % ocb->block_len) { /* ptlen has to bu multiple of block_len */
return CRYPT_INVALID_ARG;
}
full_blocks = ptlen/ocb->block_len;
for(i=0; i<full_blocks; i++) {
pt_b = (unsigned char *)pt+i*ocb->block_len;
ct_b = (unsigned char *)ct+i*ocb->block_len;
/* ocb->Offset_current[] = ocb->Offset_current[] ^ Offset_{ntz(block_index)} */
ocb3_int_xor_blocks(ocb->Offset_current, ocb->Offset_current, ocb->L_[ocb3_int_ntz(ocb->block_index)], ocb->block_len);
/* tmp[] = pt[] XOR ocb->Offset_current[] */
ocb3_int_xor_blocks(tmp, pt_b, ocb->Offset_current, ocb->block_len);
/* encrypt */
if ((err = cipher_descriptor[ocb->cipher].ecb_encrypt(tmp, tmp, &ocb->key)) != CRYPT_OK) {
goto LBL_ERR;
}
/* ct[] = tmp[] XOR ocb->Offset_current[] */
ocb3_int_xor_blocks(ct_b, tmp, ocb->Offset_current, ocb->block_len);
/* ocb->checksum[] = ocb->checksum[] XOR pt[] */
ocb3_int_xor_blocks(ocb->checksum, ocb->checksum, pt_b, ocb->block_len);
ocb->block_index++;
}
err = CRYPT_OK;
LBL_ERR:
#ifdef LTC_CLEAN_STACK
zeromem(tmp, sizeof(tmp));
#endif
return err;
}
#endif
#pragma clang diagnostic pop

View File

@@ -0,0 +1,72 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file ocb3_encrypt_authenticate_memory.c
OCB implementation, encrypt block of memory, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_OCB3_MODE
/**
Encrypt and generate an authentication code for a buffer of memory
@param cipher The index of the cipher desired
@param key The secret key
@param keylen The length of the secret key (octets)
@param nonce The session nonce (length of the block ciphers block size)
@param noncelen The length of the nonce (octets)
@param adata The AAD - additional associated data
@param adatalen The length of AAD (octets)
@param pt The plaintext
@param ptlen The length of the plaintext (octets)
@param ct [out] The ciphertext
@param tag [out] The authentication tag
@param taglen [in/out] The max size and resulting size of the authentication tag
@return CRYPT_OK if successful
*/
int ocb3_encrypt_authenticate_memory(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *adata, unsigned long adatalen,
const unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen)
{
int err;
ocb3_state *ocb;
LTC_ARGCHK(taglen != NULL);
/* allocate memory */
ocb = XMALLOC(sizeof(ocb3_state));
if (ocb == NULL) {
return CRYPT_MEM;
}
if ((err = ocb3_init(ocb, cipher, key, keylen, nonce, noncelen, *taglen)) != CRYPT_OK) {
goto LBL_ERR;
}
if (adata != NULL || adatalen != 0) {
if ((err = ocb3_add_aad(ocb, adata, adatalen)) != CRYPT_OK) {
goto LBL_ERR;
}
}
if ((err = ocb3_encrypt_last(ocb, pt, ptlen, ct)) != CRYPT_OK) {
goto LBL_ERR;
}
err = ocb3_done(ocb, tag, taglen);
LBL_ERR:
#ifdef LTC_CLEAN_STACK
zeromem(ocb, sizeof(ocb3_state));
#endif
XFREE(ocb);
return err;
}
#endif

View File

@@ -0,0 +1,108 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file ocb3_encrypt_last.c
OCB implementation, internal helper, by Karel Miko
*/
#include "tomcrypt_private.h"
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
#pragma clang diagnostic ignored "-Wshorten-64-to-32"
#ifdef LTC_OCB3_MODE
/**
Finish an OCB (encryption) stream
@param ocb The OCB state
@param pt The remaining plaintext
@param ptlen The length of the plaintext (octets)
@param ct [out] The output buffer
@return CRYPT_OK if successful
*/
int ocb3_encrypt_last(ocb3_state *ocb, const unsigned char *pt, unsigned long ptlen, unsigned char *ct)
{
unsigned char iOffset_star[MAXBLOCKSIZE];
unsigned char iPad[MAXBLOCKSIZE];
int err, x, full_blocks, full_blocks_len, last_block_len;
LTC_ARGCHK(ocb != NULL);
if (pt == NULL) LTC_ARGCHK(ptlen == 0);
if (ptlen != 0) {
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
}
if ((err = cipher_is_valid(ocb->cipher)) != CRYPT_OK) {
goto LBL_ERR;
}
full_blocks = ptlen/ocb->block_len;
full_blocks_len = full_blocks * ocb->block_len;
last_block_len = ptlen - full_blocks_len;
/* process full blocks first */
if (full_blocks>0) {
if ((err = ocb3_encrypt(ocb, pt, full_blocks_len, ct)) != CRYPT_OK) {
goto LBL_ERR;
}
}
/* at this point: m = ocb->block_index (last block index), Offset_m = ocb->Offset_current */
if (last_block_len>0) {
/* Offset_* = Offset_m xor L_* */
ocb3_int_xor_blocks(iOffset_star, ocb->Offset_current, ocb->L_star, ocb->block_len);
/* Pad = ENCIPHER(K, Offset_*) */
if ((err = cipher_descriptor[ocb->cipher].ecb_encrypt(iOffset_star, iPad, &ocb->key)) != CRYPT_OK) {
goto LBL_ERR;
}
/* C_* = P_* xor Pad[1..bitlen(P_*)] */
ocb3_int_xor_blocks(ct+full_blocks_len, pt+full_blocks_len, iPad, last_block_len);
/* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */
ocb3_int_xor_blocks(ocb->checksum, ocb->checksum, pt+full_blocks_len, last_block_len);
for(x=last_block_len; x<ocb->block_len; x++) {
if (x == last_block_len) {
ocb->checksum[x] ^= 0x80;
} else {
ocb->checksum[x] ^= 0x00;
}
}
/* Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A) */
/* at this point we calculate only: Tag_part = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) */
for(x=0; x<ocb->block_len; x++) {
ocb->tag_part[x] = (ocb->checksum[x] ^ iOffset_star[x]) ^ ocb->L_dollar[x];
}
if ((err = cipher_descriptor[ocb->cipher].ecb_encrypt(ocb->tag_part, ocb->tag_part, &ocb->key)) != CRYPT_OK) {
goto LBL_ERR;
}
} else {
/* Tag = ENCIPHER(K, Checksum_m xor Offset_m xor L_$) xor HASH(K,A) */
/* at this point we calculate only: Tag_part = ENCIPHER(K, Checksum_m xor Offset_m xor L_$) */
for(x=0; x<ocb->block_len; x++) {
ocb->tag_part[x] = (ocb->checksum[x] ^ ocb->Offset_current[x]) ^ ocb->L_dollar[x];
}
if ((err = cipher_descriptor[ocb->cipher].ecb_encrypt(ocb->tag_part, ocb->tag_part, &ocb->key)) != CRYPT_OK) {
goto LBL_ERR;
}
}
err = CRYPT_OK;
LBL_ERR:
#ifdef LTC_CLEAN_STACK
zeromem(iOffset_star, MAXBLOCKSIZE);
zeromem(iPad, MAXBLOCKSIZE);
#endif
return err;
}
#endif
#pragma clang diagnostic pop

View File

@@ -0,0 +1,195 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file ocb3_init.c
OCB implementation, initialize state, by Tom St Denis
*/
#include "tomcrypt_private.h"
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
#pragma clang diagnostic ignored "-Wshorten-64-to-32"
#ifdef LTC_OCB3_MODE
static void s_ocb3_int_calc_offset_zero(ocb3_state *ocb, const unsigned char *nonce, unsigned long noncelen, unsigned long taglen)
{
int x, y, bottom;
int idx, shift;
unsigned char iNonce[MAXBLOCKSIZE];
unsigned char iKtop[MAXBLOCKSIZE];
unsigned char iStretch[MAXBLOCKSIZE+8];
/* Nonce = zeros(127-bitlen(N)) || 1 || N */
zeromem(iNonce, sizeof(iNonce));
for (x = ocb->block_len-1, y=0; y<(int)noncelen; x--, y++) {
iNonce[x] = nonce[noncelen-y-1];
}
iNonce[x] = 0x01;
iNonce[0] |= ((taglen*8) % 128) << 1;
/* bottom = str2num(Nonce[123..128]) */
bottom = iNonce[ocb->block_len-1] & 0x3F;
/* Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6)) */
iNonce[ocb->block_len-1] = iNonce[ocb->block_len-1] & 0xC0;
if ((cipher_descriptor[ocb->cipher].ecb_encrypt(iNonce, iKtop, &ocb->key)) != CRYPT_OK) {
zeromem(ocb->Offset_current, ocb->block_len);
return;
}
/* Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72]) */
for (x = 0; x < ocb->block_len; x++) {
iStretch[x] = iKtop[x];
}
for (y = 0; y < 8; y++) {
iStretch[x+y] = iKtop[y] ^ iKtop[y+1];
}
/* Offset_0 = Stretch[1+bottom..128+bottom] */
idx = bottom / 8;
shift = (bottom % 8);
for (x = 0; x < ocb->block_len; x++) {
ocb->Offset_current[x] = iStretch[idx+x] << shift;
if (shift > 0) {
ocb->Offset_current[x] |= iStretch[idx+x+1] >> (8-shift);
}
}
}
#define polys ocb3_polys
static const struct {
int len;
unsigned char poly_mul[MAXBLOCKSIZE];
} polys[] = {
{
8,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1B }
}, {
16,
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x87 }
}
};
/**
Initialize an OCB context
@param ocb [out] The destination of the OCB state
@param cipher The index of the desired cipher
@param key The secret key
@param keylen The length of the secret key (octets)
@param nonce The session nonce
@param noncelen The length of the session nonce (octets, up to 15)
@param taglen The length of the tag (octets, up to 16)
@return CRYPT_OK if successful
*/
int ocb3_init(ocb3_state *ocb, int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *nonce, unsigned long noncelen,
unsigned long taglen)
{
int poly, x, y, m, err;
unsigned char *previous, *current;
LTC_ARGCHK(ocb != NULL);
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(nonce != NULL);
/* valid cipher? */
if ((err = cipher_is_valid(cipher)) != CRYPT_OK) {
return err;
}
ocb->cipher = cipher;
/* Valid Nonce?
* As of RFC7253: "string of no more than 120 bits" */
if (noncelen > (120/8)) {
return CRYPT_INVALID_ARG;
}
/* The blockcipher must have a 128-bit blocksize */
if (cipher_descriptor[cipher].block_length != 16) {
return CRYPT_INVALID_ARG;
}
/* The TAGLEN may be any value up to 128 (bits) */
if (taglen > 16) {
return CRYPT_INVALID_ARG;
}
ocb->tag_len = taglen;
/* determine which polys to use */
ocb->block_len = cipher_descriptor[cipher].block_length;
x = (int)(sizeof(polys)/sizeof(polys[0]));
for (poly = 0; poly < x; poly++) {
if (polys[poly].len == ocb->block_len) {
break;
}
}
if (poly == x) {
return CRYPT_INVALID_ARG; /* block_len not found in polys */
}
if (polys[poly].len != ocb->block_len) {
return CRYPT_INVALID_ARG;
}
/* schedule the key */
if ((err = cipher_descriptor[cipher].setup(key, keylen, 0, &ocb->key)) != CRYPT_OK) {
return err;
}
/* L_* = ENCIPHER(K, zeros(128)) */
zeromem(ocb->L_star, ocb->block_len);
if ((err = cipher_descriptor[cipher].ecb_encrypt(ocb->L_star, ocb->L_star, &ocb->key)) != CRYPT_OK) {
return err;
}
/* compute L_$, L_0, L_1, ... */
for (x = -1; x < 32; x++) {
if (x == -1) { /* gonna compute: L_$ = double(L_*) */
current = ocb->L_dollar;
previous = ocb->L_star;
}
else if (x == 0) { /* gonna compute: L_0 = double(L_$) */
current = ocb->L_[0];
previous = ocb->L_dollar;
}
else { /* gonna compute: L_i = double(L_{i-1}) for every integer i > 0 */
current = ocb->L_[x];
previous = ocb->L_[x-1];
}
m = previous[0] >> 7;
for (y = 0; y < ocb->block_len-1; y++) {
current[y] = ((previous[y] << 1) | (previous[y+1] >> 7)) & 255;
}
current[ocb->block_len-1] = (previous[ocb->block_len-1] << 1) & 255;
if (m == 1) {
/* current[] = current[] XOR polys[poly].poly_mul[]*/
ocb3_int_xor_blocks(current, current, polys[poly].poly_mul, ocb->block_len);
}
}
/* initialize ocb->Offset_current = Offset_0 */
s_ocb3_int_calc_offset_zero(ocb, nonce, noncelen, taglen);
/* initialize checksum to all zeros */
zeromem(ocb->checksum, ocb->block_len);
/* set block index */
ocb->block_index = 1;
/* initialize AAD related stuff */
ocb->ablock_index = 1;
ocb->adata_buffer_bytes = 0;
zeromem(ocb->aOffset_current, ocb->block_len);
zeromem(ocb->aSum_current, ocb->block_len);
return CRYPT_OK;
}
#undef polys
#endif
#pragma clang diagnostic pop

View File

@@ -0,0 +1,29 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file ocb3_int_ntz.c
OCB implementation, INTERNAL ONLY helper, by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_OCB3_MODE
/**
Returns the number of leading zero bits [from lsb up] (internal function)
@param x The 32-bit value to observe
@return The number of bits [from the lsb up] that are zero
*/
int ocb3_int_ntz(unsigned long x)
{
int c;
x &= 0xFFFFFFFFUL;
c = 0;
while ((x & 1) == 0) {
++c;
x >>= 1;
}
return c;
}
#endif

View File

@@ -0,0 +1,30 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file ocb3_int_xor_blocks.c
OCB implementation, INTERNAL ONLY helper, by Karel Miko
*/
#include "tomcrypt_private.h"
#ifdef LTC_OCB3_MODE
/**
Compute xor for two blocks of bytes 'out = block_a XOR block_b' (internal function)
@param out The block of bytes (output)
@param block_a The block of bytes (input)
@param block_b The block of bytes (input)
@param block_len The size of block_a, block_b, out
*/
void ocb3_int_xor_blocks(unsigned char *out, const unsigned char *block_a, const unsigned char *block_b, unsigned long block_len)
{
int x;
if (out == block_a) {
for (x = 0; x < (int)block_len; x++) out[x] ^= block_b[x];
}
else {
for (x = 0; x < (int)block_len; x++) out[x] = block_a[x] ^ block_b[x];
}
}
#endif

View File

@@ -0,0 +1,299 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/**
@file ocb3_test.c
OCB implementation, self-test by Tom St Denis
*/
#include "tomcrypt_private.h"
#ifdef LTC_OCB3_MODE
/**
Test the OCB protocol
@return CRYPT_OK if successful
*/
int ocb3_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
/* test vectors from: http://tools.ietf.org/html/draft-krovetz-ocb-03 */
unsigned char key[16] = { 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F };
unsigned char nonce[12] = { 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B };
const struct {
int ptlen;
int aadlen;
unsigned char pt[64], aad[64], ct[64], tag[16];
} tests[] = {
{ /* index:0 */
0, /* PLAINTEXT length */
0, /* AAD length */
{ 0 }, /* PLAINTEXT */
{ 0 }, /* AAD */
{ 0 }, /* CIPHERTEXT */
{ 0x19,0x7b,0x9c,0x3c,0x44,0x1d,0x3c,0x83,0xea,0xfb,0x2b,0xef,0x63,0x3b,0x91,0x82 }, /* TAG */
},
{ /* index:1 */
8, /* PLAINTEXT length */
8, /* AAD length */
{ 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07 }, /* PLAINTEXT */
{ 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07 }, /* AAD */
{ 0x92,0xb6,0x57,0x13,0x0a,0x74,0xb8,0x5a }, /* CIPHERTEXT */
{ 0x16,0xdc,0x76,0xa4,0x6d,0x47,0xe1,0xea,0xd5,0x37,0x20,0x9e,0x8a,0x96,0xd1,0x4e }, /* TAG */
},
{ /* index:2 */
0, /* PLAINTEXT length */
8, /* AAD length */
{ 0 }, /* PLAINTEXT */
{ 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07 }, /* AAD */
{ 0 }, /* CIPHERTEXT */
{ 0x98,0xb9,0x15,0x52,0xc8,0xc0,0x09,0x18,0x50,0x44,0xe3,0x0a,0x6e,0xb2,0xfe,0x21 }, /* TAG */
},
{ /* index:3 */
8, /* PLAINTEXT length */
0, /* AAD length */
{ 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07 }, /* PLAINTEXT */
{ 0 }, /* AAD */
{ 0x92,0xb6,0x57,0x13,0x0a,0x74,0xb8,0x5a }, /* CIPHERTEXT */
{ 0x97,0x1e,0xff,0xca,0xe1,0x9a,0xd4,0x71,0x6f,0x88,0xe8,0x7b,0x87,0x1f,0xbe,0xed }, /* TAG */
},
{ /* index:4 */
16, /* PLAINTEXT length */
16, /* AAD length */
{ 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f }, /* PLAINTEXT */
{ 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f }, /* AAD */
{ 0xbe,0xa5,0xe8,0x79,0x8d,0xbe,0x71,0x10,0x03,0x1c,0x14,0x4d,0xa0,0xb2,0x61,0x22 }, /* CIPHERTEXT */
{ 0x77,0x6c,0x99,0x24,0xd6,0x72,0x3a,0x1f,0xc4,0x52,0x45,0x32,0xac,0x3e,0x5b,0xeb }, /* TAG */
},
{ /* index:5 */
0, /* PLAINTEXT length */
16, /* AAD length */
{ 0 }, /* PLAINTEXT */
{ 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f }, /* AAD */
{ 0 }, /* CIPHERTEXT */
{ 0x7d,0xdb,0x8e,0x6c,0xea,0x68,0x14,0x86,0x62,0x12,0x50,0x96,0x19,0xb1,0x9c,0xc6 }, /* TAG */
},
{ /* index:6 */
16, /* PLAINTEXT length */
0, /* AAD length */
{ 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f }, /* PLAINTEXT */
{ 0 }, /* AAD */
{ 0xbe,0xa5,0xe8,0x79,0x8d,0xbe,0x71,0x10,0x03,0x1c,0x14,0x4d,0xa0,0xb2,0x61,0x22 }, /* CIPHERTEXT */
{ 0x13,0xcc,0x8b,0x74,0x78,0x07,0x12,0x1a,0x4c,0xbb,0x3e,0x4b,0xd6,0xb4,0x56,0xaf }, /* TAG */
},
{ /* index:7 */
24, /* PLAINTEXT length */
24, /* AAD length */
{ 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17 }, /* PLAINTEXT */
{ 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17 }, /* AAD */
{ 0xbe,0xa5,0xe8,0x79,0x8d,0xbe,0x71,0x10,0x03,0x1c,0x14,0x4d,0xa0,0xb2,0x61,0x22,0xfc,0xfc,0xee,0x7a,0x2a,0x8d,0x4d,0x48 }, /* CIPHERTEXT */
{ 0x5f,0xa9,0x4f,0xc3,0xf3,0x88,0x20,0xf1,0xdc,0x3f,0x3d,0x1f,0xd4,0xe5,0x5e,0x1c }, /* TAG */
},
{ /* index:8 */
0, /* PLAINTEXT length */
24, /* AAD length */
{ 0 }, /* PLAINTEXT */
{ 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17 }, /* AAD */
{ 0 }, /* CIPHERTEXT */
{ 0x28,0x20,0x26,0xda,0x30,0x68,0xbc,0x9f,0xa1,0x18,0x68,0x1d,0x55,0x9f,0x10,0xf6 }, /* TAG */
},
{ /* index:9 */
24, /* PLAINTEXT length */
0, /* AAD length */
{ 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17 }, /* PLAINTEXT */
{ 0 }, /* AAD */
{ 0xbe,0xa5,0xe8,0x79,0x8d,0xbe,0x71,0x10,0x03,0x1c,0x14,0x4d,0xa0,0xb2,0x61,0x22,0xfc,0xfc,0xee,0x7a,0x2a,0x8d,0x4d,0x48 }, /* CIPHERTEXT */
{ 0x6e,0xf2,0xf5,0x25,0x87,0xfd,0xa0,0xed,0x97,0xdc,0x7e,0xed,0xe2,0x41,0xdf,0x68 }, /* TAG */
},
{ /* index:10 */
32, /* PLAINTEXT length */
32, /* AAD length */
{ 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f }, /* PLAINTEXT */
{ 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f }, /* AAD */
{ 0xbe,0xa5,0xe8,0x79,0x8d,0xbe,0x71,0x10,0x03,0x1c,0x14,0x4d,0xa0,0xb2,0x61,0x22,0xce,0xaa,0xb9,0xb0,0x5d,0xf7,0x71,0xa6,0x57,0x14,0x9d,0x53,0x77,0x34,0x63,0xcb }, /* CIPHERTEXT */
{ 0xb2,0xa0,0x40,0xdd,0x3b,0xd5,0x16,0x43,0x72,0xd7,0x6d,0x7b,0xb6,0x82,0x42,0x40 }, /* TAG */
},
{ /* index:11 */
0, /* PLAINTEXT length */
32, /* AAD length */
{ 0 }, /* PLAINTEXT */
{ 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f }, /* AAD */
{ 0 }, /* CIPHERTEXT */
{ 0xe1,0xe0,0x72,0x63,0x3b,0xad,0xe5,0x1a,0x60,0xe8,0x59,0x51,0xd9,0xc4,0x2a,0x1b }, /* TAG */
},
{ /* index:12 */
32, /* PLAINTEXT length */
0, /* AAD length */
{ 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f }, /* PLAINTEXT */
{ 0 }, /* AAD */
{ 0xbe,0xa5,0xe8,0x79,0x8d,0xbe,0x71,0x10,0x03,0x1c,0x14,0x4d,0xa0,0xb2,0x61,0x22,0xce,0xaa,0xb9,0xb0,0x5d,0xf7,0x71,0xa6,0x57,0x14,0x9d,0x53,0x77,0x34,0x63,0xcb }, /* CIPHERTEXT */
{ 0x4a,0x3b,0xae,0x82,0x44,0x65,0xcf,0xda,0xf8,0xc4,0x1f,0xc5,0x0c,0x7d,0xf9,0xd9 }, /* TAG */
},
{ /* index:13 */
40, /* PLAINTEXT length */
40, /* AAD length */
{ 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f,0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27 }, /* PLAINTEXT */
{ 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f,0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27 }, /* AAD */
{ 0xbe,0xa5,0xe8,0x79,0x8d,0xbe,0x71,0x10,0x03,0x1c,0x14,0x4d,0xa0,0xb2,0x61,0x22,0xce,0xaa,0xb9,0xb0,0x5d,0xf7,0x71,0xa6,0x57,0x14,0x9d,0x53,0x77,0x34,0x63,0xcb,0x68,0xc6,0x57,0x78,0xb0,0x58,0xa6,0x35 }, /* CIPHERTEXT */
{ 0x65,0x9c,0x62,0x32,0x11,0xde,0xea,0x0d,0xe3,0x0d,0x2c,0x38,0x18,0x79,0xf4,0xc8 }, /* TAG */
},
{ /* index:14 */
0, /* PLAINTEXT length */
40, /* AAD length */
{ 0 }, /* PLAINTEXT */
{ 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f,0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27 }, /* AAD */
{ 0 }, /* CIPHERTEXT */
{ 0x7a,0xeb,0x7a,0x69,0xa1,0x68,0x7d,0xd0,0x82,0xca,0x27,0xb0,0xd9,0xa3,0x70,0x96 }, /* TAG */
},
{ /* index:15 */
40, /* PLAINTEXT length */
0, /* AAD length */
{ 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f,0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27 }, /* PLAINTEXT */
{ 0 }, /* AAD */
{ 0xbe,0xa5,0xe8,0x79,0x8d,0xbe,0x71,0x10,0x03,0x1c,0x14,0x4d,0xa0,0xb2,0x61,0x22,0xce,0xaa,0xb9,0xb0,0x5d,0xf7,0x71,0xa6,0x57,0x14,0x9d,0x53,0x77,0x34,0x63,0xcb,0x68,0xc6,0x57,0x78,0xb0,0x58,0xa6,0x35 }, /* CIPHERTEXT */
{ 0x06,0x0c,0x84,0x67,0xf4,0xab,0xab,0x5e,0x8b,0x3c,0x20,0x67,0xa2,0xe1,0x15,0xdc }, /* TAG */
},
};
/* As of RFC 7253 - 'Appendix A. Sample Results'
* The next tuple shows a result with a tag length of 96 bits and a
different key.
K: 0F0E0D0C0B0A09080706050403020100
N: BBAA9988776655443322110D
A: 000102030405060708090A0B0C0D0E0F1011121314151617
18191A1B1C1D1E1F2021222324252627
P: 000102030405060708090A0B0C0D0E0F1011121314151617
18191A1B1C1D1E1F2021222324252627
C: 1792A4E31E0755FB03E31B22116E6C2DDF9EFD6E33D536F1
A0124B0A55BAE884ED93481529C76B6AD0C515F4D1CDD4FD
AC4F02AA
The C has been split up in C and T (tag)
*/
const unsigned char K[] = { 0x0F,0x0E,0x0D,0x0C,0x0B,0x0A,0x09,0x08,
0x07,0x06,0x05,0x04,0x03,0x02,0x01,0x00 };
const unsigned char N[] = { 0xBB,0xAA,0x99,0x88,0x77,0x66,0x55,0x44,
0x33,0x22,0x11,0x0D };
const unsigned char A[] = { 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,
0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F,
0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,
0x18,0x19,0x1A,0x1B,0x1C,0x1D,0x1E,0x1F,
0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27 };
const unsigned char P[] = { 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,
0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F,
0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,
0x18,0x19,0x1A,0x1B,0x1C,0x1D,0x1E,0x1F,
0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27 };
const unsigned char C[] = { 0x17,0x92,0xA4,0xE3,0x1E,0x07,0x55,0xFB,
0x03,0xE3,0x1B,0x22,0x11,0x6E,0x6C,0x2D,
0xDF,0x9E,0xFD,0x6E,0x33,0xD5,0x36,0xF1,
0xA0,0x12,0x4B,0x0A,0x55,0xBA,0xE8,0x84,
0xED,0x93,0x48,0x15,0x29,0xC7,0x6B,0x6A };
const unsigned char T[] = { 0xD0,0xC5,0x15,0xF4,0xD1,0xCD,0xD4,0xFD,
0xAC,0x4F,0x02,0xAA };
int err, x, idx, res;
unsigned long len;
unsigned char outct[MAXBLOCKSIZE] = { 0 };
unsigned char outtag[MAXBLOCKSIZE] = { 0 };
ocb3_state ocb;
/* AES can be under rijndael or aes... try to find it */
if ((idx = find_cipher("aes")) == -1) {
if ((idx = find_cipher("rijndael")) == -1) {
return CRYPT_NOP;
}
}
for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) {
len = 16; /* must be the same as the required taglen */
if ((err = ocb3_encrypt_authenticate_memory(idx,
key, sizeof(key),
nonce, sizeof(nonce),
tests[x].aadlen != 0 ? tests[x].aad : NULL, tests[x].aadlen,
tests[x].ptlen != 0 ? tests[x].pt : NULL, tests[x].ptlen,
tests[x].ptlen != 0 ? outct : NULL, outtag, &len)) != CRYPT_OK) {
return err;
}
if (compare_testvector(outtag, len, tests[x].tag, sizeof(tests[x].tag), "OCB3 Tag", x) ||
compare_testvector(outct, tests[x].ptlen, tests[x].ct, tests[x].ptlen, "OCB3 CT", x)) {
return CRYPT_FAIL_TESTVECTOR;
}
if ((err = ocb3_decrypt_verify_memory(idx,
key, sizeof(key),
nonce, sizeof(nonce),
tests[x].aadlen != 0 ? tests[x].aad : NULL, tests[x].aadlen,
tests[x].ptlen != 0 ? outct : NULL, tests[x].ptlen,
tests[x].ptlen != 0 ? outct : NULL, tests[x].tag, len, &res)) != CRYPT_OK) {
return err;
}
if ((res != 1) || compare_testvector(outct, tests[x].ptlen, tests[x].pt, tests[x].ptlen, "OCB3", x)) {
#ifdef LTC_TEST_DBG
printf("\n\nOCB3: Failure-decrypt - res = %d\n", res);
#endif
return CRYPT_FAIL_TESTVECTOR;
}
}
/* RFC 7253 - test vector with a tag length of 96 bits - part 1 */
x = 99;
len = 12;
if ((err = ocb3_encrypt_authenticate_memory(idx,
K, sizeof(K),
N, sizeof(N),
A, sizeof(A),
P, sizeof(P),
outct, outtag, &len)) != CRYPT_OK) {
return err;
}
if (compare_testvector(outtag, len, T, sizeof(T), "OCB3 Tag", x) ||
compare_testvector(outct, sizeof(P), C, sizeof(C), "OCB3 CT", x)) {
return CRYPT_FAIL_TESTVECTOR;
}
if ((err = ocb3_decrypt_verify_memory(idx,
K, sizeof(K),
N, sizeof(N),
A, sizeof(A),
C, sizeof(C),
outct, T, sizeof(T), &res)) != CRYPT_OK) {
return err;
}
if ((res != 1) || compare_testvector(outct, sizeof(C), P, sizeof(P), "OCB3", x)) {
#ifdef LTC_TEST_DBG
printf("\n\nOCB3: Failure-decrypt - res = %d\n", res);
#endif
return CRYPT_FAIL_TESTVECTOR;
}
/* RFC 7253 - test vector with a tag length of 96 bits - part 2 */
x = 100;
if ((err = ocb3_init(&ocb, idx, K, sizeof(K), N, sizeof(N), 12)) != CRYPT_OK) return err;
if ((err = ocb3_add_aad(&ocb, A, sizeof(A))) != CRYPT_OK) return err;
if ((err = ocb3_encrypt(&ocb, P, 32, outct)) != CRYPT_OK) return err;
if ((err = ocb3_encrypt_last(&ocb, P+32, sizeof(P)-32, outct+32)) != CRYPT_OK) return err;
len = sizeof(outtag); /* intentionally more than 12 */
if ((err = ocb3_done(&ocb, outtag, &len)) != CRYPT_OK) return err;
if (compare_testvector(outct, sizeof(P), C, sizeof(C), "OCB3 CT", x)) return CRYPT_FAIL_TESTVECTOR;
if (compare_testvector(outtag, len, T, sizeof(T), "OCB3 Tag.enc", x)) return CRYPT_FAIL_TESTVECTOR;
if ((err = ocb3_init(&ocb, idx, K, sizeof(K), N, sizeof(N), 12)) != CRYPT_OK) return err;
if ((err = ocb3_add_aad(&ocb, A, sizeof(A))) != CRYPT_OK) return err;
if ((err = ocb3_decrypt(&ocb, C, 32, outct)) != CRYPT_OK) return err;
if ((err = ocb3_decrypt_last(&ocb, C+32, sizeof(C)-32, outct+32)) != CRYPT_OK) return err;
len = sizeof(outtag); /* intentionally more than 12 */
if ((err = ocb3_done(&ocb, outtag, &len)) != CRYPT_OK) return err;
if (compare_testvector(outct, sizeof(C), P, sizeof(P), "OCB3 PT", x)) return CRYPT_FAIL_TESTVECTOR;
if (compare_testvector(outtag, len, T, sizeof(T), "OCB3 Tag.dec", x)) return CRYPT_FAIL_TESTVECTOR;
return CRYPT_OK;
#endif /* LTC_TEST */
}
#endif /* LTC_OCB3_MODE */

View File

@@ -0,0 +1,752 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
#pragma clang diagnostic ignored "-Wshorten-64-to-32"
/**
@file siv.c
RFC 5297 SIV - Synthetic Initialization Vector, Steffen Jaeckel
*/
#ifdef LTC_SIV_MODE
/* RFC 5297 - Chapter 7 - Security Considerations
*
* [...] S2V must not be
* passed more than 127 components. Since SIV includes the plaintext as
* a component to S2V, that limits the number of components of
* associated data that can be safely passed to SIV to 126.
*/
static const unsigned long s_siv_max_aad_components = 126;
static LTC_INLINE void s_siv_dbl(unsigned char *inout)
{
int y, mask, msb, len;
/* setup the system */
mask = 0x87;
len = 16;
/* if msb(L * u^(x+1)) = 0 then just shift, otherwise shift and xor constant mask */
msb = inout[0] >> 7;
/* shift left */
for (y = 0; y < (len - 1); y++) {
inout[y] = ((inout[y] << 1) | (inout[y + 1] >> 7)) & 255;
}
inout[len - 1] = ((inout[len - 1] << 1) ^ (msb ? mask : 0)) & 255;
}
static LTC_INLINE int s_siv_S2V_one(int cipher,
const unsigned char *key, unsigned long keylen,
unsigned char *V, unsigned long *Vlen)
{
/* if n = 0 then
* return V = AES-CMAC(K, <one>)
*/
unsigned char zero_or_one[16] = {0};
zero_or_one[0] = 1;
return omac_memory(cipher, key, keylen, zero_or_one, sizeof(zero_or_one), V, Vlen);
}
typedef struct siv_omac_ctx_t {
omac_state omac;
int cipher;
} siv_omac_ctx_t;
static LTC_INLINE int s_siv_ctx_init(int cipher,
const unsigned char *key, unsigned long keylen,
siv_omac_ctx_t *ctx)
{
ctx->cipher = cipher;
return omac_init(&ctx->omac, cipher, key, keylen);
}
static LTC_INLINE int s_siv_omac_memory(siv_omac_ctx_t *ctx,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen)
{
int err;
omac_state omac = ctx->omac;
if ((err = omac_process(&omac, in, inlen)) != CRYPT_OK) {
return err;
}
err = omac_done(&omac, out, outlen);
zeromem(&omac, sizeof(omac));
return err;
}
static LTC_INLINE int s_siv_S2V_zero(siv_omac_ctx_t *ctx,
unsigned char *D, unsigned long *Dlen)
{
/* D = AES-CMAC(K, <zero>) */
const unsigned char zero_or_one[16] = {0};
return s_siv_omac_memory(ctx, zero_or_one, sizeof(zero_or_one), D, Dlen);
}
static LTC_INLINE int s_siv_S2V_dbl_xor_cmac(siv_omac_ctx_t *ctx,
const unsigned char *aad, unsigned long aadlen,
unsigned char *D, unsigned long Dlen)
{
/* for i = 1 to n-1 do
* D = dbl(D) xor AES-CMAC(K, Si)
* done
*/
int err;
unsigned char TMP[16];
unsigned long i, TMPlen = sizeof(TMP);
s_siv_dbl(D);
if ((err = s_siv_omac_memory(ctx, aad, aadlen, TMP, &TMPlen)) != CRYPT_OK) {
return err;
}
for (i = 0; i < Dlen; ++i) {
D[i] ^= TMP[i];
}
return err;
}
static LTC_INLINE int s_siv_omac_memory_multi(siv_omac_ctx_t *ctx,
unsigned char *out, unsigned long *outlen,
const unsigned char *in, unsigned long inlen,
...)
{
int err;
va_list args;
omac_state omac = ctx->omac;
va_start(args, inlen);
if ((err = omac_vprocess(&omac, in, inlen, args)) != CRYPT_OK) {
return err;
}
err = omac_done(&omac, out, outlen);
zeromem(&omac, sizeof(omac));
return err;
}
static LTC_INLINE int s_siv_S2V_T(siv_omac_ctx_t *ctx,
const unsigned char *in, unsigned long inlen,
unsigned char *D,
unsigned char *V, unsigned long *Vlen)
{
int err;
unsigned long i;
unsigned char T[16];
/* if len(Sn) >= 128 then
* T = Sn xorend D
* else
* T = dbl(D) xor pad(Sn)
* fi
*/
if (inlen >= 16) {
XMEMCPY(T, &in[inlen - 16], 16);
for(i = 0; i < 16; ++i) {
T[i] ^= D[i];
}
err = s_siv_omac_memory_multi(ctx, V, Vlen, in, inlen - 16, T, 16uL, NULL);
} else {
s_siv_dbl(D);
XMEMCPY(T, in, inlen);
T[inlen] = 0x80;
for (i = inlen + 1; i < 16; ++i) {
T[i] = 0x0;
}
for(i = 0; i < 16; ++i) {
T[i] ^= D[i];
}
err = s_siv_omac_memory(ctx, T, 16, V, Vlen);
}
return err;
}
static int s_siv_S2V(int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char **ad, unsigned long *adlen,
const unsigned char *in, unsigned long inlen,
unsigned char *V, unsigned long *Vlen)
{
int err;
unsigned char D[16];
unsigned long Dlen = sizeof(D), n = 0;
siv_omac_ctx_t ctx;
if(ad == NULL || adlen == NULL || ad[0] == NULL || adlen[0] == 0) {
err = s_siv_S2V_one(cipher, key, keylen, V, Vlen);
} else {
if ((err = s_siv_ctx_init(cipher, key, keylen, &ctx)) != CRYPT_OK) {
return err;
}
Dlen = sizeof(D);
if ((err = s_siv_S2V_zero(&ctx, D, &Dlen)) != CRYPT_OK) {
return err;
}
while(ad[n] != NULL && adlen[n] != 0) {
if (n >= s_siv_max_aad_components) {
return CRYPT_INPUT_TOO_LONG;
}
if ((err = s_siv_S2V_dbl_xor_cmac(&ctx, ad[n], adlen[n], D, Dlen)) != CRYPT_OK) {
return err;
}
n++;
}
err = s_siv_S2V_T(&ctx, in, inlen, D, V, Vlen);
}
return err;
}
static LTC_INLINE void s_siv_bitand(const unsigned char* V, unsigned char* Q)
{
int n;
XMEMSET(Q, 0xff, 16);
Q[8] = Q[12] = 0x7f;
for (n = 0; n < 16; ++n) {
Q[n] &= V[n];
}
}
static LTC_INLINE int s_ctr_crypt_memory(int cipher,
const unsigned char *IV,
const unsigned char *key, int keylen,
const unsigned char *in,
unsigned char *out, unsigned long len)
{
int err;
symmetric_CTR ctr;
if ((err = ctr_start(cipher, IV, key, keylen, 0, CTR_COUNTER_BIG_ENDIAN | 16, &ctr)) != CRYPT_OK) {
goto out;
}
if ((err = ctr_encrypt(in, out, len, &ctr)) != CRYPT_OK) {
goto out;
}
if ((err = ctr_done(&ctr)) != CRYPT_OK) {
goto out;
}
out:
zeromem(&ctr, sizeof(ctr));
return err;
}
typedef struct {
unsigned char Q[16], V[16];
} siv_state;
/**
SIV encrypt
@param cipher The index of the cipher desired
@param key The secret key to use
@param keylen The length of the secret key (octets)
@param ad An array of Associated Data pointers (must be NULL terminated)
@param adlen An array with the lengths of the Associated Data
@param pt The plaintext
@param ptlen The length of the plaintext
@param ct The ciphertext
@param ctlen [in/out] The length of the ciphertext
@return CRYPT_OK if successful
*/
int siv_encrypt_memory( int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *ad[], unsigned long adlen[],
const unsigned char *pt, unsigned long ptlen,
unsigned char *ct, unsigned long *ctlen)
{
int err;
const unsigned char *K1, *K2;
unsigned long Vlen;
siv_state siv;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(ad != NULL);
LTC_ARGCHK(adlen != NULL);
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(ctlen != NULL);
if (ptlen + 16 < ptlen) {
return CRYPT_OVERFLOW;
}
if (*ctlen < ptlen + 16) {
*ctlen = ptlen + 16;
return CRYPT_BUFFER_OVERFLOW;
}
if ((err = cipher_is_valid(cipher)) != CRYPT_OK) {
return err;
}
K1 = key;
K2 = &key[keylen/2];
Vlen = sizeof(siv.V);
err = s_siv_S2V(cipher, K1, keylen/2, ad, adlen, pt, ptlen, siv.V, &Vlen);
#ifdef LTC_CLEAN_STACK
burn_stack(3 * 16 + 7 * sizeof(unsigned long) + 1 * sizeof(void*));
#endif
if (err != CRYPT_OK) {
return err;
}
s_siv_bitand(siv.V, siv.Q);
XMEMCPY(ct, siv.V, 16);
ct += 16;
if ((err = s_ctr_crypt_memory(cipher, siv.Q, K2, keylen/2, pt, ct, ptlen)) != CRYPT_OK) {
zeromem(ct, ptlen + 16);
goto out;
}
*ctlen = ptlen + 16;
out:
#ifdef LTC_CLEAN_STACK
zeromem(&siv, sizeof(siv));
#endif
return err;
}
/**
SIV decrypt
@param cipher The index of the cipher desired
@param key The secret key to use
@param keylen The length of the secret key (octets)
@param ad An array of Associated Data pointers (must be NULL terminated)
@param adlen An array with the lengths of the Associated Data
@param ct The ciphertext
@param ctlen The length of the ciphertext
@param pt The plaintext
@param ptlen [in/out] The length of the plaintext
@return CRYPT_OK if successful
*/
int siv_decrypt_memory( int cipher,
const unsigned char *key, unsigned long keylen,
const unsigned char *ad[], unsigned long adlen[],
const unsigned char *ct, unsigned long ctlen,
unsigned char *pt, unsigned long *ptlen)
{
int err;
unsigned char *pt_work;
const unsigned char *K1, *K2, *ct_work;
unsigned long Vlen;
siv_state siv;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(ad != NULL);
LTC_ARGCHK(adlen != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ptlen != NULL);
if (ctlen < 16) {
return CRYPT_INVALID_ARG;
}
if (*ptlen < (ctlen - 16)) {
*ptlen = ctlen - 16;
return CRYPT_BUFFER_OVERFLOW;
}
if ((err = cipher_is_valid(cipher)) != CRYPT_OK) {
return err;
}
*ptlen = ctlen - 16;
pt_work = XMALLOC(*ptlen);
if (pt_work == NULL) {
return CRYPT_MEM;
}
K1 = key;
K2 = &key[keylen/2];
ct_work = ct;
s_siv_bitand(ct_work, siv.Q);
ct_work += 16;
if ((err = s_ctr_crypt_memory(cipher, siv.Q, K2, keylen/2, ct_work, pt_work, *ptlen)) != CRYPT_OK) {
goto out;
}
Vlen = sizeof(siv.V);
if ((err = s_siv_S2V(cipher, K1, keylen/2, ad, adlen, pt_work, *ptlen, siv.V, &Vlen)) != CRYPT_OK) {
goto out;
}
err = XMEM_NEQ(siv.V, ct, Vlen);
copy_or_zeromem(pt_work, pt, *ptlen, err);
out:
#ifdef LTC_CLEAN_STACK
zeromem(&siv, sizeof(siv));
#endif
zeromem(pt_work, *ptlen);
XFREE(pt_work);
return err;
}
/**
Process an entire SIV packet in one call.
@param cipher The index of the cipher desired
@param direction Encrypt or Decrypt mode (LTC_ENCRYPT or LTC_DECRYPT)
@param key The secret key to use
@param keylen The length of the secret key (octets)
@param in The input
@param inlen The length of the input
@param out The output
@param outlen [in/out] The max size and resulting size of the output
@remark <...> is of the form <pointer, length> (void*, unsigned long) and contains the Associated Data
@return CRYPT_OK on success
*/
int siv_memory( int cipher, int direction,
const unsigned char *key, unsigned long keylen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
...)
{
int err;
va_list args;
siv_state siv;
unsigned char D[16], *in_buf = NULL, *out_work;
const unsigned char *aad, *K1, *K2, *in_work;
unsigned long n = 0, aadlen, Dlen = sizeof(D), Vlen = sizeof(siv.V), in_work_len;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
if ((err = cipher_is_valid(cipher)) != CRYPT_OK) {
return err;
}
if (direction == LTC_ENCRYPT && *outlen < inlen + 16) {
*outlen = inlen + 16;
return CRYPT_BUFFER_OVERFLOW;
} else if (direction == LTC_DECRYPT && (inlen < 16 || *outlen < inlen - 16)) {
*outlen = inlen - 16;
return CRYPT_BUFFER_OVERFLOW;
}
K1 = key;
K2 = &key[keylen/2];
in_work = in;
in_work_len = inlen;
out_work = out;
if (direction == LTC_DECRYPT) {
in_work_len -= 16;
in_buf = XMALLOC(in_work_len);
if (in_buf == NULL)
return CRYPT_MEM;
s_siv_bitand(in_work, siv.Q);
in_work += 16;
if ((err = s_ctr_crypt_memory(cipher, siv.Q, K2, keylen/2, in_work, in_buf, in_work_len)) != CRYPT_OK) {
goto err_out;
}
in_work = in_buf;
}
va_start(args, outlen);
aad = va_arg(args, const unsigned char*);
aadlen = aad ? va_arg(args, unsigned long) : 0;
if (aad == NULL || aadlen == 0) {
if ((err = s_siv_S2V_one(cipher, K1, keylen/2, siv.V, &Vlen)) != CRYPT_OK) {
goto err_out;
}
} else {
siv_omac_ctx_t ctx;
if ((err = s_siv_ctx_init(cipher, K1, keylen/2, &ctx)) != CRYPT_OK) {
goto err_out;
}
if ((err = s_siv_S2V_zero(&ctx, D, &Dlen)) != CRYPT_OK) {
goto err_out;
}
do {
if (n >= s_siv_max_aad_components) {
err = CRYPT_INPUT_TOO_LONG;
goto err_out;
}
if ((err = s_siv_S2V_dbl_xor_cmac(&ctx, aad, aadlen, D, Dlen)) != CRYPT_OK) {
goto err_out;
}
aad = va_arg(args, const unsigned char*);
if (aad == NULL)
break;
aadlen = va_arg(args, unsigned long);
n++;
} while (aadlen);
if ((err = s_siv_S2V_T(&ctx, in_work, in_work_len, D, siv.V, &Vlen)) != CRYPT_OK) {
goto err_out;
}
}
if (direction == LTC_DECRYPT) {
err = XMEM_NEQ(siv.V, in, Vlen);
copy_or_zeromem(in_work, out, in_work_len, err);
*outlen = in_work_len;
} else {
s_siv_bitand(siv.V, siv.Q);
XMEMCPY(out_work, siv.V, 16);
out_work += 16;
if ((err = s_ctr_crypt_memory(cipher, siv.Q, K2, keylen/2, in, out_work, inlen)) != CRYPT_OK) {
zeromem(out, inlen + 16);
goto err_out;
}
*outlen = inlen + 16;
}
err_out:
if (in_buf) {
zeromem(in_buf, in_work_len);
XFREE(in_buf);
}
va_end(args);
#ifdef LTC_CLEAN_STACK
zeromem(D, sizeof(D));
zeromem(&siv, sizeof(siv));
#endif
return err;
}
int siv_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
/*
* RFC5297 - A.1. Deterministic Authenticated Encryption Example
*/
const unsigned char Key_A1[] =
{ 0xff, 0xfe, 0xfd, 0xfc, 0xfb, 0xfa, 0xf9, 0xf8,
0xf7, 0xf6, 0xf5, 0xf4, 0xf3, 0xf2, 0xf1, 0xf0,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff };
const unsigned char AD_A1[] =
{ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27 };
const unsigned char Plaintext_A1[] =
{ 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88,
0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee };
const unsigned char output_A1[] =
{ 0x85, 0x63, 0x2d, 0x07, 0xc6, 0xe8, 0xf3, 0x7f,
0x95, 0x0a, 0xcd, 0x32, 0x0a, 0x2e, 0xcc, 0x93,
0x40, 0xc0, 0x2b, 0x96, 0x90, 0xc4, 0xdc, 0x04,
0xda, 0xef, 0x7f, 0x6a, 0xfe, 0x5c };
const unsigned char *ad_A1[] =
{ AD_A1, NULL };
unsigned long adlen_A1[] =
{ sizeof(AD_A1), 0 };
const unsigned char Key_A2[] =
{ 0x7f, 0x7e, 0x7d, 0x7c, 0x7b, 0x7a, 0x79, 0x78,
0x77, 0x76, 0x75, 0x74, 0x73, 0x72, 0x71, 0x70,
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f };
const unsigned char AD1_A2[] =
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff,
0xde, 0xad, 0xda, 0xda, 0xde, 0xad, 0xda, 0xda,
0xff, 0xee, 0xdd, 0xcc, 0xbb, 0xaa, 0x99, 0x88,
0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11, 0x00 };
const unsigned char AD2_A2[] =
{ 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70, 0x80,
0x90, 0xa0 };
const unsigned char AD3_A2[] =
{ 0x09, 0xf9, 0x11, 0x02, 0x9d, 0x74, 0xe3, 0x5b,
0xd8, 0x41, 0x56, 0xc5, 0x63, 0x56, 0x88, 0xc0 };
const unsigned char Plaintext_A2[] =
{ 0x74, 0x68, 0x69, 0x73, 0x20, 0x69, 0x73, 0x20,
0x73, 0x6f, 0x6d, 0x65, 0x20, 0x70, 0x6c, 0x61,
0x69, 0x6e, 0x74, 0x65, 0x78, 0x74, 0x20, 0x74,
0x6f, 0x20, 0x65, 0x6e, 0x63, 0x72, 0x79, 0x70,
0x74, 0x20, 0x75, 0x73, 0x69, 0x6e, 0x67, 0x20,
0x53, 0x49, 0x56, 0x2d, 0x41, 0x45, 0x53 };
const unsigned char output_A2[] =
{ 0x7b, 0xdb, 0x6e, 0x3b, 0x43, 0x26, 0x67, 0xeb,
0x06, 0xf4, 0xd1, 0x4b, 0xff, 0x2f, 0xbd, 0x0f,
0xcb, 0x90, 0x0f, 0x2f, 0xdd, 0xbe, 0x40, 0x43,
0x26, 0x60, 0x19, 0x65, 0xc8, 0x89, 0xbf, 0x17,
0xdb, 0xa7, 0x7c, 0xeb, 0x09, 0x4f, 0xa6, 0x63,
0xb7, 0xa3, 0xf7, 0x48, 0xba, 0x8a, 0xf8, 0x29,
0xea, 0x64, 0xad, 0x54, 0x4a, 0x27, 0x2e, 0x9c,
0x48, 0x5b, 0x62, 0xa3, 0xfd, 0x5c, 0x0d };
const unsigned char *ad_A2[] =
{ AD1_A2, AD2_A2, AD3_A2, NULL };
unsigned long adlen_A2[] =
{ sizeof(AD1_A2), sizeof(AD2_A2), sizeof(AD3_A2), 0 };
#define PL_PAIR(n) n, sizeof(n)
struct {
const unsigned char* Key;
unsigned long Keylen;
const unsigned char* Plaintext;
unsigned long Plaintextlen;
const void* ADs;
void* ADlens;
const unsigned char* output;
unsigned long outputlen;
const char* name;
} siv_tests[] = {
{ PL_PAIR(Key_A1), PL_PAIR(Plaintext_A1), &ad_A1, &adlen_A1, PL_PAIR(output_A1), "RFC5297 - A.1. Deterministic Authenticated Encryption Example" },
{ PL_PAIR(Key_A2), PL_PAIR(Plaintext_A2), &ad_A2, &adlen_A2, PL_PAIR(output_A2), "RFC5297 - A.2. Nonce-Based Authenticated Encryption Example" }
};
#undef PL_PAIR
int err, cipher;
unsigned n;
unsigned long buflen, tmplen;
unsigned char buf[MAX(sizeof(output_A1), sizeof(output_A2))];
const unsigned long niter = 1000;
unsigned char *tmpe, *tmpd;
const unsigned long tmpmax = 16 + niter * 16;
cipher = find_cipher("aes");
for (n = 0; n < sizeof(siv_tests)/sizeof(siv_tests[0]); ++n) {
buflen = sizeof(buf);
if ((err = siv_encrypt_memory(cipher,
siv_tests[n].Key, siv_tests[n].Keylen,
(const unsigned char **)siv_tests[n].ADs, siv_tests[n].ADlens,
siv_tests[n].Plaintext, siv_tests[n].Plaintextlen,
buf, &buflen)) != CRYPT_OK) {
return err;
}
if (compare_testvector(buf, buflen, siv_tests[n].output, siv_tests[n].outputlen, siv_tests[n].name, n) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
buflen = sizeof(buf);
if ((err = siv_decrypt_memory(cipher,
siv_tests[n].Key, siv_tests[n].Keylen,
(const unsigned char **)siv_tests[n].ADs, siv_tests[n].ADlens,
siv_tests[n].output, siv_tests[n].outputlen,
buf, &buflen)) != CRYPT_OK) {
return err;
}
if (compare_testvector(buf, buflen, siv_tests[n].Plaintext, siv_tests[n].Plaintextlen, siv_tests[n].name, n + 0x1000) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
}
/* Testcase 0x2 */
buflen = sizeof(buf);
if ((err = siv_memory(cipher, LTC_ENCRYPT,
siv_tests[0].Key, siv_tests[0].Keylen,
siv_tests[0].Plaintext, siv_tests[0].Plaintextlen,
buf, &buflen,
AD_A1, sizeof(AD_A1),
NULL)) != CRYPT_OK) {
return err;
}
if (compare_testvector(buf, buflen, siv_tests[0].output, siv_tests[0].outputlen, siv_tests[0].name, n) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
/* Testcase 0x1002 */
buflen = sizeof(buf);
if ((err = siv_memory(cipher, LTC_DECRYPT,
siv_tests[0].Key, siv_tests[0].Keylen,
siv_tests[0].output, siv_tests[0].outputlen,
buf, &buflen,
AD_A1, sizeof(AD_A1),
NULL)) != CRYPT_OK) {
return err;
}
if (compare_testvector(buf, buflen, siv_tests[0].Plaintext, siv_tests[0].Plaintextlen, siv_tests[0].name, n + 0x1000) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
n++;
/* Testcase 0x3 */
buflen = sizeof(buf);
if ((err = siv_memory(cipher, LTC_ENCRYPT,
siv_tests[1].Key, siv_tests[1].Keylen,
siv_tests[1].Plaintext, siv_tests[1].Plaintextlen,
buf, &buflen,
ad_A2[0], adlen_A2[0],
ad_A2[1], adlen_A2[1],
ad_A2[2], adlen_A2[2],
NULL)) != CRYPT_OK) {
return err;
}
if (compare_testvector(buf, buflen, siv_tests[1].output, siv_tests[1].outputlen, siv_tests[1].name, n) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
/* Testcase 0x1003 */
buflen = sizeof(buf);
if ((err = siv_memory(cipher, LTC_DECRYPT,
siv_tests[1].Key, siv_tests[1].Keylen,
siv_tests[1].output, siv_tests[1].outputlen,
buf, &buflen,
ad_A2[0], adlen_A2[0],
ad_A2[1], adlen_A2[1],
ad_A2[2], adlen_A2[2],
NULL)) != CRYPT_OK) {
return err;
}
if (compare_testvector(buf, buflen, siv_tests[1].Plaintext, siv_tests[1].Plaintextlen, siv_tests[1].name, n + 0x1000) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
tmpe = XCALLOC(1, tmpmax);
if (tmpe == NULL) {
return CRYPT_MEM;
}
tmpd = XCALLOC(1, tmpmax);
if (tmpd == NULL) {
err = CRYPT_MEM;
goto out_tmpd;
}
tmplen = 16;
for (n = 0; n < niter; ++n) {
buflen = tmpmax;
if ((err = siv_memory(cipher, LTC_ENCRYPT,
siv_tests[0].Key, siv_tests[0].Keylen,
tmpe, tmplen,
tmpe, &buflen,
NULL)) != CRYPT_OK) {
goto out;
}
tmplen = buflen;
}
if (compare_testvector(&buflen, sizeof(buflen), &tmpmax, sizeof(tmpmax), "Multiple encrypt length", -(int)niter)) {
err = CRYPT_FAIL_TESTVECTOR;
goto out;
}
XMEMCPY(tmpd, tmpe, buflen);
for (n = 0; n < niter; ++n) {
buflen = tmpmax;
if ((err = siv_memory(cipher, LTC_DECRYPT,
siv_tests[0].Key, siv_tests[0].Keylen,
tmpd, tmplen,
tmpd, &buflen,
NULL)) != CRYPT_OK) {
goto out;
}
tmplen = buflen;
}
if (compare_testvector(tmpd, tmplen, tmpe, tmplen, "Multi decrypt", niter + 0x2000)) {
err = CRYPT_FAIL_TESTVECTOR;
}
out:
XFREE(tmpd);
out_tmpd:
XFREE(tmpe);
return err;
#endif
}
#endif
#pragma clang diagnostic pop

View File

@@ -0,0 +1,628 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/*
BLAKE2 reference source code package - reference C implementations
Copyright 2012, Samuel Neves <sneves@dei.uc.pt>. You may use this under the
terms of the CC0, the OpenSSL Licence, or the Apache Public License 2.0, at
your option. The terms of these licenses can be found at:
- CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
- OpenSSL license : https://www.openssl.org/source/license.html
- Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
More information about the BLAKE2 hash function can be found at
https://blake2.net.
*/
/* see also https://www.ietf.org/rfc/rfc7693.txt */
#include "tomcrypt_private.h"
#ifdef LTC_BLAKE2B
enum blake2b_constant {
BLAKE2B_BLOCKBYTES = 128,
BLAKE2B_OUTBYTES = 64,
BLAKE2B_KEYBYTES = 64,
BLAKE2B_SALTBYTES = 16,
BLAKE2B_PERSONALBYTES = 16,
BLAKE2B_PARAM_SIZE = 64
};
/* param offsets */
enum {
BLAKE2B_O_DIGEST_LENGTH = 0,
BLAKE2B_O_KEY_LENGTH = 1,
BLAKE2B_O_FANOUT = 2,
BLAKE2B_O_DEPTH = 3,
BLAKE2B_O_LEAF_LENGTH = 4,
BLAKE2B_O_NODE_OFFSET = 8,
BLAKE2B_O_XOF_LENGTH = 12,
BLAKE2B_O_NODE_DEPTH = 16,
BLAKE2B_O_INNER_LENGTH = 17,
BLAKE2B_O_RESERVED = 18,
BLAKE2B_O_SALT = 32,
BLAKE2B_O_PERSONAL = 48
};
/*
struct blake2b_param {
unsigned char digest_length;
unsigned char key_length;
unsigned char fanout;
unsigned char depth;
ulong32 leaf_length;
ulong32 node_offset;
ulong32 xof_length;
unsigned char node_depth;
unsigned char inner_length;
unsigned char reserved[14];
unsigned char salt[BLAKE2B_SALTBYTES];
unsigned char personal[BLAKE2B_PERSONALBYTES];
};
*/
const struct ltc_hash_descriptor blake2b_160_desc =
{
"blake2b-160",
25,
20,
128,
{ 1, 3, 6, 1, 4, 1, 1722, 12, 2, 1, 5 },
11,
&blake2b_160_init,
&blake2b_process,
&blake2b_done,
&blake2b_160_test,
NULL
};
const struct ltc_hash_descriptor blake2b_256_desc =
{
"blake2b-256",
26,
32,
128,
{ 1, 3, 6, 1, 4, 1, 1722, 12, 2, 1, 8 },
11,
&blake2b_256_init,
&blake2b_process,
&blake2b_done,
&blake2b_256_test,
NULL
};
const struct ltc_hash_descriptor blake2b_384_desc =
{
"blake2b-384",
27,
48,
128,
{ 1, 3, 6, 1, 4, 1, 1722, 12, 2, 1, 12 },
11,
&blake2b_384_init,
&blake2b_process,
&blake2b_done,
&blake2b_384_test,
NULL
};
const struct ltc_hash_descriptor blake2b_512_desc =
{
"blake2b-512",
28,
64,
128,
{ 1, 3, 6, 1, 4, 1, 1722, 12, 2, 1, 16 },
11,
&blake2b_512_init,
&blake2b_process,
&blake2b_done,
&blake2b_512_test,
NULL
};
static const ulong64 blake2b_IV[8] =
{
CONST64(0x6a09e667f3bcc908), CONST64(0xbb67ae8584caa73b),
CONST64(0x3c6ef372fe94f82b), CONST64(0xa54ff53a5f1d36f1),
CONST64(0x510e527fade682d1), CONST64(0x9b05688c2b3e6c1f),
CONST64(0x1f83d9abfb41bd6b), CONST64(0x5be0cd19137e2179)
};
static const unsigned char blake2b_sigma[12][16] =
{
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } ,
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } ,
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 } ,
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 } ,
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 } ,
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } ,
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 } ,
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 } ,
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 } ,
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 } ,
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } ,
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }
};
static void s_blake2b_set_lastnode(hash_state *md) { md->blake2b.f[1] = CONST64(0xffffffffffffffff); }
/* Some helper functions, not necessarily useful */
static int s_blake2b_is_lastblock(const hash_state *md) { return md->blake2b.f[0] != 0; }
static void s_blake2b_set_lastblock(hash_state *md)
{
if (md->blake2b.last_node) {
s_blake2b_set_lastnode(md);
}
md->blake2b.f[0] = CONST64(0xffffffffffffffff);
}
static void s_blake2b_increment_counter(hash_state *md, ulong64 inc)
{
md->blake2b.t[0] += inc;
if (md->blake2b.t[0] < inc) md->blake2b.t[1]++;
}
static void s_blake2b_init0(hash_state *md)
{
unsigned long i;
XMEMSET(&md->blake2b, 0, sizeof(md->blake2b));
for (i = 0; i < 8; ++i) {
md->blake2b.h[i] = blake2b_IV[i];
}
}
/* init xors IV with input parameter block */
static int s_blake2b_init_param(hash_state *md, const unsigned char *P)
{
unsigned long i;
s_blake2b_init0(md);
/* IV XOR ParamBlock */
for (i = 0; i < 8; ++i) {
ulong64 tmp;
LOAD64L(tmp, P + i * 8);
md->blake2b.h[i] ^= tmp;
}
md->blake2b.outlen = P[BLAKE2B_O_DIGEST_LENGTH];
return CRYPT_OK;
}
/**
Initialize the hash/MAC state
Use this function to init for arbitrary sizes.
Give a key and keylen to init for MAC mode.
@param md The hash state you wish to initialize
@param outlen The desired output-length
@param key The key of the MAC
@param keylen The length of the key
@return CRYPT_OK if successful
*/
int blake2b_init(hash_state *md, unsigned long outlen, const unsigned char *key, unsigned long keylen)
{
unsigned char P[BLAKE2B_PARAM_SIZE];
int err;
LTC_ARGCHK(md != NULL);
if ((!outlen) || (outlen > BLAKE2B_OUTBYTES)) {
return CRYPT_INVALID_ARG;
}
if ((key && !keylen) || (keylen && !key) || (keylen > BLAKE2B_KEYBYTES)) {
return CRYPT_INVALID_ARG;
}
XMEMSET(P, 0, sizeof(P));
P[BLAKE2B_O_DIGEST_LENGTH] = (unsigned char)outlen;
P[BLAKE2B_O_KEY_LENGTH] = (unsigned char)keylen;
P[BLAKE2B_O_FANOUT] = 1;
P[BLAKE2B_O_DEPTH] = 1;
err = s_blake2b_init_param(md, P);
if (err != CRYPT_OK) return err;
if (key) {
unsigned char block[BLAKE2B_BLOCKBYTES];
XMEMSET(block, 0, BLAKE2B_BLOCKBYTES);
XMEMCPY(block, key, keylen);
blake2b_process(md, block, BLAKE2B_BLOCKBYTES);
#ifdef LTC_CLEAN_STACK
zeromem(block, sizeof(block));
#endif
}
return CRYPT_OK;
}
/**
Initialize the hash state
@param md The hash state you wish to initialize
@return CRYPT_OK if successful
*/
int blake2b_160_init(hash_state *md) { return blake2b_init(md, 20, NULL, 0); }
/**
Initialize the hash state
@param md The hash state you wish to initialize
@return CRYPT_OK if successful
*/
int blake2b_256_init(hash_state *md) { return blake2b_init(md, 32, NULL, 0); }
/**
Initialize the hash state
@param md The hash state you wish to initialize
@return CRYPT_OK if successful
*/
int blake2b_384_init(hash_state *md) { return blake2b_init(md, 48, NULL, 0); }
/**
Initialize the hash state
@param md The hash state you wish to initialize
@return CRYPT_OK if successful
*/
int blake2b_512_init(hash_state *md) { return blake2b_init(md, 64, NULL, 0); }
#define G(r, i, a, b, c, d) \
do { \
a = a + b + m[blake2b_sigma[r][2 * i + 0]]; \
d = ROR64(d ^ a, 32); \
c = c + d; \
b = ROR64(b ^ c, 24); \
a = a + b + m[blake2b_sigma[r][2 * i + 1]]; \
d = ROR64(d ^ a, 16); \
c = c + d; \
b = ROR64(b ^ c, 63); \
} while (0)
#define ROUND(r) \
do { \
G(r, 0, v[0], v[4], v[8], v[12]); \
G(r, 1, v[1], v[5], v[9], v[13]); \
G(r, 2, v[2], v[6], v[10], v[14]); \
G(r, 3, v[3], v[7], v[11], v[15]); \
G(r, 4, v[0], v[5], v[10], v[15]); \
G(r, 5, v[1], v[6], v[11], v[12]); \
G(r, 6, v[2], v[7], v[8], v[13]); \
G(r, 7, v[3], v[4], v[9], v[14]); \
} while (0)
#ifdef LTC_CLEAN_STACK
static int ss_blake2b_compress(hash_state *md, const unsigned char *buf)
#else
static int s_blake2b_compress(hash_state *md, const unsigned char *buf)
#endif
{
ulong64 m[16];
ulong64 v[16];
unsigned long i;
for (i = 0; i < 16; ++i) {
LOAD64L(m[i], buf + i * sizeof(m[i]));
}
for (i = 0; i < 8; ++i) {
v[i] = md->blake2b.h[i];
}
v[8] = blake2b_IV[0];
v[9] = blake2b_IV[1];
v[10] = blake2b_IV[2];
v[11] = blake2b_IV[3];
v[12] = blake2b_IV[4] ^ md->blake2b.t[0];
v[13] = blake2b_IV[5] ^ md->blake2b.t[1];
v[14] = blake2b_IV[6] ^ md->blake2b.f[0];
v[15] = blake2b_IV[7] ^ md->blake2b.f[1];
ROUND(0);
ROUND(1);
ROUND(2);
ROUND(3);
ROUND(4);
ROUND(5);
ROUND(6);
ROUND(7);
ROUND(8);
ROUND(9);
ROUND(10);
ROUND(11);
for (i = 0; i < 8; ++i) {
md->blake2b.h[i] = md->blake2b.h[i] ^ v[i] ^ v[i + 8];
}
return CRYPT_OK;
}
#undef G
#undef ROUND
#ifdef LTC_CLEAN_STACK
static int s_blake2b_compress(hash_state *md, const unsigned char *buf)
{
int err;
err = ss_blake2b_compress(md, buf);
burn_stack(sizeof(ulong64) * 32 + sizeof(unsigned long));
return err;
}
#endif
/**
Process a block of memory through the hash
@param md The hash state
@param in The data to hash
@param inlen The length of the data (octets)
@return CRYPT_OK if successful
*/
int blake2b_process(hash_state *md, const unsigned char *in, unsigned long inlen)
{
LTC_ARGCHK(md != NULL);
LTC_ARGCHK(in != NULL);
if (md->blake2b.curlen > sizeof(md->blake2b.buf)) {
return CRYPT_INVALID_ARG;
}
if (inlen > 0) {
unsigned long left = md->blake2b.curlen;
unsigned long fill = BLAKE2B_BLOCKBYTES - left;
if (inlen > fill) {
md->blake2b.curlen = 0;
XMEMCPY(md->blake2b.buf + (left % sizeof(md->blake2b.buf)), in, fill); /* Fill buffer */
s_blake2b_increment_counter(md, BLAKE2B_BLOCKBYTES);
s_blake2b_compress(md, md->blake2b.buf); /* Compress */
in += fill;
inlen -= fill;
while (inlen > BLAKE2B_BLOCKBYTES) {
s_blake2b_increment_counter(md, BLAKE2B_BLOCKBYTES);
s_blake2b_compress(md, in);
in += BLAKE2B_BLOCKBYTES;
inlen -= BLAKE2B_BLOCKBYTES;
}
}
XMEMCPY(md->blake2b.buf + md->blake2b.curlen, in, inlen);
md->blake2b.curlen += inlen;
}
return CRYPT_OK;
}
/**
Terminate the hash to get the digest
@param md The hash state
@param out [out] The destination of the hash (size depending on the length used on init)
@return CRYPT_OK if successful
*/
int blake2b_done(hash_state *md, unsigned char *out)
{
unsigned char buffer[BLAKE2B_OUTBYTES] = { 0 };
unsigned long i;
LTC_ARGCHK(md != NULL);
LTC_ARGCHK(out != NULL);
/* if(md->blakebs.outlen != outlen) return CRYPT_INVALID_ARG; */
if (s_blake2b_is_lastblock(md)) {
return CRYPT_ERROR;
}
s_blake2b_increment_counter(md, md->blake2b.curlen);
s_blake2b_set_lastblock(md);
XMEMSET(md->blake2b.buf + md->blake2b.curlen, 0, BLAKE2B_BLOCKBYTES - md->blake2b.curlen); /* Padding */
s_blake2b_compress(md, md->blake2b.buf);
for (i = 0; i < 8; ++i) { /* Output full hash to temp buffer */
STORE64L(md->blake2b.h[i], buffer + i * 8);
}
XMEMCPY(out, buffer, md->blake2b.outlen);
zeromem(md, sizeof(hash_state));
#ifdef LTC_CLEAN_STACK
zeromem(buffer, sizeof(buffer));
#endif
return CRYPT_OK;
}
/**
Self-test the hash
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int blake2b_512_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
const char *msg;
unsigned char hash[64];
} tests[] = {
{ "",
{ 0x78, 0x6a, 0x02, 0xf7, 0x42, 0x01, 0x59, 0x03,
0xc6, 0xc6, 0xfd, 0x85, 0x25, 0x52, 0xd2, 0x72,
0x91, 0x2f, 0x47, 0x40, 0xe1, 0x58, 0x47, 0x61,
0x8a, 0x86, 0xe2, 0x17, 0xf7, 0x1f, 0x54, 0x19,
0xd2, 0x5e, 0x10, 0x31, 0xaf, 0xee, 0x58, 0x53,
0x13, 0x89, 0x64, 0x44, 0x93, 0x4e, 0xb0, 0x4b,
0x90, 0x3a, 0x68, 0x5b, 0x14, 0x48, 0xb7, 0x55,
0xd5, 0x6f, 0x70, 0x1a, 0xfe, 0x9b, 0xe2, 0xce } },
{ "abc",
{ 0xba, 0x80, 0xa5, 0x3f, 0x98, 0x1c, 0x4d, 0x0d,
0x6a, 0x27, 0x97, 0xb6, 0x9f, 0x12, 0xf6, 0xe9,
0x4c, 0x21, 0x2f, 0x14, 0x68, 0x5a, 0xc4, 0xb7,
0x4b, 0x12, 0xbb, 0x6f, 0xdb, 0xff, 0xa2, 0xd1,
0x7d, 0x87, 0xc5, 0x39, 0x2a, 0xab, 0x79, 0x2d,
0xc2, 0x52, 0xd5, 0xde, 0x45, 0x33, 0xcc, 0x95,
0x18, 0xd3, 0x8a, 0xa8, 0xdb, 0xf1, 0x92, 0x5a,
0xb9, 0x23, 0x86, 0xed, 0xd4, 0x00, 0x99, 0x23 } },
{ NULL, { 0 } }
};
int i;
unsigned char tmp[64];
hash_state md;
for (i = 0; tests[i].msg != NULL; i++) {
blake2b_512_init(&md);
blake2b_process(&md, (unsigned char *)tests[i].msg, (unsigned long)XSTRLEN(tests[i].msg));
blake2b_done(&md, tmp);
if (compare_testvector(tmp, sizeof(tmp), tests[i].hash, sizeof(tests[i].hash), "BLAKE2B_512", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
/**
Self-test the hash
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int blake2b_384_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
const char *msg;
unsigned char hash[48];
} tests[] = {
{ "",
{ 0xb3, 0x28, 0x11, 0x42, 0x33, 0x77, 0xf5, 0x2d,
0x78, 0x62, 0x28, 0x6e, 0xe1, 0xa7, 0x2e, 0xe5,
0x40, 0x52, 0x43, 0x80, 0xfd, 0xa1, 0x72, 0x4a,
0x6f, 0x25, 0xd7, 0x97, 0x8c, 0x6f, 0xd3, 0x24,
0x4a, 0x6c, 0xaf, 0x04, 0x98, 0x81, 0x26, 0x73,
0xc5, 0xe0, 0x5e, 0xf5, 0x83, 0x82, 0x51, 0x00 } },
{ "abc",
{ 0x6f, 0x56, 0xa8, 0x2c, 0x8e, 0x7e, 0xf5, 0x26,
0xdf, 0xe1, 0x82, 0xeb, 0x52, 0x12, 0xf7, 0xdb,
0x9d, 0xf1, 0x31, 0x7e, 0x57, 0x81, 0x5d, 0xbd,
0xa4, 0x60, 0x83, 0xfc, 0x30, 0xf5, 0x4e, 0xe6,
0xc6, 0x6b, 0xa8, 0x3b, 0xe6, 0x4b, 0x30, 0x2d,
0x7c, 0xba, 0x6c, 0xe1, 0x5b, 0xb5, 0x56, 0xf4 } },
{ NULL, { 0 } }
};
int i;
unsigned char tmp[48];
hash_state md;
for (i = 0; tests[i].msg != NULL; i++) {
blake2b_384_init(&md);
blake2b_process(&md, (unsigned char *)tests[i].msg, (unsigned long)XSTRLEN(tests[i].msg));
blake2b_done(&md, tmp);
if (compare_testvector(tmp, sizeof(tmp), tests[i].hash, sizeof(tests[i].hash), "BLAKE2B_384", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
/**
Self-test the hash
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int blake2b_256_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
const char *msg;
unsigned char hash[32];
} tests[] = {
{ "",
{ 0x0e, 0x57, 0x51, 0xc0, 0x26, 0xe5, 0x43, 0xb2,
0xe8, 0xab, 0x2e, 0xb0, 0x60, 0x99, 0xda, 0xa1,
0xd1, 0xe5, 0xdf, 0x47, 0x77, 0x8f, 0x77, 0x87,
0xfa, 0xab, 0x45, 0xcd, 0xf1, 0x2f, 0xe3, 0xa8 } },
{ "abc",
{ 0xbd, 0xdd, 0x81, 0x3c, 0x63, 0x42, 0x39, 0x72,
0x31, 0x71, 0xef, 0x3f, 0xee, 0x98, 0x57, 0x9b,
0x94, 0x96, 0x4e, 0x3b, 0xb1, 0xcb, 0x3e, 0x42,
0x72, 0x62, 0xc8, 0xc0, 0x68, 0xd5, 0x23, 0x19 } },
{ "12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890",
{ 0x0f, 0x6e, 0x01, 0x8d, 0x38, 0xd6, 0x3f, 0x08,
0x4d, 0x58, 0xe3, 0x0c, 0x90, 0xfb, 0xa2, 0x41,
0x5f, 0xca, 0x17, 0xfa, 0x66, 0x26, 0x49, 0xf3,
0x8a, 0x30, 0x41, 0x7c, 0x57, 0xcd, 0xa8, 0x14 } },
{ NULL, { 0 } }
};
int i;
unsigned char tmp[32];
hash_state md;
for (i = 0; tests[i].msg != NULL; i++) {
blake2b_256_init(&md);
blake2b_process(&md, (unsigned char *)tests[i].msg, (unsigned long)XSTRLEN(tests[i].msg));
blake2b_done(&md, tmp);
if (compare_testvector(tmp, sizeof(tmp), tests[i].hash, sizeof(tests[i].hash), "BLAKE2B_256", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
/**
Self-test the hash
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int blake2b_160_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
const char *msg;
unsigned char hash[20];
} tests[] = {
{ "",
{ 0x33, 0x45, 0x52, 0x4a, 0xbf, 0x6b, 0xbe, 0x18,
0x09, 0x44, 0x92, 0x24, 0xb5, 0x97, 0x2c, 0x41,
0x79, 0x0b, 0x6c, 0xf2 } },
{ "abc",
{ 0x38, 0x42, 0x64, 0xf6, 0x76, 0xf3, 0x95, 0x36,
0x84, 0x05, 0x23, 0xf2, 0x84, 0x92, 0x1c, 0xdc,
0x68, 0xb6, 0x84, 0x6b } },
{ NULL, { 0 } }
};
int i;
unsigned char tmp[20];
hash_state md;
for (i = 0; tests[i].msg != NULL; i++) {
blake2b_160_init(&md);
blake2b_process(&md, (unsigned char *)tests[i].msg, (unsigned long)XSTRLEN(tests[i].msg));
blake2b_done(&md, tmp);
if (compare_testvector(tmp, sizeof(tmp), tests[i].hash, sizeof(tests[i].hash), "BLAKE2B_160", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
#endif

View File

@@ -0,0 +1,609 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
/*
BLAKE2 reference source code package - reference C implementations
Copyright 2012, Samuel Neves <sneves@dei.uc.pt>. You may use this under the
terms of the CC0, the OpenSSL Licence, or the Apache Public License 2.0, at
your option. The terms of these licenses can be found at:
- CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
- OpenSSL license : https://www.openssl.org/source/license.html
- Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
More information about the BLAKE2 hash function can be found at
https://blake2.net.
*/
/* see also https://www.ietf.org/rfc/rfc7693.txt */
#include "tomcrypt_private.h"
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wconversion"
#pragma clang diagnostic ignored "-Wshorten-64-to-32"
#ifdef LTC_BLAKE2S
enum blake2s_constant {
BLAKE2S_BLOCKBYTES = 64,
BLAKE2S_OUTBYTES = 32,
BLAKE2S_KEYBYTES = 32,
BLAKE2S_SALTBYTES = 8,
BLAKE2S_PERSONALBYTES = 8,
BLAKE2S_PARAM_SIZE = 32
};
/* param offsets */
enum {
BLAKE2S_O_DIGEST_LENGTH = 0,
BLAKE2S_O_KEY_LENGTH = 1,
BLAKE2S_O_FANOUT = 2,
BLAKE2S_O_DEPTH = 3,
BLAKE2S_O_LEAF_LENGTH = 4,
BLAKE2S_O_NODE_OFFSET = 8,
BLAKE2S_O_XOF_LENGTH = 12,
BLAKE2S_O_NODE_DEPTH = 14,
BLAKE2S_O_INNER_LENGTH = 15,
BLAKE2S_O_SALT = 16,
BLAKE2S_O_PERSONAL = 24
};
/*
struct blake2s_param {
unsigned char digest_length;
unsigned char key_length;
unsigned char fanout;
unsigned char depth;
ulong32 leaf_length;
ulong32 node_offset;
ushort16 xof_length;
unsigned char node_depth;
unsigned char inner_length;
unsigned char salt[BLAKE2S_SALTBYTES];
unsigned char personal[BLAKE2S_PERSONALBYTES];
};
*/
const struct ltc_hash_descriptor blake2s_128_desc =
{
"blake2s-128",
21,
16,
64,
{ 1, 3, 6, 1, 4, 1, 1722, 12, 2, 2, 4 },
11,
&blake2s_128_init,
&blake2s_process,
&blake2s_done,
&blake2s_128_test,
NULL
};
const struct ltc_hash_descriptor blake2s_160_desc =
{
"blake2s-160",
22,
20,
64,
{ 1, 3, 6, 1, 4, 1, 1722, 12, 2, 2, 5 },
11,
&blake2s_160_init,
&blake2s_process,
&blake2s_done,
&blake2s_160_test,
NULL
};
const struct ltc_hash_descriptor blake2s_224_desc =
{
"blake2s-224",
23,
28,
64,
{ 1, 3, 6, 1, 4, 1, 1722, 12, 2, 2, 7 },
11,
&blake2s_224_init,
&blake2s_process,
&blake2s_done,
&blake2s_224_test,
NULL
};
const struct ltc_hash_descriptor blake2s_256_desc =
{
"blake2s-256",
24,
32,
64,
{ 1, 3, 6, 1, 4, 1, 1722, 12, 2, 2, 8 },
11,
&blake2s_256_init,
&blake2s_process,
&blake2s_done,
&blake2s_256_test,
NULL
};
static const ulong32 blake2s_IV[8] = {
0x6A09E667UL, 0xBB67AE85UL, 0x3C6EF372UL, 0xA54FF53AUL,
0x510E527FUL, 0x9B05688CUL, 0x1F83D9ABUL, 0x5BE0CD19UL
};
static const unsigned char blake2s_sigma[10][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
};
static void s_blake2s_set_lastnode(hash_state *md) { md->blake2s.f[1] = 0xffffffffUL; }
/* Some helper functions, not necessarily useful */
static int s_blake2s_is_lastblock(const hash_state *md) { return md->blake2s.f[0] != 0; }
static void s_blake2s_set_lastblock(hash_state *md)
{
if (md->blake2s.last_node) {
s_blake2s_set_lastnode(md);
}
md->blake2s.f[0] = 0xffffffffUL;
}
static void s_blake2s_increment_counter(hash_state *md, const ulong32 inc)
{
md->blake2s.t[0] += inc;
if (md->blake2s.t[0] < inc) md->blake2s.t[1]++;
}
static int s_blake2s_init0(hash_state *md)
{
int i;
XMEMSET(&md->blake2s, 0, sizeof(struct blake2s_state));
for (i = 0; i < 8; ++i) {
md->blake2s.h[i] = blake2s_IV[i];
}
return CRYPT_OK;
}
/* init2 xors IV with input parameter block */
static int s_blake2s_init_param(hash_state *md, const unsigned char *P)
{
unsigned long i;
s_blake2s_init0(md);
/* IV XOR ParamBlock */
for (i = 0; i < 8; ++i) {
ulong32 tmp;
LOAD32L(tmp, P + i * 4);
md->blake2s.h[i] ^= tmp;
}
md->blake2s.outlen = P[BLAKE2S_O_DIGEST_LENGTH];
return CRYPT_OK;
}
/**
Initialize the hash/MAC state
Use this function to init for arbitrary sizes.
Give a key and keylen to init for MAC mode.
@param md The hash state you wish to initialize
@param outlen The desired output-length
@param key The key of the MAC
@param keylen The length of the key
@return CRYPT_OK if successful
*/
int blake2s_init(hash_state *md, unsigned long outlen, const unsigned char *key, unsigned long keylen)
{
unsigned char P[BLAKE2S_PARAM_SIZE];
int err;
LTC_ARGCHK(md != NULL);
if ((!outlen) || (outlen > BLAKE2S_OUTBYTES)) {
return CRYPT_INVALID_ARG;
}
if ((key && !keylen) || (keylen && !key) || (keylen > BLAKE2S_KEYBYTES)) {
return CRYPT_INVALID_ARG;
}
XMEMSET(P, 0, sizeof(P));
P[BLAKE2S_O_DIGEST_LENGTH] = (unsigned char)outlen;
P[BLAKE2S_O_KEY_LENGTH] = (unsigned char)keylen;
P[BLAKE2S_O_FANOUT] = 1;
P[BLAKE2S_O_DEPTH] = 1;
err = s_blake2s_init_param(md, P);
if (err != CRYPT_OK) return err;
if (key) {
unsigned char block[BLAKE2S_BLOCKBYTES];
XMEMSET(block, 0, BLAKE2S_BLOCKBYTES);
XMEMCPY(block, key, keylen);
blake2s_process(md, block, BLAKE2S_BLOCKBYTES);
#ifdef LTC_CLEAN_STACK
zeromem(block, sizeof(block));
#endif
}
return CRYPT_OK;
}
/**
Initialize the hash state
@param md The hash state you wish to initialize
@return CRYPT_OK if successful
*/
int blake2s_128_init(hash_state *md) { return blake2s_init(md, 16, NULL, 0); }
/**
Initialize the hash state
@param md The hash state you wish to initialize
@return CRYPT_OK if successful
*/
int blake2s_160_init(hash_state *md) { return blake2s_init(md, 20, NULL, 0); }
/**
Initialize the hash state
@param md The hash state you wish to initialize
@return CRYPT_OK if successful
*/
int blake2s_224_init(hash_state *md) { return blake2s_init(md, 28, NULL, 0); }
/**
Initialize the hash state
@param md The hash state you wish to initialize
@return CRYPT_OK if successful
*/
int blake2s_256_init(hash_state *md) { return blake2s_init(md, 32, NULL, 0); }
#define G(r, i, a, b, c, d) \
do { \
a = a + b + m[blake2s_sigma[r][2 * i + 0]]; \
d = ROR(d ^ a, 16); \
c = c + d; \
b = ROR(b ^ c, 12); \
a = a + b + m[blake2s_sigma[r][2 * i + 1]]; \
d = ROR(d ^ a, 8); \
c = c + d; \
b = ROR(b ^ c, 7); \
} while (0)
#define ROUND(r) \
do { \
G(r, 0, v[0], v[4], v[8], v[12]); \
G(r, 1, v[1], v[5], v[9], v[13]); \
G(r, 2, v[2], v[6], v[10], v[14]); \
G(r, 3, v[3], v[7], v[11], v[15]); \
G(r, 4, v[0], v[5], v[10], v[15]); \
G(r, 5, v[1], v[6], v[11], v[12]); \
G(r, 6, v[2], v[7], v[8], v[13]); \
G(r, 7, v[3], v[4], v[9], v[14]); \
} while (0)
#ifdef LTC_CLEAN_STACK
static int ss_blake2s_compress(hash_state *md, const unsigned char *buf)
#else
static int s_blake2s_compress(hash_state *md, const unsigned char *buf)
#endif
{
unsigned long i;
ulong32 m[16];
ulong32 v[16];
for (i = 0; i < 16; ++i) {
LOAD32L(m[i], buf + i * sizeof(m[i]));
}
for (i = 0; i < 8; ++i) {
v[i] = md->blake2s.h[i];
}
v[8] = blake2s_IV[0];
v[9] = blake2s_IV[1];
v[10] = blake2s_IV[2];
v[11] = blake2s_IV[3];
v[12] = md->blake2s.t[0] ^ blake2s_IV[4];
v[13] = md->blake2s.t[1] ^ blake2s_IV[5];
v[14] = md->blake2s.f[0] ^ blake2s_IV[6];
v[15] = md->blake2s.f[1] ^ blake2s_IV[7];
ROUND(0);
ROUND(1);
ROUND(2);
ROUND(3);
ROUND(4);
ROUND(5);
ROUND(6);
ROUND(7);
ROUND(8);
ROUND(9);
for (i = 0; i < 8; ++i) {
md->blake2s.h[i] = md->blake2s.h[i] ^ v[i] ^ v[i + 8];
}
return CRYPT_OK;
}
#undef G
#undef ROUND
#ifdef LTC_CLEAN_STACK
static int s_blake2s_compress(hash_state *md, const unsigned char *buf)
{
int err;
err = ss_blake2s_compress(md, buf);
burn_stack(sizeof(ulong32) * (32) + sizeof(unsigned long));
return err;
}
#endif
/**
Process a block of memory through the hash
@param md The hash state
@param in The data to hash
@param inlen The length of the data (octets)
@return CRYPT_OK if successful
*/
int blake2s_process(hash_state *md, const unsigned char *in, unsigned long inlen)
{
LTC_ARGCHK(md != NULL);
LTC_ARGCHK(in != NULL);
if (md->blake2s.curlen > sizeof(md->blake2s.buf)) {
return CRYPT_INVALID_ARG;
}
if (inlen > 0) {
unsigned long left = md->blake2s.curlen;
unsigned long fill = BLAKE2S_BLOCKBYTES - left;
if (inlen > fill) {
md->blake2s.curlen = 0;
XMEMCPY(md->blake2s.buf + (left % sizeof(md->blake2s.buf)), in, fill); /* Fill buffer */
s_blake2s_increment_counter(md, BLAKE2S_BLOCKBYTES);
s_blake2s_compress(md, md->blake2s.buf); /* Compress */
in += fill;
inlen -= fill;
while (inlen > BLAKE2S_BLOCKBYTES) {
s_blake2s_increment_counter(md, BLAKE2S_BLOCKBYTES);
s_blake2s_compress(md, in);
in += BLAKE2S_BLOCKBYTES;
inlen -= BLAKE2S_BLOCKBYTES;
}
}
XMEMCPY(md->blake2s.buf + md->blake2s.curlen, in, inlen);
md->blake2s.curlen += inlen;
}
return CRYPT_OK;
}
/**
Terminate the hash to get the digest
@param md The hash state
@param out [out] The destination of the hash (size depending on the length used on init)
@return CRYPT_OK if successful
*/
int blake2s_done(hash_state *md, unsigned char *out)
{
unsigned char buffer[BLAKE2S_OUTBYTES] = { 0 };
unsigned long i;
LTC_ARGCHK(md != NULL);
LTC_ARGCHK(out != NULL);
/* if(md->blake2s.outlen != outlen) return CRYPT_INVALID_ARG; */
if (s_blake2s_is_lastblock(md)) {
return CRYPT_ERROR;
}
s_blake2s_increment_counter(md, md->blake2s.curlen);
s_blake2s_set_lastblock(md);
XMEMSET(md->blake2s.buf + md->blake2s.curlen, 0, BLAKE2S_BLOCKBYTES - md->blake2s.curlen); /* Padding */
s_blake2s_compress(md, md->blake2s.buf);
for (i = 0; i < 8; ++i) { /* Output full hash to temp buffer */
STORE32L(md->blake2s.h[i], buffer + i * 4);
}
XMEMCPY(out, buffer, md->blake2s.outlen);
zeromem(md, sizeof(hash_state));
#ifdef LTC_CLEAN_STACK
zeromem(buffer, sizeof(buffer));
#endif
return CRYPT_OK;
}
/**
Self-test the hash
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int blake2s_256_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
const char *msg;
unsigned char hash[32];
} tests[] = {
{ "",
{ 0x69, 0x21, 0x7a, 0x30, 0x79, 0x90, 0x80, 0x94,
0xe1, 0x11, 0x21, 0xd0, 0x42, 0x35, 0x4a, 0x7c,
0x1f, 0x55, 0xb6, 0x48, 0x2c, 0xa1, 0xa5, 0x1e,
0x1b, 0x25, 0x0d, 0xfd, 0x1e, 0xd0, 0xee, 0xf9 } },
{ "abc",
{ 0x50, 0x8c, 0x5e, 0x8c, 0x32, 0x7c, 0x14, 0xe2,
0xe1, 0xa7, 0x2b, 0xa3, 0x4e, 0xeb, 0x45, 0x2f,
0x37, 0x45, 0x8b, 0x20, 0x9e, 0xd6, 0x3a, 0x29,
0x4d, 0x99, 0x9b, 0x4c, 0x86, 0x67, 0x59, 0x82 } },
{ "12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890"
"12345678901234567890123456789012345678901234567890",
{ 0xa3, 0x78, 0x8b, 0x5b, 0x59, 0xee, 0xe4, 0x41,
0x95, 0x23, 0x58, 0x00, 0xa4, 0xf9, 0xfa, 0x41,
0x86, 0x0c, 0x7b, 0x1c, 0x35, 0xa2, 0x42, 0x70,
0x50, 0x80, 0x79, 0x56, 0xe3, 0xbe, 0x31, 0x74 } },
{ NULL, { 0 } }
};
int i;
unsigned char tmp[32];
hash_state md;
for (i = 0; tests[i].msg != NULL; i++) {
blake2s_256_init(&md);
blake2s_process(&md, (unsigned char *)tests[i].msg, (unsigned long)XSTRLEN(tests[i].msg));
blake2s_done(&md, tmp);
if (compare_testvector(tmp, sizeof(tmp), tests[i].hash, sizeof(tests[i].hash), "BLAKE2S_256", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
/**
Self-test the hash
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int blake2s_224_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
const char *msg;
unsigned char hash[28];
} tests[] = {
{ "",
{ 0x1f, 0xa1, 0x29, 0x1e, 0x65, 0x24, 0x8b, 0x37,
0xb3, 0x43, 0x34, 0x75, 0xb2, 0xa0, 0xdd, 0x63,
0xd5, 0x4a, 0x11, 0xec, 0xc4, 0xe3, 0xe0, 0x34,
0xe7, 0xbc, 0x1e, 0xf4 } },
{ "abc",
{ 0x0b, 0x03, 0x3f, 0xc2, 0x26, 0xdf, 0x7a, 0xbd,
0xe2, 0x9f, 0x67, 0xa0, 0x5d, 0x3d, 0xc6, 0x2c,
0xf2, 0x71, 0xef, 0x3d, 0xfe, 0xa4, 0xd3, 0x87,
0x40, 0x7f, 0xbd, 0x55 } },
{ NULL, { 0 } }
};
int i;
unsigned char tmp[28];
hash_state md;
for (i = 0; tests[i].msg != NULL; i++) {
blake2s_224_init(&md);
blake2s_process(&md, (unsigned char *)tests[i].msg, (unsigned long)XSTRLEN(tests[i].msg));
blake2s_done(&md, tmp);
if (compare_testvector(tmp, sizeof(tmp), tests[i].hash, sizeof(tests[i].hash), "BLAKE2S_224", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
/**
Self-test the hash
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int blake2s_160_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
const char *msg;
unsigned char hash[20];
} tests[] = {
{ "",
{ 0x35, 0x4c, 0x9c, 0x33, 0xf7, 0x35, 0x96, 0x24,
0x18, 0xbd, 0xac, 0xb9, 0x47, 0x98, 0x73, 0x42,
0x9c, 0x34, 0x91, 0x6f} },
{ "abc",
{ 0x5a, 0xe3, 0xb9, 0x9b, 0xe2, 0x9b, 0x01, 0x83,
0x4c, 0x3b, 0x50, 0x85, 0x21, 0xed, 0xe6, 0x04,
0x38, 0xf8, 0xde, 0x17 } },
{ NULL, { 0 } }
};
int i;
unsigned char tmp[20];
hash_state md;
for (i = 0; tests[i].msg != NULL; i++) {
blake2s_160_init(&md);
blake2s_process(&md, (unsigned char *)tests[i].msg, (unsigned long)XSTRLEN(tests[i].msg));
blake2s_done(&md, tmp);
if (compare_testvector(tmp, sizeof(tmp), tests[i].hash, sizeof(tests[i].hash), "BLAKE2S_160", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
/**
Self-test the hash
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int blake2s_128_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
const char *msg;
unsigned char hash[16];
} tests[] = {
{ "",
{ 0x64, 0x55, 0x0d, 0x6f, 0xfe, 0x2c, 0x0a, 0x01,
0xa1, 0x4a, 0xba, 0x1e, 0xad, 0xe0, 0x20, 0x0c } },
{ "abc",
{ 0xaa, 0x49, 0x38, 0x11, 0x9b, 0x1d, 0xc7, 0xb8,
0x7c, 0xba, 0xd0, 0xff, 0xd2, 0x00, 0xd0, 0xae } },
{ NULL, { 0 } }
};
int i;
unsigned char tmp[16];
hash_state md;
for (i = 0; tests[i].msg != NULL; i++) {
blake2s_128_init(&md);
blake2s_process(&md, (unsigned char *)tests[i].msg, (unsigned long)XSTRLEN(tests[i].msg));
blake2s_done(&md, tmp);
if (compare_testvector(tmp, sizeof(tmp), tests[i].hash, sizeof(tests[i].hash), "BLAKE2S_128", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
#endif
#pragma clang diagnostic pop

View File

@@ -0,0 +1,302 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file chc.c
CHC support. (Tom St Denis)
*/
#ifdef LTC_CHC_HASH
#define UNDEFED_HASH -17
/* chc settings */
static int cipher_idx=UNDEFED_HASH, /* which cipher */
cipher_blocksize; /* blocksize of cipher */
const struct ltc_hash_descriptor chc_desc = {
"chc_hash", 12, 0, 0, { 0 }, 0,
&chc_init,
&chc_process,
&chc_done,
&chc_test,
NULL
};
/**
Initialize the CHC state with a given cipher
@param cipher The index of the cipher you wish to bind
@return CRYPT_OK if successful
*/
int chc_register(int cipher)
{
int err, kl, idx;
if ((err = cipher_is_valid(cipher)) != CRYPT_OK) {
return err;
}
/* will it be valid? */
kl = cipher_descriptor[cipher].block_length;
/* must be >64 bit block */
if (kl <= 8) {
return CRYPT_INVALID_CIPHER;
}
/* can we use the ideal keysize? */
if ((err = cipher_descriptor[cipher].keysize(&kl)) != CRYPT_OK) {
return err;
}
/* we require that key size == block size be a valid choice */
if (kl != cipher_descriptor[cipher].block_length) {
return CRYPT_INVALID_CIPHER;
}
/* determine if chc_hash has been register_hash'ed already */
if ((err = hash_is_valid(idx = find_hash("chc_hash"))) != CRYPT_OK) {
return err;
}
/* store into descriptor */
hash_descriptor[idx].hashsize =
hash_descriptor[idx].blocksize = cipher_descriptor[cipher].block_length;
/* store the idx and block size */
cipher_idx = cipher;
cipher_blocksize = cipher_descriptor[cipher].block_length;
return CRYPT_OK;
}
/**
Initialize the hash state
@param md The hash state you wish to initialize
@return CRYPT_OK if successful
*/
int chc_init(hash_state *md)
{
symmetric_key *key;
unsigned char buf[MAXBLOCKSIZE];
int err;
LTC_ARGCHK(md != NULL);
/* is the cipher valid? */
if ((err = cipher_is_valid(cipher_idx)) != CRYPT_OK) {
return err;
}
if (cipher_blocksize != cipher_descriptor[cipher_idx].block_length) {
return CRYPT_INVALID_CIPHER;
}
if ((key = XMALLOC(sizeof(*key))) == NULL) {
return CRYPT_MEM;
}
/* zero key and what not */
zeromem(buf, cipher_blocksize);
if ((err = cipher_descriptor[cipher_idx].setup(buf, cipher_blocksize, 0, key)) != CRYPT_OK) {
XFREE(key);
return err;
}
/* encrypt zero block */
cipher_descriptor[cipher_idx].ecb_encrypt(buf, md->chc.state, key);
/* zero other members */
md->chc.length = 0;
md->chc.curlen = 0;
zeromem(md->chc.buf, sizeof(md->chc.buf));
XFREE(key);
return CRYPT_OK;
}
/*
key <= state
T0,T1 <= block
T0 <= encrypt T0
state <= state xor T0 xor T1
*/
static int s_chc_compress(hash_state *md, const unsigned char *buf)
{
unsigned char T[2][MAXBLOCKSIZE];
symmetric_key *key;
int err, x;
if ((key = XMALLOC(sizeof(*key))) == NULL) {
return CRYPT_MEM;
}
if ((err = cipher_descriptor[cipher_idx].setup(md->chc.state, cipher_blocksize, 0, key)) != CRYPT_OK) {
XFREE(key);
return err;
}
XMEMCPY(T[1], buf, cipher_blocksize);
cipher_descriptor[cipher_idx].ecb_encrypt(buf, T[0], key);
for (x = 0; x < cipher_blocksize; x++) {
md->chc.state[x] ^= T[0][x] ^ T[1][x];
}
#ifdef LTC_CLEAN_STACK
zeromem(T, sizeof(T));
zeromem(key, sizeof(*key));
#endif
XFREE(key);
return CRYPT_OK;
}
/**
Function for processing blocks
@param md The hash state
@param buf The data to hash
@param len The length of the data (octets)
@return CRYPT_OK if successful
*/
static int ss_chc_process(hash_state * md, const unsigned char *in, unsigned long inlen);
static HASH_PROCESS(ss_chc_process, s_chc_compress, chc, (unsigned long)cipher_blocksize)
/**
Process a block of memory though the hash
@param md The hash state
@param in The data to hash
@param inlen The length of the data (octets)
@return CRYPT_OK if successful
*/
int chc_process(hash_state * md, const unsigned char *in, unsigned long inlen)
{
int err;
LTC_ARGCHK(md != NULL);
LTC_ARGCHK(in != NULL);
/* is the cipher valid? */
if ((err = cipher_is_valid(cipher_idx)) != CRYPT_OK) {
return err;
}
if (cipher_blocksize != cipher_descriptor[cipher_idx].block_length) {
return CRYPT_INVALID_CIPHER;
}
return ss_chc_process(md, in, inlen);
}
/**
Terminate the hash to get the digest
@param md The hash state
@param out [out] The destination of the hash (length of the block size of the block cipher)
@return CRYPT_OK if successful
*/
int chc_done(hash_state *md, unsigned char *out)
{
int err;
LTC_ARGCHK(md != NULL);
LTC_ARGCHK(out != NULL);
/* is the cipher valid? */
if ((err = cipher_is_valid(cipher_idx)) != CRYPT_OK) {
return err;
}
if (cipher_blocksize != cipher_descriptor[cipher_idx].block_length) {
return CRYPT_INVALID_CIPHER;
}
if (md->chc.curlen >= sizeof(md->chc.buf)) {
return CRYPT_INVALID_ARG;
}
/* increase the length of the message */
md->chc.length += md->chc.curlen * 8;
/* append the '1' bit */
md->chc.buf[md->chc.curlen++] = (unsigned char)0x80;
/* if the length is currently above l-8 bytes we append zeros
* then compress. Then we can fall back to padding zeros and length
* encoding like normal.
*/
if (md->chc.curlen > (unsigned long)(cipher_blocksize - 8)) {
while (md->chc.curlen < (unsigned long)cipher_blocksize) {
md->chc.buf[md->chc.curlen++] = (unsigned char)0;
}
s_chc_compress(md, md->chc.buf);
md->chc.curlen = 0;
}
/* pad upto l-8 bytes of zeroes */
while (md->chc.curlen < (unsigned long)(cipher_blocksize - 8)) {
md->chc.buf[md->chc.curlen++] = (unsigned char)0;
}
/* store length */
STORE64L(md->chc.length, md->chc.buf+(cipher_blocksize-8));
s_chc_compress(md, md->chc.buf);
/* copy output */
XMEMCPY(out, md->chc.state, cipher_blocksize);
#ifdef LTC_CLEAN_STACK
zeromem(md, sizeof(hash_state));
#endif
return CRYPT_OK;
}
/**
Self-test the hash
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int chc_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
unsigned char *msg,
hash[MAXBLOCKSIZE];
int len;
} tests[] = {
{
(unsigned char *)"hello world",
{ 0xcf, 0x57, 0x9d, 0xc3, 0x0a, 0x0e, 0xea, 0x61,
0x0d, 0x54, 0x47, 0xc4, 0x3c, 0x06, 0xf5, 0x4e },
16
}
};
int i, oldhashidx, idx, err;
unsigned char tmp[MAXBLOCKSIZE];
hash_state md;
/* AES can be under rijndael or aes... try to find it */
if ((idx = find_cipher("aes")) == -1) {
if ((idx = find_cipher("rijndael")) == -1) {
return CRYPT_NOP;
}
}
oldhashidx = cipher_idx;
chc_register(idx);
for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
if ((err = chc_init(&md)) != CRYPT_OK) {
return err;
}
if ((err = chc_process(&md, tests[i].msg, XSTRLEN((char *)tests[i].msg))) != CRYPT_OK) {
return err;
}
if ((err = chc_done(&md, tmp)) != CRYPT_OK) {
return err;
}
if (compare_testvector(tmp, tests[i].len, tests[i].hash, tests[i].len, "CHC", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
if (oldhashidx != UNDEFED_HASH) {
chc_register(oldhashidx);
}
return CRYPT_OK;
#endif
}
#endif

View File

@@ -0,0 +1,43 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#ifndef LTC_NO_FILE
/**
@file hash_file.c
Hash a file, Tom St Denis
*/
/**
@param hash The index of the hash desired
@param fname The name of the file you wish to hash
@param out [out] The destination of the digest
@param outlen [in/out] The max size and resulting size of the message digest
@result CRYPT_OK if successful
*/
int hash_file(int hash, const char *fname, unsigned char *out, unsigned long *outlen)
{
FILE *in;
int err;
LTC_ARGCHK(fname != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
if ((err = hash_is_valid(hash)) != CRYPT_OK) {
return err;
}
in = fopen(fname, "rb");
if (in == NULL) {
return CRYPT_FILE_NOTFOUND;
}
err = hash_filehandle(hash, in, out, outlen);
if (fclose(in) != 0) {
return CRYPT_ERROR;
}
return err;
}
#endif /* #ifndef LTC_NO_FILE */

View File

@@ -0,0 +1,64 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#ifndef LTC_NO_FILE
/**
@file hash_filehandle.c
Hash open files, Tom St Denis
*/
/**
Hash data from an open file handle.
@param hash The index of the hash you want to use
@param in The FILE* handle of the file you want to hash
@param out [out] The destination of the digest
@param outlen [in/out] The max size and resulting size of the digest
@result CRYPT_OK if successful
*/
int hash_filehandle(int hash, FILE *in, unsigned char *out, unsigned long *outlen)
{
hash_state md;
unsigned char *buf;
size_t x;
int err;
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
LTC_ARGCHK(in != NULL);
if ((buf = XMALLOC(LTC_FILE_READ_BUFSIZE)) == NULL) {
return CRYPT_MEM;
}
if ((err = hash_is_valid(hash)) != CRYPT_OK) {
goto LBL_ERR;
}
if (*outlen < hash_descriptor[hash].hashsize) {
*outlen = hash_descriptor[hash].hashsize;
err = CRYPT_BUFFER_OVERFLOW;
goto LBL_ERR;
}
if ((err = hash_descriptor[hash].init(&md)) != CRYPT_OK) {
goto LBL_ERR;
}
do {
x = fread(buf, 1, LTC_FILE_READ_BUFSIZE, in);
if ((err = hash_descriptor[hash].process(&md, buf, (unsigned long)x)) != CRYPT_OK) {
goto LBL_CLEANBUF;
}
} while (x == LTC_FILE_READ_BUFSIZE);
if ((err = hash_descriptor[hash].done(&md, out)) == CRYPT_OK) {
*outlen = hash_descriptor[hash].hashsize;
}
LBL_CLEANBUF:
zeromem(buf, LTC_FILE_READ_BUFSIZE);
LBL_ERR:
XFREE(buf);
return err;
}
#endif /* #ifndef LTC_NO_FILE */

View File

@@ -0,0 +1,59 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#ifdef LTC_HASH_HELPERS
/**
@file hash_memory.c
Hash memory helper, Tom St Denis
*/
/**
Hash a block of memory and store the digest.
@param hash The index of the hash you wish to use
@param in The data you wish to hash
@param inlen The length of the data to hash (octets)
@param out [out] Where to store the digest
@param outlen [in/out] Max size and resulting size of the digest
@return CRYPT_OK if successful
*/
int hash_memory(int hash, const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen)
{
hash_state *md;
int err;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
if ((err = hash_is_valid(hash)) != CRYPT_OK) {
return err;
}
if (*outlen < hash_descriptor[hash].hashsize) {
*outlen = hash_descriptor[hash].hashsize;
return CRYPT_BUFFER_OVERFLOW;
}
md = XMALLOC(sizeof(hash_state));
if (md == NULL) {
return CRYPT_MEM;
}
if ((err = hash_descriptor[hash].init(md)) != CRYPT_OK) {
goto LBL_ERR;
}
if ((err = hash_descriptor[hash].process(md, in, inlen)) != CRYPT_OK) {
goto LBL_ERR;
}
err = hash_descriptor[hash].done(md, out);
*outlen = hash_descriptor[hash].hashsize;
LBL_ERR:
#ifdef LTC_CLEAN_STACK
zeromem(md, sizeof(hash_state));
#endif
XFREE(md);
return err;
}
#endif /* #ifdef LTC_HASH_HELPERS */

View File

@@ -0,0 +1,77 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
#ifdef LTC_HASH_HELPERS
/**
@file hash_memory_multi.c
Hash (multiple buffers) memory helper, Tom St Denis
*/
/**
Hash multiple (non-adjacent) blocks of memory at once.
@param hash The index of the hash you wish to use
@param out [out] Where to store the digest
@param outlen [in/out] Max size and resulting size of the digest
@param in The data you wish to hash
@param inlen The length of the data to hash (octets)
@param ... tuples of (data,len) pairs to hash, terminated with a (NULL,x) (x=don't care)
@return CRYPT_OK if successful
*/
int hash_memory_multi(int hash, unsigned char *out, unsigned long *outlen,
const unsigned char *in, unsigned long inlen, ...)
{
hash_state *md;
int err;
va_list args;
const unsigned char *curptr;
unsigned long curlen;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
if ((err = hash_is_valid(hash)) != CRYPT_OK) {
return err;
}
if (*outlen < hash_descriptor[hash].hashsize) {
*outlen = hash_descriptor[hash].hashsize;
return CRYPT_BUFFER_OVERFLOW;
}
md = XMALLOC(sizeof(hash_state));
if (md == NULL) {
return CRYPT_MEM;
}
if ((err = hash_descriptor[hash].init(md)) != CRYPT_OK) {
goto LBL_ERR;
}
va_start(args, inlen);
curptr = in;
curlen = inlen;
for (;;) {
/* process buf */
if ((err = hash_descriptor[hash].process(md, curptr, curlen)) != CRYPT_OK) {
goto LBL_ERR;
}
/* step to next */
curptr = va_arg(args, const unsigned char*);
if (curptr == NULL) {
break;
}
curlen = va_arg(args, unsigned long);
}
err = hash_descriptor[hash].done(md, out);
*outlen = hash_descriptor[hash].hashsize;
LBL_ERR:
#ifdef LTC_CLEAN_STACK
zeromem(md, sizeof(hash_state));
#endif
XFREE(md);
va_end(args);
return err;
}
#endif /* #ifdef LTC_HASH_HELPERS */

View File

@@ -0,0 +1,240 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@param md2.c
LTC_MD2 (RFC 1319) hash function implementation by Tom St Denis
*/
#ifdef LTC_MD2
const struct ltc_hash_descriptor md2_desc =
{
"md2",
7,
16,
16,
/* OID */
{ 1, 2, 840, 113549, 2, 2, },
6,
&md2_init,
&md2_process,
&md2_done,
&md2_test,
NULL
};
static const unsigned char PI_SUBST[256] = {
41, 46, 67, 201, 162, 216, 124, 1, 61, 54, 84, 161, 236, 240, 6,
19, 98, 167, 5, 243, 192, 199, 115, 140, 152, 147, 43, 217, 188,
76, 130, 202, 30, 155, 87, 60, 253, 212, 224, 22, 103, 66, 111, 24,
138, 23, 229, 18, 190, 78, 196, 214, 218, 158, 222, 73, 160, 251,
245, 142, 187, 47, 238, 122, 169, 104, 121, 145, 21, 178, 7, 63,
148, 194, 16, 137, 11, 34, 95, 33, 128, 127, 93, 154, 90, 144, 50,
39, 53, 62, 204, 231, 191, 247, 151, 3, 255, 25, 48, 179, 72, 165,
181, 209, 215, 94, 146, 42, 172, 86, 170, 198, 79, 184, 56, 210,
150, 164, 125, 182, 118, 252, 107, 226, 156, 116, 4, 241, 69, 157,
112, 89, 100, 113, 135, 32, 134, 91, 207, 101, 230, 45, 168, 2, 27,
96, 37, 173, 174, 176, 185, 246, 28, 70, 97, 105, 52, 64, 126, 15,
85, 71, 163, 35, 221, 81, 175, 58, 195, 92, 249, 206, 186, 197,
234, 38, 44, 83, 13, 110, 133, 40, 132, 9, 211, 223, 205, 244, 65,
129, 77, 82, 106, 220, 55, 200, 108, 193, 171, 250, 36, 225, 123,
8, 12, 189, 177, 74, 120, 136, 149, 139, 227, 99, 232, 109, 233,
203, 213, 254, 59, 0, 29, 57, 242, 239, 183, 14, 102, 88, 208, 228,
166, 119, 114, 248, 235, 117, 75, 10, 49, 68, 80, 180, 143, 237,
31, 26, 219, 153, 141, 51, 159, 17, 131, 20
};
/* adds 16 bytes to the checksum */
static void s_md2_update_chksum(hash_state *md)
{
int j;
unsigned char L;
L = md->md2.chksum[15];
for (j = 0; j < 16; j++) {
/* caution, the RFC says its "C[j] = S[M[i*16+j] xor L]" but the reference source code [and test vectors] say
otherwise.
*/
L = (md->md2.chksum[j] ^= PI_SUBST[(int)(md->md2.buf[j] ^ L)] & 255);
}
}
static void s_md2_compress(hash_state *md)
{
int j, k;
unsigned char t;
/* copy block */
for (j = 0; j < 16; j++) {
md->md2.X[16+j] = md->md2.buf[j];
md->md2.X[32+j] = md->md2.X[j] ^ md->md2.X[16+j];
}
t = (unsigned char)0;
/* do 18 rounds */
for (j = 0; j < 18; j++) {
for (k = 0; k < 48; k++) {
t = (md->md2.X[k] ^= PI_SUBST[(int)(t & 255)]);
}
t = (t + (unsigned char)j) & 255;
}
}
/**
Initialize the hash state
@param md The hash state you wish to initialize
@return CRYPT_OK if successful
*/
int md2_init(hash_state *md)
{
LTC_ARGCHK(md != NULL);
/* LTC_MD2 uses a zero'ed state... */
zeromem(md->md2.X, sizeof(md->md2.X));
zeromem(md->md2.chksum, sizeof(md->md2.chksum));
zeromem(md->md2.buf, sizeof(md->md2.buf));
md->md2.curlen = 0;
return CRYPT_OK;
}
/**
Process a block of memory though the hash
@param md The hash state
@param in The data to hash
@param inlen The length of the data (octets)
@return CRYPT_OK if successful
*/
int md2_process(hash_state *md, const unsigned char *in, unsigned long inlen)
{
unsigned long n;
LTC_ARGCHK(md != NULL);
LTC_ARGCHK(in != NULL);
if (md-> md2 .curlen > sizeof(md-> md2 .buf)) {
return CRYPT_INVALID_ARG;
}
while (inlen > 0) {
n = MIN(inlen, (16 - md->md2.curlen));
XMEMCPY(md->md2.buf + md->md2.curlen, in, (size_t)n);
md->md2.curlen += n;
in += n;
inlen -= n;
/* is 16 bytes full? */
if (md->md2.curlen == 16) {
s_md2_compress(md);
s_md2_update_chksum(md);
md->md2.curlen = 0;
}
}
return CRYPT_OK;
}
/**
Terminate the hash to get the digest
@param md The hash state
@param out [out] The destination of the hash (16 bytes)
@return CRYPT_OK if successful
*/
int md2_done(hash_state * md, unsigned char *out)
{
unsigned long i, k;
LTC_ARGCHK(md != NULL);
LTC_ARGCHK(out != NULL);
if (md->md2.curlen >= sizeof(md->md2.buf)) {
return CRYPT_INVALID_ARG;
}
/* pad the message */
k = 16 - md->md2.curlen;
for (i = md->md2.curlen; i < 16; i++) {
md->md2.buf[i] = (unsigned char)k;
}
/* hash and update */
s_md2_compress(md);
s_md2_update_chksum(md);
/* hash checksum */
XMEMCPY(md->md2.buf, md->md2.chksum, 16);
s_md2_compress(md);
/* output is lower 16 bytes of X */
XMEMCPY(out, md->md2.X, 16);
#ifdef LTC_CLEAN_STACK
zeromem(md, sizeof(hash_state));
#endif
return CRYPT_OK;
}
/**
Self-test the hash
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int md2_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
const char *msg;
unsigned char hash[16];
} tests[] = {
{ "",
{0x83,0x50,0xe5,0xa3,0xe2,0x4c,0x15,0x3d,
0xf2,0x27,0x5c,0x9f,0x80,0x69,0x27,0x73
}
},
{ "a",
{0x32,0xec,0x01,0xec,0x4a,0x6d,0xac,0x72,
0xc0,0xab,0x96,0xfb,0x34,0xc0,0xb5,0xd1
}
},
{ "message digest",
{0xab,0x4f,0x49,0x6b,0xfb,0x2a,0x53,0x0b,
0x21,0x9f,0xf3,0x30,0x31,0xfe,0x06,0xb0
}
},
{ "abcdefghijklmnopqrstuvwxyz",
{0x4e,0x8d,0xdf,0xf3,0x65,0x02,0x92,0xab,
0x5a,0x41,0x08,0xc3,0xaa,0x47,0x94,0x0b
}
},
{ "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
{0xda,0x33,0xde,0xf2,0xa4,0x2d,0xf1,0x39,
0x75,0x35,0x28,0x46,0xc3,0x03,0x38,0xcd
}
},
{ "12345678901234567890123456789012345678901234567890123456789012345678901234567890",
{0xd5,0x97,0x6f,0x79,0xd8,0x3d,0x3a,0x0d,
0xc9,0x80,0x6c,0x3c,0x66,0xf3,0xef,0xd8
}
}
};
int i;
unsigned char tmp[16];
hash_state md;
for (i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
md2_init(&md);
md2_process(&md, (unsigned char*)tests[i].msg, (unsigned long)XSTRLEN(tests[i].msg));
md2_done(&md, tmp);
if (compare_testvector(tmp, sizeof(tmp), tests[i].hash, sizeof(tests[i].hash), "MD2", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
#endif

View File

@@ -0,0 +1,316 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@param md4.c
Submitted by Dobes Vandermeer (dobes@smartt.com)
*/
#ifdef LTC_MD4
const struct ltc_hash_descriptor md4_desc =
{
"md4",
6,
16,
64,
/* OID */
{ 1, 2, 840, 113549, 2, 4, },
6,
&md4_init,
&md4_process,
&md4_done,
&md4_test,
NULL
};
#define S11 3
#define S12 7
#define S13 11
#define S14 19
#define S21 3
#define S22 5
#define S23 9
#define S24 13
#define S31 3
#define S32 9
#define S33 11
#define S34 15
/* F, G and H are basic LTC_MD4 functions. */
#define F(x, y, z) (z ^ (x & (y ^ z)))
#define G(x, y, z) ((x & y) | (z & (x | y)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
/* ROTATE_LEFT rotates x left n bits. */
#define ROTATE_LEFT(x, n) ROLc(x, n)
/* FF, GG and HH are transformations for rounds 1, 2 and 3 */
/* Rotation is separate from addition to prevent recomputation */
#define FF(a, b, c, d, x, s) { \
(a) += F ((b), (c), (d)) + (x); \
(a) = ROTATE_LEFT ((a), (s)); \
}
#define GG(a, b, c, d, x, s) { \
(a) += G ((b), (c), (d)) + (x) + 0x5a827999UL; \
(a) = ROTATE_LEFT ((a), (s)); \
}
#define HH(a, b, c, d, x, s) { \
(a) += H ((b), (c), (d)) + (x) + 0x6ed9eba1UL; \
(a) = ROTATE_LEFT ((a), (s)); \
}
#ifdef LTC_CLEAN_STACK
static int ss_md4_compress(hash_state *md, const unsigned char *buf)
#else
static int s_md4_compress(hash_state *md, const unsigned char *buf)
#endif
{
ulong32 x[16], a, b, c, d;
int i;
/* copy state */
a = md->md4.state[0];
b = md->md4.state[1];
c = md->md4.state[2];
d = md->md4.state[3];
/* copy the state into 512-bits into W[0..15] */
for (i = 0; i < 16; i++) {
LOAD32L(x[i], buf + (4*i));
}
/* Round 1 */
FF (a, b, c, d, x[ 0], S11); /* 1 */
FF (d, a, b, c, x[ 1], S12); /* 2 */
FF (c, d, a, b, x[ 2], S13); /* 3 */
FF (b, c, d, a, x[ 3], S14); /* 4 */
FF (a, b, c, d, x[ 4], S11); /* 5 */
FF (d, a, b, c, x[ 5], S12); /* 6 */
FF (c, d, a, b, x[ 6], S13); /* 7 */
FF (b, c, d, a, x[ 7], S14); /* 8 */
FF (a, b, c, d, x[ 8], S11); /* 9 */
FF (d, a, b, c, x[ 9], S12); /* 10 */
FF (c, d, a, b, x[10], S13); /* 11 */
FF (b, c, d, a, x[11], S14); /* 12 */
FF (a, b, c, d, x[12], S11); /* 13 */
FF (d, a, b, c, x[13], S12); /* 14 */
FF (c, d, a, b, x[14], S13); /* 15 */
FF (b, c, d, a, x[15], S14); /* 16 */
/* Round 2 */
GG (a, b, c, d, x[ 0], S21); /* 17 */
GG (d, a, b, c, x[ 4], S22); /* 18 */
GG (c, d, a, b, x[ 8], S23); /* 19 */
GG (b, c, d, a, x[12], S24); /* 20 */
GG (a, b, c, d, x[ 1], S21); /* 21 */
GG (d, a, b, c, x[ 5], S22); /* 22 */
GG (c, d, a, b, x[ 9], S23); /* 23 */
GG (b, c, d, a, x[13], S24); /* 24 */
GG (a, b, c, d, x[ 2], S21); /* 25 */
GG (d, a, b, c, x[ 6], S22); /* 26 */
GG (c, d, a, b, x[10], S23); /* 27 */
GG (b, c, d, a, x[14], S24); /* 28 */
GG (a, b, c, d, x[ 3], S21); /* 29 */
GG (d, a, b, c, x[ 7], S22); /* 30 */
GG (c, d, a, b, x[11], S23); /* 31 */
GG (b, c, d, a, x[15], S24); /* 32 */
/* Round 3 */
HH (a, b, c, d, x[ 0], S31); /* 33 */
HH (d, a, b, c, x[ 8], S32); /* 34 */
HH (c, d, a, b, x[ 4], S33); /* 35 */
HH (b, c, d, a, x[12], S34); /* 36 */
HH (a, b, c, d, x[ 2], S31); /* 37 */
HH (d, a, b, c, x[10], S32); /* 38 */
HH (c, d, a, b, x[ 6], S33); /* 39 */
HH (b, c, d, a, x[14], S34); /* 40 */
HH (a, b, c, d, x[ 1], S31); /* 41 */
HH (d, a, b, c, x[ 9], S32); /* 42 */
HH (c, d, a, b, x[ 5], S33); /* 43 */
HH (b, c, d, a, x[13], S34); /* 44 */
HH (a, b, c, d, x[ 3], S31); /* 45 */
HH (d, a, b, c, x[11], S32); /* 46 */
HH (c, d, a, b, x[ 7], S33); /* 47 */
HH (b, c, d, a, x[15], S34); /* 48 */
/* Update our state */
md->md4.state[0] = md->md4.state[0] + a;
md->md4.state[1] = md->md4.state[1] + b;
md->md4.state[2] = md->md4.state[2] + c;
md->md4.state[3] = md->md4.state[3] + d;
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
static int s_md4_compress(hash_state *md, const unsigned char *buf)
{
int err;
err = ss_md4_compress(md, buf);
burn_stack(sizeof(ulong32) * 20 + sizeof(int));
return err;
}
#endif
/**
Initialize the hash state
@param md The hash state you wish to initialize
@return CRYPT_OK if successful
*/
int md4_init(hash_state * md)
{
LTC_ARGCHK(md != NULL);
md->md4.state[0] = 0x67452301UL;
md->md4.state[1] = 0xefcdab89UL;
md->md4.state[2] = 0x98badcfeUL;
md->md4.state[3] = 0x10325476UL;
md->md4.length = 0;
md->md4.curlen = 0;
return CRYPT_OK;
}
/**
Process a block of memory though the hash
@param md The hash state
@param in The data to hash
@param inlen The length of the data (octets)
@return CRYPT_OK if successful
*/
HASH_PROCESS(md4_process, s_md4_compress, md4, 64)
/**
Terminate the hash to get the digest
@param md The hash state
@param out [out] The destination of the hash (16 bytes)
@return CRYPT_OK if successful
*/
int md4_done(hash_state * md, unsigned char *out)
{
int i;
LTC_ARGCHK(md != NULL);
LTC_ARGCHK(out != NULL);
if (md->md4.curlen >= sizeof(md->md4.buf)) {
return CRYPT_INVALID_ARG;
}
/* increase the length of the message */
md->md4.length += md->md4.curlen * 8;
/* append the '1' bit */
md->md4.buf[md->md4.curlen++] = (unsigned char)0x80;
/* if the length is currently above 56 bytes we append zeros
* then compress. Then we can fall back to padding zeros and length
* encoding like normal.
*/
if (md->md4.curlen > 56) {
while (md->md4.curlen < 64) {
md->md4.buf[md->md4.curlen++] = (unsigned char)0;
}
s_md4_compress(md, md->md4.buf);
md->md4.curlen = 0;
}
/* pad upto 56 bytes of zeroes */
while (md->md4.curlen < 56) {
md->md4.buf[md->md4.curlen++] = (unsigned char)0;
}
/* store length */
STORE64L(md->md4.length, md->md4.buf+56);
s_md4_compress(md, md->md4.buf);
/* copy output */
for (i = 0; i < 4; i++) {
STORE32L(md->md4.state[i], out+(4*i));
}
#ifdef LTC_CLEAN_STACK
zeromem(md, sizeof(hash_state));
#endif
return CRYPT_OK;
}
/**
Self-test the hash
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int md4_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct md4_test_case {
const char *input;
unsigned char hash[16];
} tests[] = {
{ "",
{0x31, 0xd6, 0xcf, 0xe0, 0xd1, 0x6a, 0xe9, 0x31,
0xb7, 0x3c, 0x59, 0xd7, 0xe0, 0xc0, 0x89, 0xc0} },
{ "a",
{0xbd, 0xe5, 0x2c, 0xb3, 0x1d, 0xe3, 0x3e, 0x46,
0x24, 0x5e, 0x05, 0xfb, 0xdb, 0xd6, 0xfb, 0x24} },
{ "abc",
{0xa4, 0x48, 0x01, 0x7a, 0xaf, 0x21, 0xd8, 0x52,
0x5f, 0xc1, 0x0a, 0xe8, 0x7a, 0xa6, 0x72, 0x9d} },
{ "message digest",
{0xd9, 0x13, 0x0a, 0x81, 0x64, 0x54, 0x9f, 0xe8,
0x18, 0x87, 0x48, 0x06, 0xe1, 0xc7, 0x01, 0x4b} },
{ "abcdefghijklmnopqrstuvwxyz",
{0xd7, 0x9e, 0x1c, 0x30, 0x8a, 0xa5, 0xbb, 0xcd,
0xee, 0xa8, 0xed, 0x63, 0xdf, 0x41, 0x2d, 0xa9} },
{ "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
{0x04, 0x3f, 0x85, 0x82, 0xf2, 0x41, 0xdb, 0x35,
0x1c, 0xe6, 0x27, 0xe1, 0x53, 0xe7, 0xf0, 0xe4} },
{ "12345678901234567890123456789012345678901234567890123456789012345678901234567890",
{0xe3, 0x3b, 0x4d, 0xdc, 0x9c, 0x38, 0xf2, 0x19,
0x9c, 0x3e, 0x7b, 0x16, 0x4f, 0xcc, 0x05, 0x36} },
};
int i;
unsigned char tmp[16];
hash_state md;
for(i = 0; i < (int)(sizeof(tests) / sizeof(tests[0])); i++) {
md4_init(&md);
md4_process(&md, (unsigned char *)tests[i].input, (unsigned long)XSTRLEN(tests[i].input));
md4_done(&md, tmp);
if (compare_testvector(tmp, sizeof(tmp), tests[i].hash, sizeof(tests[i].hash), "MD4", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
#undef F
#undef G
#undef H
#undef FF
#undef GG
#undef HH
#undef S11
#undef S12
#undef S13
#undef S14
#undef S21
#undef S22
#undef S23
#undef S24
#undef S31
#undef S32
#undef S33
#undef S34
#undef ROTATE_LEFT
#endif

View File

@@ -0,0 +1,363 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@file md5.c
LTC_MD5 hash function by Tom St Denis
*/
#ifdef LTC_MD5
const struct ltc_hash_descriptor md5_desc =
{
"md5",
3,
16,
64,
/* OID */
{ 1, 2, 840, 113549, 2, 5, },
6,
&md5_init,
&md5_process,
&md5_done,
&md5_test,
NULL
};
#define F(x,y,z) (z ^ (x & (y ^ z)))
#define G(x,y,z) (y ^ (z & (y ^ x)))
#define H(x,y,z) (x^y^z)
#define I(x,y,z) (y^(x|(~z)))
#ifdef LTC_SMALL_CODE
#define FF(a,b,c,d,M,s,t) \
a = (a + F(b,c,d) + M + t); a = ROL(a, s) + b;
#define GG(a,b,c,d,M,s,t) \
a = (a + G(b,c,d) + M + t); a = ROL(a, s) + b;
#define HH(a,b,c,d,M,s,t) \
a = (a + H(b,c,d) + M + t); a = ROL(a, s) + b;
#define II(a,b,c,d,M,s,t) \
a = (a + I(b,c,d) + M + t); a = ROL(a, s) + b;
static const unsigned char Worder[64] = {
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
1,6,11,0,5,10,15,4,9,14,3,8,13,2,7,12,
5,8,11,14,1,4,7,10,13,0,3,6,9,12,15,2,
0,7,14,5,12,3,10,1,8,15,6,13,4,11,2,9
};
static const unsigned char Rorder[64] = {
7,12,17,22,7,12,17,22,7,12,17,22,7,12,17,22,
5,9,14,20,5,9,14,20,5,9,14,20,5,9,14,20,
4,11,16,23,4,11,16,23,4,11,16,23,4,11,16,23,
6,10,15,21,6,10,15,21,6,10,15,21,6,10,15,21
};
static const ulong32 Korder[64] = {
0xd76aa478UL, 0xe8c7b756UL, 0x242070dbUL, 0xc1bdceeeUL, 0xf57c0fafUL, 0x4787c62aUL, 0xa8304613UL, 0xfd469501UL,
0x698098d8UL, 0x8b44f7afUL, 0xffff5bb1UL, 0x895cd7beUL, 0x6b901122UL, 0xfd987193UL, 0xa679438eUL, 0x49b40821UL,
0xf61e2562UL, 0xc040b340UL, 0x265e5a51UL, 0xe9b6c7aaUL, 0xd62f105dUL, 0x02441453UL, 0xd8a1e681UL, 0xe7d3fbc8UL,
0x21e1cde6UL, 0xc33707d6UL, 0xf4d50d87UL, 0x455a14edUL, 0xa9e3e905UL, 0xfcefa3f8UL, 0x676f02d9UL, 0x8d2a4c8aUL,
0xfffa3942UL, 0x8771f681UL, 0x6d9d6122UL, 0xfde5380cUL, 0xa4beea44UL, 0x4bdecfa9UL, 0xf6bb4b60UL, 0xbebfbc70UL,
0x289b7ec6UL, 0xeaa127faUL, 0xd4ef3085UL, 0x04881d05UL, 0xd9d4d039UL, 0xe6db99e5UL, 0x1fa27cf8UL, 0xc4ac5665UL,
0xf4292244UL, 0x432aff97UL, 0xab9423a7UL, 0xfc93a039UL, 0x655b59c3UL, 0x8f0ccc92UL, 0xffeff47dUL, 0x85845dd1UL,
0x6fa87e4fUL, 0xfe2ce6e0UL, 0xa3014314UL, 0x4e0811a1UL, 0xf7537e82UL, 0xbd3af235UL, 0x2ad7d2bbUL, 0xeb86d391UL
};
#else
#define FF(a,b,c,d,M,s,t) \
a = (a + F(b,c,d) + M + t); a = ROLc(a, s) + b;
#define GG(a,b,c,d,M,s,t) \
a = (a + G(b,c,d) + M + t); a = ROLc(a, s) + b;
#define HH(a,b,c,d,M,s,t) \
a = (a + H(b,c,d) + M + t); a = ROLc(a, s) + b;
#define II(a,b,c,d,M,s,t) \
a = (a + I(b,c,d) + M + t); a = ROLc(a, s) + b;
#endif
#ifdef LTC_CLEAN_STACK
static int ss_md5_compress(hash_state *md, const unsigned char *buf)
#else
static int s_md5_compress(hash_state *md, const unsigned char *buf)
#endif
{
ulong32 i, W[16], a, b, c, d;
#ifdef LTC_SMALL_CODE
ulong32 t;
#endif
/* copy the state into 512-bits into W[0..15] */
for (i = 0; i < 16; i++) {
LOAD32L(W[i], buf + (4*i));
}
/* copy state */
a = md->md5.state[0];
b = md->md5.state[1];
c = md->md5.state[2];
d = md->md5.state[3];
#ifdef LTC_SMALL_CODE
for (i = 0; i < 16; ++i) {
FF(a,b,c,d,W[Worder[i]],Rorder[i],Korder[i]);
t = d; d = c; c = b; b = a; a = t;
}
for (; i < 32; ++i) {
GG(a,b,c,d,W[Worder[i]],Rorder[i],Korder[i]);
t = d; d = c; c = b; b = a; a = t;
}
for (; i < 48; ++i) {
HH(a,b,c,d,W[Worder[i]],Rorder[i],Korder[i]);
t = d; d = c; c = b; b = a; a = t;
}
for (; i < 64; ++i) {
II(a,b,c,d,W[Worder[i]],Rorder[i],Korder[i]);
t = d; d = c; c = b; b = a; a = t;
}
#else
FF(a,b,c,d,W[0],7,0xd76aa478UL)
FF(d,a,b,c,W[1],12,0xe8c7b756UL)
FF(c,d,a,b,W[2],17,0x242070dbUL)
FF(b,c,d,a,W[3],22,0xc1bdceeeUL)
FF(a,b,c,d,W[4],7,0xf57c0fafUL)
FF(d,a,b,c,W[5],12,0x4787c62aUL)
FF(c,d,a,b,W[6],17,0xa8304613UL)
FF(b,c,d,a,W[7],22,0xfd469501UL)
FF(a,b,c,d,W[8],7,0x698098d8UL)
FF(d,a,b,c,W[9],12,0x8b44f7afUL)
FF(c,d,a,b,W[10],17,0xffff5bb1UL)
FF(b,c,d,a,W[11],22,0x895cd7beUL)
FF(a,b,c,d,W[12],7,0x6b901122UL)
FF(d,a,b,c,W[13],12,0xfd987193UL)
FF(c,d,a,b,W[14],17,0xa679438eUL)
FF(b,c,d,a,W[15],22,0x49b40821UL)
GG(a,b,c,d,W[1],5,0xf61e2562UL)
GG(d,a,b,c,W[6],9,0xc040b340UL)
GG(c,d,a,b,W[11],14,0x265e5a51UL)
GG(b,c,d,a,W[0],20,0xe9b6c7aaUL)
GG(a,b,c,d,W[5],5,0xd62f105dUL)
GG(d,a,b,c,W[10],9,0x02441453UL)
GG(c,d,a,b,W[15],14,0xd8a1e681UL)
GG(b,c,d,a,W[4],20,0xe7d3fbc8UL)
GG(a,b,c,d,W[9],5,0x21e1cde6UL)
GG(d,a,b,c,W[14],9,0xc33707d6UL)
GG(c,d,a,b,W[3],14,0xf4d50d87UL)
GG(b,c,d,a,W[8],20,0x455a14edUL)
GG(a,b,c,d,W[13],5,0xa9e3e905UL)
GG(d,a,b,c,W[2],9,0xfcefa3f8UL)
GG(c,d,a,b,W[7],14,0x676f02d9UL)
GG(b,c,d,a,W[12],20,0x8d2a4c8aUL)
HH(a,b,c,d,W[5],4,0xfffa3942UL)
HH(d,a,b,c,W[8],11,0x8771f681UL)
HH(c,d,a,b,W[11],16,0x6d9d6122UL)
HH(b,c,d,a,W[14],23,0xfde5380cUL)
HH(a,b,c,d,W[1],4,0xa4beea44UL)
HH(d,a,b,c,W[4],11,0x4bdecfa9UL)
HH(c,d,a,b,W[7],16,0xf6bb4b60UL)
HH(b,c,d,a,W[10],23,0xbebfbc70UL)
HH(a,b,c,d,W[13],4,0x289b7ec6UL)
HH(d,a,b,c,W[0],11,0xeaa127faUL)
HH(c,d,a,b,W[3],16,0xd4ef3085UL)
HH(b,c,d,a,W[6],23,0x04881d05UL)
HH(a,b,c,d,W[9],4,0xd9d4d039UL)
HH(d,a,b,c,W[12],11,0xe6db99e5UL)
HH(c,d,a,b,W[15],16,0x1fa27cf8UL)
HH(b,c,d,a,W[2],23,0xc4ac5665UL)
II(a,b,c,d,W[0],6,0xf4292244UL)
II(d,a,b,c,W[7],10,0x432aff97UL)
II(c,d,a,b,W[14],15,0xab9423a7UL)
II(b,c,d,a,W[5],21,0xfc93a039UL)
II(a,b,c,d,W[12],6,0x655b59c3UL)
II(d,a,b,c,W[3],10,0x8f0ccc92UL)
II(c,d,a,b,W[10],15,0xffeff47dUL)
II(b,c,d,a,W[1],21,0x85845dd1UL)
II(a,b,c,d,W[8],6,0x6fa87e4fUL)
II(d,a,b,c,W[15],10,0xfe2ce6e0UL)
II(c,d,a,b,W[6],15,0xa3014314UL)
II(b,c,d,a,W[13],21,0x4e0811a1UL)
II(a,b,c,d,W[4],6,0xf7537e82UL)
II(d,a,b,c,W[11],10,0xbd3af235UL)
II(c,d,a,b,W[2],15,0x2ad7d2bbUL)
II(b,c,d,a,W[9],21,0xeb86d391UL)
#endif
md->md5.state[0] = md->md5.state[0] + a;
md->md5.state[1] = md->md5.state[1] + b;
md->md5.state[2] = md->md5.state[2] + c;
md->md5.state[3] = md->md5.state[3] + d;
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
static int s_md5_compress(hash_state *md, const unsigned char *buf)
{
int err;
err = ss_md5_compress(md, buf);
burn_stack(sizeof(ulong32) * 21);
return err;
}
#endif
/**
Initialize the hash state
@param md The hash state you wish to initialize
@return CRYPT_OK if successful
*/
int md5_init(hash_state * md)
{
LTC_ARGCHK(md != NULL);
md->md5.state[0] = 0x67452301UL;
md->md5.state[1] = 0xefcdab89UL;
md->md5.state[2] = 0x98badcfeUL;
md->md5.state[3] = 0x10325476UL;
md->md5.curlen = 0;
md->md5.length = 0;
return CRYPT_OK;
}
/**
Process a block of memory though the hash
@param md The hash state
@param in The data to hash
@param inlen The length of the data (octets)
@return CRYPT_OK if successful
*/
HASH_PROCESS(md5_process, s_md5_compress, md5, 64)
/**
Terminate the hash to get the digest
@param md The hash state
@param out [out] The destination of the hash (16 bytes)
@return CRYPT_OK if successful
*/
int md5_done(hash_state * md, unsigned char *out)
{
int i;
LTC_ARGCHK(md != NULL);
LTC_ARGCHK(out != NULL);
if (md->md5.curlen >= sizeof(md->md5.buf)) {
return CRYPT_INVALID_ARG;
}
/* increase the length of the message */
md->md5.length += md->md5.curlen * 8;
/* append the '1' bit */
md->md5.buf[md->md5.curlen++] = (unsigned char)0x80;
/* if the length is currently above 56 bytes we append zeros
* then compress. Then we can fall back to padding zeros and length
* encoding like normal.
*/
if (md->md5.curlen > 56) {
while (md->md5.curlen < 64) {
md->md5.buf[md->md5.curlen++] = (unsigned char)0;
}
s_md5_compress(md, md->md5.buf);
md->md5.curlen = 0;
}
/* pad upto 56 bytes of zeroes */
while (md->md5.curlen < 56) {
md->md5.buf[md->md5.curlen++] = (unsigned char)0;
}
/* store length */
STORE64L(md->md5.length, md->md5.buf+56);
s_md5_compress(md, md->md5.buf);
/* copy output */
for (i = 0; i < 4; i++) {
STORE32L(md->md5.state[i], out+(4*i));
}
#ifdef LTC_CLEAN_STACK
zeromem(md, sizeof(hash_state));
#endif
return CRYPT_OK;
}
/**
Self-test the hash
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int md5_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
const char *msg;
unsigned char hash[16];
} tests[] = {
{ "",
{ 0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04,
0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e } },
{ "a",
{0x0c, 0xc1, 0x75, 0xb9, 0xc0, 0xf1, 0xb6, 0xa8,
0x31, 0xc3, 0x99, 0xe2, 0x69, 0x77, 0x26, 0x61 } },
{ "abc",
{ 0x90, 0x01, 0x50, 0x98, 0x3c, 0xd2, 0x4f, 0xb0,
0xd6, 0x96, 0x3f, 0x7d, 0x28, 0xe1, 0x7f, 0x72 } },
{ "message digest",
{ 0xf9, 0x6b, 0x69, 0x7d, 0x7c, 0xb7, 0x93, 0x8d,
0x52, 0x5a, 0x2f, 0x31, 0xaa, 0xf1, 0x61, 0xd0 } },
{ "abcdefghijklmnopqrstuvwxyz",
{ 0xc3, 0xfc, 0xd3, 0xd7, 0x61, 0x92, 0xe4, 0x00,
0x7d, 0xfb, 0x49, 0x6c, 0xca, 0x67, 0xe1, 0x3b } },
{ "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
{ 0xd1, 0x74, 0xab, 0x98, 0xd2, 0x77, 0xd9, 0xf5,
0xa5, 0x61, 0x1c, 0x2c, 0x9f, 0x41, 0x9d, 0x9f } },
{ "12345678901234567890123456789012345678901234567890123456789012345678901234567890",
{ 0x57, 0xed, 0xf4, 0xa2, 0x2b, 0xe3, 0xc9, 0x55,
0xac, 0x49, 0xda, 0x2e, 0x21, 0x07, 0xb6, 0x7a } },
{ NULL, { 0 } }
};
int i;
unsigned char tmp[16];
hash_state md;
for (i = 0; tests[i].msg != NULL; i++) {
md5_init(&md);
md5_process(&md, (unsigned char *)tests[i].msg, (unsigned long)XSTRLEN(tests[i].msg));
md5_done(&md, tmp);
if (compare_testvector(tmp, sizeof(tmp), tests[i].hash, sizeof(tests[i].hash), "MD5", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
#undef F
#undef G
#undef H
#undef I
#undef FF
#undef GG
#undef HH
#undef II
#endif

View File

@@ -0,0 +1,408 @@
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
/**
@param rmd128.c
RMD128 Hash function
*/
/* Implementation of LTC_RIPEMD-128 based on the source by Antoon Bosselaers, ESAT-COSIC
*
* This source has been radically overhauled to be portable and work within
* the LibTomCrypt API by Tom St Denis
*/
#ifdef LTC_RIPEMD128
const struct ltc_hash_descriptor rmd128_desc =
{
"rmd128",
8,
16,
64,
/* OID */
{ 1, 0, 10118, 3, 0, 50 },
6,
&rmd128_init,
&rmd128_process,
&rmd128_done,
&rmd128_test,
NULL
};
/* the four basic functions F(), G() and H() */
#define F(x, y, z) ((x) ^ (y) ^ (z))
#define G(x, y, z) (((x) & (y)) | (~(x) & (z)))
#define H(x, y, z) (((x) | ~(y)) ^ (z))
#define I(x, y, z) (((x) & (z)) | ((y) & ~(z)))
/* the eight basic operations FF() through III() */
#define FF(a, b, c, d, x, s) \
(a) += F((b), (c), (d)) + (x);\
(a) = ROLc((a), (s));
#define GG(a, b, c, d, x, s) \
(a) += G((b), (c), (d)) + (x) + 0x5a827999UL;\
(a) = ROLc((a), (s));
#define HH(a, b, c, d, x, s) \
(a) += H((b), (c), (d)) + (x) + 0x6ed9eba1UL;\
(a) = ROLc((a), (s));
#define II(a, b, c, d, x, s) \
(a) += I((b), (c), (d)) + (x) + 0x8f1bbcdcUL;\
(a) = ROLc((a), (s));
#define FFF(a, b, c, d, x, s) \
(a) += F((b), (c), (d)) + (x);\
(a) = ROLc((a), (s));
#define GGG(a, b, c, d, x, s) \
(a) += G((b), (c), (d)) + (x) + 0x6d703ef3UL;\
(a) = ROLc((a), (s));
#define HHH(a, b, c, d, x, s) \
(a) += H((b), (c), (d)) + (x) + 0x5c4dd124UL;\
(a) = ROLc((a), (s));
#define III(a, b, c, d, x, s) \
(a) += I((b), (c), (d)) + (x) + 0x50a28be6UL;\
(a) = ROLc((a), (s));
#ifdef LTC_CLEAN_STACK
static int ss_rmd128_compress(hash_state *md, const unsigned char *buf)
#else
static int s_rmd128_compress(hash_state *md, const unsigned char *buf)
#endif
{
ulong32 aa,bb,cc,dd,aaa,bbb,ccc,ddd,X[16];
int i;
/* load words X */
for (i = 0; i < 16; i++){
LOAD32L(X[i], buf + (4 * i));
}
/* load state */
aa = aaa = md->rmd128.state[0];
bb = bbb = md->rmd128.state[1];
cc = ccc = md->rmd128.state[2];
dd = ddd = md->rmd128.state[3];
/* round 1 */
FF(aa, bb, cc, dd, X[ 0], 11);
FF(dd, aa, bb, cc, X[ 1], 14);
FF(cc, dd, aa, bb, X[ 2], 15);
FF(bb, cc, dd, aa, X[ 3], 12);
FF(aa, bb, cc, dd, X[ 4], 5);
FF(dd, aa, bb, cc, X[ 5], 8);
FF(cc, dd, aa, bb, X[ 6], 7);
FF(bb, cc, dd, aa, X[ 7], 9);
FF(aa, bb, cc, dd, X[ 8], 11);
FF(dd, aa, bb, cc, X[ 9], 13);
FF(cc, dd, aa, bb, X[10], 14);
FF(bb, cc, dd, aa, X[11], 15);
FF(aa, bb, cc, dd, X[12], 6);
FF(dd, aa, bb, cc, X[13], 7);
FF(cc, dd, aa, bb, X[14], 9);
FF(bb, cc, dd, aa, X[15], 8);
/* round 2 */
GG(aa, bb, cc, dd, X[ 7], 7);
GG(dd, aa, bb, cc, X[ 4], 6);
GG(cc, dd, aa, bb, X[13], 8);
GG(bb, cc, dd, aa, X[ 1], 13);
GG(aa, bb, cc, dd, X[10], 11);
GG(dd, aa, bb, cc, X[ 6], 9);
GG(cc, dd, aa, bb, X[15], 7);
GG(bb, cc, dd, aa, X[ 3], 15);
GG(aa, bb, cc, dd, X[12], 7);
GG(dd, aa, bb, cc, X[ 0], 12);
GG(cc, dd, aa, bb, X[ 9], 15);
GG(bb, cc, dd, aa, X[ 5], 9);
GG(aa, bb, cc, dd, X[ 2], 11);
GG(dd, aa, bb, cc, X[14], 7);
GG(cc, dd, aa, bb, X[11], 13);
GG(bb, cc, dd, aa, X[ 8], 12);
/* round 3 */
HH(aa, bb, cc, dd, X[ 3], 11);
HH(dd, aa, bb, cc, X[10], 13);
HH(cc, dd, aa, bb, X[14], 6);
HH(bb, cc, dd, aa, X[ 4], 7);
HH(aa, bb, cc, dd, X[ 9], 14);
HH(dd, aa, bb, cc, X[15], 9);
HH(cc, dd, aa, bb, X[ 8], 13);
HH(bb, cc, dd, aa, X[ 1], 15);
HH(aa, bb, cc, dd, X[ 2], 14);
HH(dd, aa, bb, cc, X[ 7], 8);
HH(cc, dd, aa, bb, X[ 0], 13);
HH(bb, cc, dd, aa, X[ 6], 6);
HH(aa, bb, cc, dd, X[13], 5);
HH(dd, aa, bb, cc, X[11], 12);
HH(cc, dd, aa, bb, X[ 5], 7);
HH(bb, cc, dd, aa, X[12], 5);
/* round 4 */
II(aa, bb, cc, dd, X[ 1], 11);
II(dd, aa, bb, cc, X[ 9], 12);
II(cc, dd, aa, bb, X[11], 14);
II(bb, cc, dd, aa, X[10], 15);
II(aa, bb, cc, dd, X[ 0], 14);
II(dd, aa, bb, cc, X[ 8], 15);
II(cc, dd, aa, bb, X[12], 9);
II(bb, cc, dd, aa, X[ 4], 8);
II(aa, bb, cc, dd, X[13], 9);
II(dd, aa, bb, cc, X[ 3], 14);
II(cc, dd, aa, bb, X[ 7], 5);
II(bb, cc, dd, aa, X[15], 6);
II(aa, bb, cc, dd, X[14], 8);
II(dd, aa, bb, cc, X[ 5], 6);
II(cc, dd, aa, bb, X[ 6], 5);
II(bb, cc, dd, aa, X[ 2], 12);
/* parallel round 1 */
III(aaa, bbb, ccc, ddd, X[ 5], 8);
III(ddd, aaa, bbb, ccc, X[14], 9);
III(ccc, ddd, aaa, bbb, X[ 7], 9);
III(bbb, ccc, ddd, aaa, X[ 0], 11);
III(aaa, bbb, ccc, ddd, X[ 9], 13);
III(ddd, aaa, bbb, ccc, X[ 2], 15);
III(ccc, ddd, aaa, bbb, X[11], 15);
III(bbb, ccc, ddd, aaa, X[ 4], 5);
III(aaa, bbb, ccc, ddd, X[13], 7);
III(ddd, aaa, bbb, ccc, X[ 6], 7);
III(ccc, ddd, aaa, bbb, X[15], 8);
III(bbb, ccc, ddd, aaa, X[ 8], 11);
III(aaa, bbb, ccc, ddd, X[ 1], 14);
III(ddd, aaa, bbb, ccc, X[10], 14);
III(ccc, ddd, aaa, bbb, X[ 3], 12);
III(bbb, ccc, ddd, aaa, X[12], 6);
/* parallel round 2 */
HHH(aaa, bbb, ccc, ddd, X[ 6], 9);
HHH(ddd, aaa, bbb, ccc, X[11], 13);
HHH(ccc, ddd, aaa, bbb, X[ 3], 15);
HHH(bbb, ccc, ddd, aaa, X[ 7], 7);
HHH(aaa, bbb, ccc, ddd, X[ 0], 12);
HHH(ddd, aaa, bbb, ccc, X[13], 8);
HHH(ccc, ddd, aaa, bbb, X[ 5], 9);
HHH(bbb, ccc, ddd, aaa, X[10], 11);
HHH(aaa, bbb, ccc, ddd, X[14], 7);
HHH(ddd, aaa, bbb, ccc, X[15], 7);
HHH(ccc, ddd, aaa, bbb, X[ 8], 12);
HHH(bbb, ccc, ddd, aaa, X[12], 7);
HHH(aaa, bbb, ccc, ddd, X[ 4], 6);
HHH(ddd, aaa, bbb, ccc, X[ 9], 15);
HHH(ccc, ddd, aaa, bbb, X[ 1], 13);
HHH(bbb, ccc, ddd, aaa, X[ 2], 11);
/* parallel round 3 */
GGG(aaa, bbb, ccc, ddd, X[15], 9);
GGG(ddd, aaa, bbb, ccc, X[ 5], 7);
GGG(ccc, ddd, aaa, bbb, X[ 1], 15);
GGG(bbb, ccc, ddd, aaa, X[ 3], 11);
GGG(aaa, bbb, ccc, ddd, X[ 7], 8);
GGG(ddd, aaa, bbb, ccc, X[14], 6);
GGG(ccc, ddd, aaa, bbb, X[ 6], 6);
GGG(bbb, ccc, ddd, aaa, X[ 9], 14);
GGG(aaa, bbb, ccc, ddd, X[11], 12);
GGG(ddd, aaa, bbb, ccc, X[ 8], 13);
GGG(ccc, ddd, aaa, bbb, X[12], 5);
GGG(bbb, ccc, ddd, aaa, X[ 2], 14);
GGG(aaa, bbb, ccc, ddd, X[10], 13);
GGG(ddd, aaa, bbb, ccc, X[ 0], 13);
GGG(ccc, ddd, aaa, bbb, X[ 4], 7);
GGG(bbb, ccc, ddd, aaa, X[13], 5);
/* parallel round 4 */
FFF(aaa, bbb, ccc, ddd, X[ 8], 15);
FFF(ddd, aaa, bbb, ccc, X[ 6], 5);
FFF(ccc, ddd, aaa, bbb, X[ 4], 8);
FFF(bbb, ccc, ddd, aaa, X[ 1], 11);
FFF(aaa, bbb, ccc, ddd, X[ 3], 14);
FFF(ddd, aaa, bbb, ccc, X[11], 14);
FFF(ccc, ddd, aaa, bbb, X[15], 6);
FFF(bbb, ccc, ddd, aaa, X[ 0], 14);
FFF(aaa, bbb, ccc, ddd, X[ 5], 6);
FFF(ddd, aaa, bbb, ccc, X[12], 9);
FFF(ccc, ddd, aaa, bbb, X[ 2], 12);
FFF(bbb, ccc, ddd, aaa, X[13], 9);
FFF(aaa, bbb, ccc, ddd, X[ 9], 12);
FFF(ddd, aaa, bbb, ccc, X[ 7], 5);
FFF(ccc, ddd, aaa, bbb, X[10], 15);
FFF(bbb, ccc, ddd, aaa, X[14], 8);
/* combine results */
ddd += cc + md->rmd128.state[1]; /* final result for MDbuf[0] */
md->rmd128.state[1] = md->rmd128.state[2] + dd + aaa;
md->rmd128.state[2] = md->rmd128.state[3] + aa + bbb;
md->rmd128.state[3] = md->rmd128.state[0] + bb + ccc;
md->rmd128.state[0] = ddd;
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
static int s_rmd128_compress(hash_state *md, const unsigned char *buf)
{
int err;
err = ss_rmd128_compress(md, buf);
burn_stack(sizeof(ulong32) * 24 + sizeof(int));
return err;
}
#endif
/**
Initialize the hash state
@param md The hash state you wish to initialize
@return CRYPT_OK if successful
*/
int rmd128_init(hash_state * md)
{
LTC_ARGCHK(md != NULL);
md->rmd128.state[0] = 0x67452301UL;
md->rmd128.state[1] = 0xefcdab89UL;
md->rmd128.state[2] = 0x98badcfeUL;
md->rmd128.state[3] = 0x10325476UL;
md->rmd128.curlen = 0;
md->rmd128.length = 0;
return CRYPT_OK;
}
/**
Process a block of memory though the hash
@param md The hash state
@param in The data to hash
@param inlen The length of the data (octets)
@return CRYPT_OK if successful
*/
HASH_PROCESS(rmd128_process, s_rmd128_compress, rmd128, 64)
/**
Terminate the hash to get the digest
@param md The hash state
@param out [out] The destination of the hash (16 bytes)
@return CRYPT_OK if successful
*/
int rmd128_done(hash_state * md, unsigned char *out)
{
int i;
LTC_ARGCHK(md != NULL);
LTC_ARGCHK(out != NULL);
if (md->rmd128.curlen >= sizeof(md->rmd128.buf)) {
return CRYPT_INVALID_ARG;
}
/* increase the length of the message */
md->rmd128.length += md->rmd128.curlen * 8;
/* append the '1' bit */
md->rmd128.buf[md->rmd128.curlen++] = (unsigned char)0x80;
/* if the length is currently above 56 bytes we append zeros
* then compress. Then we can fall back to padding zeros and length
* encoding like normal.
*/
if (md->rmd128.curlen > 56) {
while (md->rmd128.curlen < 64) {
md->rmd128.buf[md->rmd128.curlen++] = (unsigned char)0;
}
s_rmd128_compress(md, md->rmd128.buf);
md->rmd128.curlen = 0;
}
/* pad upto 56 bytes of zeroes */
while (md->rmd128.curlen < 56) {
md->rmd128.buf[md->rmd128.curlen++] = (unsigned char)0;
}
/* store length */
STORE64L(md->rmd128.length, md->rmd128.buf+56);
s_rmd128_compress(md, md->rmd128.buf);
/* copy output */
for (i = 0; i < 4; i++) {
STORE32L(md->rmd128.state[i], out+(4*i));
}
#ifdef LTC_CLEAN_STACK
zeromem(md, sizeof(hash_state));
#endif
return CRYPT_OK;
}
/**
Self-test the hash
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int rmd128_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
const char *msg;
unsigned char hash[16];
} tests[] = {
{ "",
{ 0xcd, 0xf2, 0x62, 0x13, 0xa1, 0x50, 0xdc, 0x3e,
0xcb, 0x61, 0x0f, 0x18, 0xf6, 0xb3, 0x8b, 0x46 }
},
{ "a",
{ 0x86, 0xbe, 0x7a, 0xfa, 0x33, 0x9d, 0x0f, 0xc7,
0xcf, 0xc7, 0x85, 0xe7, 0x2f, 0x57, 0x8d, 0x33 }
},
{ "abc",
{ 0xc1, 0x4a, 0x12, 0x19, 0x9c, 0x66, 0xe4, 0xba,
0x84, 0x63, 0x6b, 0x0f, 0x69, 0x14, 0x4c, 0x77 }
},
{ "message digest",
{ 0x9e, 0x32, 0x7b, 0x3d, 0x6e, 0x52, 0x30, 0x62,
0xaf, 0xc1, 0x13, 0x2d, 0x7d, 0xf9, 0xd1, 0xb8 }
},
{ "abcdefghijklmnopqrstuvwxyz",
{ 0xfd, 0x2a, 0xa6, 0x07, 0xf7, 0x1d, 0xc8, 0xf5,
0x10, 0x71, 0x49, 0x22, 0xb3, 0x71, 0x83, 0x4e }
},
{ "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
{ 0xd1, 0xe9, 0x59, 0xeb, 0x17, 0x9c, 0x91, 0x1f,
0xae, 0xa4, 0x62, 0x4c, 0x60, 0xc5, 0xc7, 0x02 }
}
};
int i;
unsigned char tmp[16];
hash_state md;
for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
rmd128_init(&md);
rmd128_process(&md, (unsigned char *)tests[i].msg, XSTRLEN(tests[i].msg));
rmd128_done(&md, tmp);
if (compare_testvector(tmp, sizeof(tmp), tests[i].hash, sizeof(tests[i].hash), "RIPEMD128", i)) {
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
#undef F
#undef G
#undef H
#undef I
#undef FF
#undef GG
#undef HH
#undef II
#undef FFF
#undef GGG
#undef HHH
#undef III
#endif

Some files were not shown because too many files have changed in this diff Show More