375 lines
10 KiB
C
375 lines
10 KiB
C
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
|
|
/* SPDX-License-Identifier: Unlicense */
|
|
|
|
/* AES-NI implementation by Steffen Jaeckel */
|
|
/**
|
|
@file aesni.c
|
|
Implementation of AES via the AES-NI instruction on x86_64
|
|
*/
|
|
|
|
#include "tomcrypt_private.h"
|
|
|
|
#if defined(LTC_AES_NI)
|
|
|
|
const struct ltc_cipher_descriptor aesni_desc =
|
|
{
|
|
"aes",
|
|
6,
|
|
16, 32, 16, 10,
|
|
aesni_setup, aesni_ecb_encrypt, aesni_ecb_decrypt, aesni_test, aesni_done, aesni_keysize,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
|
|
};
|
|
|
|
#include <emmintrin.h>
|
|
#include <smmintrin.h>
|
|
#include <wmmintrin.h>
|
|
|
|
#define setup_mix(t, c) _mm_extract_epi32(_mm_aeskeygenassist_si128(t, 0), c)
|
|
#define temp_load(k) _mm_loadu_si128((__m128i*)(k))
|
|
#define temp_update(t, k) _mm_insert_epi32(t, k, 3)
|
|
#define temp_invert(k) _mm_aesimc_si128(*((__m128i*)(k)))
|
|
|
|
|
|
static const ulong32 rcon[] = {
|
|
0x01UL, 0x02UL, 0x04UL, 0x08UL, 0x10UL, 0x20UL, 0x40UL, 0x80UL, 0x1BUL, 0x36UL
|
|
};
|
|
|
|
/**
|
|
Initialize the AES (Rijndael) block cipher
|
|
@param key The symmetric key you wish to pass
|
|
@param keylen The key length in bytes
|
|
@param num_rounds The number of rounds desired (0 for default)
|
|
@param skey The key in as scheduled by this function.
|
|
@return CRYPT_OK if successful
|
|
*/
|
|
LTC_ATTRIBUTE((__target__("aes,sse4.1")))
|
|
int aesni_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
|
|
{
|
|
int i;
|
|
__m128i temp;
|
|
ulong32 *rk, *K;
|
|
ulong32 *rrk;
|
|
LTC_ARGCHK(key != NULL);
|
|
LTC_ARGCHK(skey != NULL);
|
|
|
|
if (keylen != 16 && keylen != 24 && keylen != 32) {
|
|
return CRYPT_INVALID_KEYSIZE;
|
|
}
|
|
|
|
if (num_rounds != 0 && num_rounds != (keylen / 4 + 6)) {
|
|
return CRYPT_INVALID_ROUNDS;
|
|
}
|
|
|
|
skey->rijndael.Nr = keylen / 4 + 6;
|
|
K = LTC_ALIGN_BUF(skey->rijndael.K, 16);
|
|
skey->rijndael.eK = K;
|
|
K += 60;
|
|
skey->rijndael.dK = K;
|
|
|
|
/* setup the forward key */
|
|
i = 0;
|
|
rk = skey->rijndael.eK;
|
|
LOAD32L(rk[0], key);
|
|
LOAD32L(rk[1], key + 4);
|
|
LOAD32L(rk[2], key + 8);
|
|
LOAD32L(rk[3], key + 12);
|
|
if (keylen == 16) {
|
|
temp = temp_load(key);
|
|
for (;;) {
|
|
rk[4] = rk[0] ^ setup_mix(temp, 3) ^ rcon[i];
|
|
rk[5] = rk[1] ^ rk[4];
|
|
rk[6] = rk[2] ^ rk[5];
|
|
rk[7] = rk[3] ^ rk[6];
|
|
if (++i == 10) {
|
|
break;
|
|
}
|
|
temp = temp_update(temp, rk[7]);
|
|
rk += 4;
|
|
}
|
|
} else if (keylen == 24) {
|
|
LOAD32L(rk[4], key + 16);
|
|
LOAD32L(rk[5], key + 20);
|
|
temp = temp_load(key + 8);
|
|
for (;;) {
|
|
rk[6] = rk[0] ^ setup_mix(temp, 3) ^ rcon[i];
|
|
rk[7] = rk[1] ^ rk[6];
|
|
rk[8] = rk[2] ^ rk[7];
|
|
rk[9] = rk[3] ^ rk[8];
|
|
if (++i == 8) {
|
|
break;
|
|
}
|
|
rk[10] = rk[4] ^ rk[9];
|
|
rk[11] = rk[5] ^ rk[10];
|
|
temp = temp_update(temp, rk[11]);
|
|
rk += 6;
|
|
}
|
|
} else if (keylen == 32) {
|
|
LOAD32L(rk[4], key + 16);
|
|
LOAD32L(rk[5], key + 20);
|
|
LOAD32L(rk[6], key + 24);
|
|
LOAD32L(rk[7], key + 28);
|
|
temp = temp_load(key + 16);
|
|
for (;;) {
|
|
rk[8] = rk[0] ^ setup_mix(temp, 3) ^ rcon[i];
|
|
rk[9] = rk[1] ^ rk[8];
|
|
rk[10] = rk[2] ^ rk[9];
|
|
rk[11] = rk[3] ^ rk[10];
|
|
if (++i == 7) {
|
|
break;
|
|
}
|
|
temp = temp_update(temp, rk[11]);
|
|
rk[12] = rk[4] ^ setup_mix(temp, 2);
|
|
rk[13] = rk[5] ^ rk[12];
|
|
rk[14] = rk[6] ^ rk[13];
|
|
rk[15] = rk[7] ^ rk[14];
|
|
temp = temp_update(temp, rk[15]);
|
|
rk += 8;
|
|
}
|
|
} else {
|
|
/* this can't happen */
|
|
/* coverity[dead_error_line] */
|
|
return CRYPT_ERROR;
|
|
}
|
|
|
|
/* setup the inverse key now */
|
|
rk = skey->rijndael.dK;
|
|
rrk = skey->rijndael.eK + skey->rijndael.Nr * 4;
|
|
|
|
/* apply the inverse MixColumn transform to all round keys but the first and the last: */
|
|
/* copy first */
|
|
*rk++ = *rrk++;
|
|
*rk++ = *rrk++;
|
|
*rk++ = *rrk++;
|
|
*rk = *rrk;
|
|
rk -= 3;
|
|
rrk -= 3;
|
|
|
|
for (i = 1; i < skey->rijndael.Nr; i++) {
|
|
rrk -= 4;
|
|
rk += 4;
|
|
temp = temp_invert(rk);
|
|
*((__m128i*) rk) = temp_invert(rrk);
|
|
}
|
|
|
|
/* copy last */
|
|
rrk -= 4;
|
|
rk += 4;
|
|
*rk++ = *rrk++;
|
|
*rk++ = *rrk++;
|
|
*rk++ = *rrk++;
|
|
*rk = *rrk;
|
|
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
/**
|
|
Encrypts a block of text with AES
|
|
@param pt The input plaintext (16 bytes)
|
|
@param ct The output ciphertext (16 bytes)
|
|
@param skey The key as scheduled
|
|
@return CRYPT_OK if successful
|
|
*/
|
|
LTC_ATTRIBUTE((__target__("aes")))
|
|
#ifdef LTC_CLEAN_STACK
|
|
static int s_aesni_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
|
|
#else
|
|
int aesni_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
|
|
#endif
|
|
{
|
|
int Nr, r;
|
|
const __m128i *skeys;
|
|
__m128i block;
|
|
|
|
LTC_ARGCHK(pt != NULL);
|
|
LTC_ARGCHK(ct != NULL);
|
|
LTC_ARGCHK(skey != NULL);
|
|
|
|
Nr = skey->rijndael.Nr;
|
|
|
|
if (Nr < 2 || Nr > 16) return CRYPT_INVALID_ROUNDS;
|
|
|
|
skeys = (__m128i*) skey->rijndael.eK;
|
|
block = _mm_loadu_si128((const __m128i*) (pt));
|
|
|
|
block = _mm_xor_si128(block, skeys[0]);
|
|
for (r = 1; r < Nr - 1; r += 2) {
|
|
block = _mm_aesenc_si128(block, skeys[r]);
|
|
block = _mm_aesenc_si128(block, skeys[r + 1]);
|
|
}
|
|
block = _mm_aesenc_si128(block, skeys[Nr - 1]);
|
|
block = _mm_aesenclast_si128(block, skeys[Nr]);
|
|
|
|
_mm_storeu_si128((__m128i*) ct, block);
|
|
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
#ifdef LTC_CLEAN_STACK
|
|
int aesni_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
|
|
{
|
|
int err = s_aesni_ecb_encrypt(pt, ct, skey);
|
|
burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2);
|
|
return err;
|
|
}
|
|
#endif
|
|
|
|
|
|
/**
|
|
Decrypts a block of text with AES
|
|
@param ct The input ciphertext (16 bytes)
|
|
@param pt The output plaintext (16 bytes)
|
|
@param skey The key as scheduled
|
|
@return CRYPT_OK if successful
|
|
*/
|
|
LTC_ATTRIBUTE((__target__("aes")))
|
|
#ifdef LTC_CLEAN_STACK
|
|
static int s_aesni_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
|
|
#else
|
|
int aesni_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
|
|
#endif
|
|
{
|
|
int Nr, r;
|
|
const __m128i *skeys;
|
|
__m128i block;
|
|
|
|
LTC_ARGCHK(pt != NULL);
|
|
LTC_ARGCHK(ct != NULL);
|
|
LTC_ARGCHK(skey != NULL);
|
|
|
|
Nr = skey->rijndael.Nr;
|
|
|
|
if (Nr < 2 || Nr > 16) return CRYPT_INVALID_ROUNDS;
|
|
|
|
skeys = (__m128i*) skey->rijndael.dK;
|
|
block = _mm_loadu_si128((const __m128i*) (ct));
|
|
|
|
block = _mm_xor_si128(block, skeys[0]);
|
|
for (r = 1; r < Nr - 1; r += 2) {
|
|
block = _mm_aesdec_si128(block, skeys[r]);
|
|
block = _mm_aesdec_si128(block, skeys[r + 1]);
|
|
}
|
|
block = _mm_aesdec_si128(block, skeys[Nr - 1]);
|
|
block = _mm_aesdeclast_si128(block, skeys[Nr]);
|
|
|
|
_mm_storeu_si128((__m128i*) pt, block);
|
|
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
|
|
#ifdef LTC_CLEAN_STACK
|
|
int aesni_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
|
|
{
|
|
int err = s_aesni_ecb_decrypt(ct, pt, skey);
|
|
burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2);
|
|
return err;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
Performs a self-test of the AES block cipher
|
|
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
|
|
*/
|
|
int aesni_test(void)
|
|
{
|
|
#ifndef LTC_TEST
|
|
return CRYPT_NOP;
|
|
#else
|
|
int err;
|
|
static const struct {
|
|
int keylen;
|
|
unsigned char key[32], pt[16], ct[16];
|
|
} tests[] = {
|
|
{ 16,
|
|
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
|
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
|
|
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
|
|
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
|
|
{ 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30,
|
|
0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a }
|
|
}, {
|
|
24,
|
|
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
|
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
|
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 },
|
|
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
|
|
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
|
|
{ 0xdd, 0xa9, 0x7c, 0xa4, 0x86, 0x4c, 0xdf, 0xe0,
|
|
0x6e, 0xaf, 0x70, 0xa0, 0xec, 0x0d, 0x71, 0x91 }
|
|
}, {
|
|
32,
|
|
{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
|
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
|
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
|
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f },
|
|
{ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
|
|
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
|
|
{ 0x8e, 0xa2, 0xb7, 0xca, 0x51, 0x67, 0x45, 0xbf,
|
|
0xea, 0xfc, 0x49, 0x90, 0x4b, 0x49, 0x60, 0x89 }
|
|
}
|
|
};
|
|
|
|
symmetric_key key;
|
|
unsigned char tmp[2][16];
|
|
int i, y;
|
|
|
|
for (i = 0; i < (int)LTC_ARRAY_SIZE(tests); i++) {
|
|
zeromem(&key, sizeof(key));
|
|
if ((err = aesni_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
|
|
return err;
|
|
}
|
|
|
|
aesni_ecb_encrypt(tests[i].pt, tmp[0], &key);
|
|
aesni_ecb_decrypt(tmp[0], tmp[1], &key);
|
|
if (compare_testvector(tmp[0], 16, tests[i].ct, 16, "AES-NI Encrypt", i) ||
|
|
compare_testvector(tmp[1], 16, tests[i].pt, 16, "AES-NI Decrypt", i)) {
|
|
return CRYPT_FAIL_TESTVECTOR;
|
|
}
|
|
|
|
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
|
|
for (y = 0; y < 16; y++) tmp[0][y] = 0;
|
|
for (y = 0; y < 1000; y++) aesni_ecb_encrypt(tmp[0], tmp[0], &key);
|
|
for (y = 0; y < 1000; y++) aesni_ecb_decrypt(tmp[0], tmp[0], &key);
|
|
for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
|
|
}
|
|
return CRYPT_OK;
|
|
#endif
|
|
}
|
|
|
|
|
|
/** Terminate the context
|
|
@param skey The scheduled key
|
|
*/
|
|
void aesni_done(symmetric_key *skey)
|
|
{
|
|
LTC_UNUSED_PARAM(skey);
|
|
}
|
|
|
|
|
|
/**
|
|
Gets suitable key size
|
|
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
|
|
@return CRYPT_OK if the input key size is acceptable.
|
|
*/
|
|
int aesni_keysize(int *keysize)
|
|
{
|
|
LTC_ARGCHK(keysize != NULL);
|
|
|
|
if (*keysize < 16) {
|
|
return CRYPT_INVALID_KEYSIZE;
|
|
}
|
|
if (*keysize < 24) {
|
|
*keysize = 16;
|
|
return CRYPT_OK;
|
|
}
|
|
if (*keysize < 32) {
|
|
*keysize = 24;
|
|
return CRYPT_OK;
|
|
}
|
|
*keysize = 32;
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
#endif
|
|
|