/* LibTomCrypt, modular cryptographic library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* * This LTC implementation was adapted from: * http://www.ecrypt.eu.org/stream/e2-sosemanuk.html */ /* * SOSEMANUK reference implementation. * * This code is supposed to run on any conforming C implementation (C90 * or later). * * (c) 2005 X-CRYPT project. This software is provided 'as-is', without * any express or implied warranty. In no event will the authors be held * liable for any damages arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to no restriction. * * Technical remarks and questions can be addressed to * */ #include "tomcrypt_private.h" #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wconversion" #pragma clang diagnostic ignored "-Wshorten-64-to-32" #ifdef LTC_SOSEMANUK /* ======================================================================== */ /* * We want (and sometimes need) to perform explicit truncations to 32 bits. */ #define T32(x) ((x) & (ulong32)0xFFFFFFFF) /* * Some of our functions will be tagged as "inline" to help the compiler * optimize things. We use "inline" only if the compiler is advanced * enough to understand it; C99 compilers, and pre-C99 versions of gcc, * understand enough "inline" for our purposes. */ /* ======================================================================== */ /* * Serpent S-boxes, implemented in bitslice mode. These circuits have * been published by Dag Arne Osvik ("Speeding up Serpent", published in * the 3rd AES Candidate Conference) and work on five 32-bit registers: * the four inputs, and a fifth scratch register. There are meant to be * quite fast on Pentium-class processors. These are not the fastest * published, but they are "fast enough" and they are unencumbered as * far as intellectual property is concerned (note: these are rewritten * from the article itself, and hence are not covered by the GPL on * Dag's code, which was not used here). * * The output bits are permuted. Here is the correspondance: * S0: 1420 * S1: 2031 * S2: 2314 * S3: 1234 * S4: 1403 * S5: 1302 * S6: 0142 * S7: 4310 * (for instance, the output of S0 is in "r1, r4, r2, r0"). */ #define S0(r0, r1, r2, r3, r4) do { \ r3 ^= r0; r4 = r1; \ r1 &= r3; r4 ^= r2; \ r1 ^= r0; r0 |= r3; \ r0 ^= r4; r4 ^= r3; \ r3 ^= r2; r2 |= r1; \ r2 ^= r4; r4 = ~r4; \ r4 |= r1; r1 ^= r3; \ r1 ^= r4; r3 |= r0; \ r1 ^= r3; r4 ^= r3; \ } while (0) #define S1(r0, r1, r2, r3, r4) do { \ r0 = ~r0; r2 = ~r2; \ r4 = r0; r0 &= r1; \ r2 ^= r0; r0 |= r3; \ r3 ^= r2; r1 ^= r0; \ r0 ^= r4; r4 |= r1; \ r1 ^= r3; r2 |= r0; \ r2 &= r4; r0 ^= r1; \ r1 &= r2; \ r1 ^= r0; r0 &= r2; \ r0 ^= r4; \ } while (0) #define S2(r0, r1, r2, r3, r4) do { \ r4 = r0; r0 &= r2; \ r0 ^= r3; r2 ^= r1; \ r2 ^= r0; r3 |= r4; \ r3 ^= r1; r4 ^= r2; \ r1 = r3; r3 |= r4; \ r3 ^= r0; r0 &= r1; \ r4 ^= r0; r1 ^= r3; \ r1 ^= r4; r4 = ~r4; \ } while (0) #define S3(r0, r1, r2, r3, r4) do { \ r4 = r0; r0 |= r3; \ r3 ^= r1; r1 &= r4; \ r4 ^= r2; r2 ^= r3; \ r3 &= r0; r4 |= r1; \ r3 ^= r4; r0 ^= r1; \ r4 &= r0; r1 ^= r3; \ r4 ^= r2; r1 |= r0; \ r1 ^= r2; r0 ^= r3; \ r2 = r1; r1 |= r3; \ r1 ^= r0; \ } while (0) #define S4(r0, r1, r2, r3, r4) do { \ r1 ^= r3; r3 = ~r3; \ r2 ^= r3; r3 ^= r0; \ r4 = r1; r1 &= r3; \ r1 ^= r2; r4 ^= r3; \ r0 ^= r4; r2 &= r4; \ r2 ^= r0; r0 &= r1; \ r3 ^= r0; r4 |= r1; \ r4 ^= r0; r0 |= r3; \ r0 ^= r2; r2 &= r3; \ r0 = ~r0; r4 ^= r2; \ } while (0) #define S5(r0, r1, r2, r3, r4) do { \ r0 ^= r1; r1 ^= r3; \ r3 = ~r3; r4 = r1; \ r1 &= r0; r2 ^= r3; \ r1 ^= r2; r2 |= r4; \ r4 ^= r3; r3 &= r1; \ r3 ^= r0; r4 ^= r1; \ r4 ^= r2; r2 ^= r0; \ r0 &= r3; r2 = ~r2; \ r0 ^= r4; r4 |= r3; \ r2 ^= r4; \ } while (0) #define S6(r0, r1, r2, r3, r4) do { \ r2 = ~r2; r4 = r3; \ r3 &= r0; r0 ^= r4; \ r3 ^= r2; r2 |= r4; \ r1 ^= r3; r2 ^= r0; \ r0 |= r1; r2 ^= r1; \ r4 ^= r0; r0 |= r3; \ r0 ^= r2; r4 ^= r3; \ r4 ^= r0; r3 = ~r3; \ r2 &= r4; \ r2 ^= r3; \ } while (0) #define S7(r0, r1, r2, r3, r4) do { \ r4 = r1; r1 |= r2; \ r1 ^= r3; r4 ^= r2; \ r2 ^= r1; r3 |= r4; \ r3 &= r0; r4 ^= r2; \ r3 ^= r1; r1 |= r4; \ r1 ^= r0; r0 |= r4; \ r0 ^= r2; r1 ^= r4; \ r2 ^= r1; r1 &= r0; \ r1 ^= r4; r2 = ~r2; \ r2 |= r0; \ r4 ^= r2; \ } while (0) /* * The Serpent linear transform. */ #define SERPENT_LT(x0, x1, x2, x3) do { \ x0 = ROLc(x0, 13); \ x2 = ROLc(x2, 3); \ x1 = x1 ^ x0 ^ x2; \ x3 = x3 ^ x2 ^ T32(x0 << 3); \ x1 = ROLc(x1, 1); \ x3 = ROLc(x3, 7); \ x0 = x0 ^ x1 ^ x3; \ x2 = x2 ^ x3 ^ T32(x1 << 7); \ x0 = ROLc(x0, 5); \ x2 = ROLc(x2, 22); \ } while (0) /* ======================================================================== */ /* * Initialize Sosemanuk's state by providing a key. The key is an array of * 1 to 32 bytes. * @param st The Sosemanuk state * @param key Key * @param keylen Length of key in bytes * @return CRYPT_OK on success */ int sosemanuk_setup(sosemanuk_state *st, const unsigned char *key, unsigned long keylen) { /* * This key schedule is actually a truncated Serpent key schedule. * The key-derived words (w_i) are computed within the eight * local variables w0 to w7, which are reused again and again. */ #define SKS(S, o0, o1, o2, o3, d0, d1, d2, d3) do { \ ulong32 r0, r1, r2, r3, r4; \ r0 = w ## o0; \ r1 = w ## o1; \ r2 = w ## o2; \ r3 = w ## o3; \ S(r0, r1, r2, r3, r4); \ st->kc[i ++] = r ## d0; \ st->kc[i ++] = r ## d1; \ st->kc[i ++] = r ## d2; \ st->kc[i ++] = r ## d3; \ } while (0) #define SKS0 SKS(S0, 4, 5, 6, 7, 1, 4, 2, 0) #define SKS1 SKS(S1, 0, 1, 2, 3, 2, 0, 3, 1) #define SKS2 SKS(S2, 4, 5, 6, 7, 2, 3, 1, 4) #define SKS3 SKS(S3, 0, 1, 2, 3, 1, 2, 3, 4) #define SKS4 SKS(S4, 4, 5, 6, 7, 1, 4, 0, 3) #define SKS5 SKS(S5, 0, 1, 2, 3, 1, 3, 0, 2) #define SKS6 SKS(S6, 4, 5, 6, 7, 0, 1, 4, 2) #define SKS7 SKS(S7, 0, 1, 2, 3, 4, 3, 1, 0) #define WUP(wi, wi5, wi3, wi1, cc) do { \ ulong32 tt = (wi) ^ (wi5) ^ (wi3) \ ^ (wi1) ^ (0x9E3779B9 ^ (ulong32)(cc)); \ (wi) = ROLc(tt, 11); \ } while (0) #define WUP0(cc) do { \ WUP(w0, w3, w5, w7, cc); \ WUP(w1, w4, w6, w0, cc + 1); \ WUP(w2, w5, w7, w1, cc + 2); \ WUP(w3, w6, w0, w2, cc + 3); \ } while (0) #define WUP1(cc) do { \ WUP(w4, w7, w1, w3, cc); \ WUP(w5, w0, w2, w4, cc + 1); \ WUP(w6, w1, w3, w5, cc + 2); \ WUP(w7, w2, w4, w6, cc + 3); \ } while (0) unsigned char wbuf[32]; ulong32 w0, w1, w2, w3, w4, w5, w6, w7; int i = 0; LTC_ARGCHK(st != NULL); LTC_ARGCHK(key != NULL); LTC_ARGCHK(keylen > 0 && keylen <= 32); /* * The key is copied into the wbuf[] buffer and padded to 256 bits * as described in the Serpent specification. */ XMEMCPY(wbuf, key, keylen); if (keylen < 32) { wbuf[keylen] = 0x01; if (keylen < 31) { XMEMSET(wbuf + keylen + 1, 0, 31 - keylen); } } LOAD32L(w0, wbuf); LOAD32L(w1, wbuf + 4); LOAD32L(w2, wbuf + 8); LOAD32L(w3, wbuf + 12); LOAD32L(w4, wbuf + 16); LOAD32L(w5, wbuf + 20); LOAD32L(w6, wbuf + 24); LOAD32L(w7, wbuf + 28); WUP0(0); SKS3; WUP1(4); SKS2; WUP0(8); SKS1; WUP1(12); SKS0; WUP0(16); SKS7; WUP1(20); SKS6; WUP0(24); SKS5; WUP1(28); SKS4; WUP0(32); SKS3; WUP1(36); SKS2; WUP0(40); SKS1; WUP1(44); SKS0; WUP0(48); SKS7; WUP1(52); SKS6; WUP0(56); SKS5; WUP1(60); SKS4; WUP0(64); SKS3; WUP1(68); SKS2; WUP0(72); SKS1; WUP1(76); SKS0; WUP0(80); SKS7; WUP1(84); SKS6; WUP0(88); SKS5; WUP1(92); SKS4; WUP0(96); SKS3; #undef SKS #undef SKS0 #undef SKS1 #undef SKS2 #undef SKS3 #undef SKS4 #undef SKS5 #undef SKS6 #undef SKS7 #undef WUP #undef WUP0 #undef WUP1 return CRYPT_OK; } /* * Initialization continues by setting the IV. The IV length is up to 16 bytes. * If "ivlen" is 0 (no IV), then the "iv" parameter can be NULL. If multiple * encryptions/decryptions are to be performed with the same key and * sosemanuk_done() has not been called, only sosemanuk_setiv() need be called * to set the state. * @param st The Sosemanuk state * @param iv Initialization vector * @param ivlen Length of iv in bytes * @return CRYPT_OK on success */ int sosemanuk_setiv(sosemanuk_state *st, const unsigned char *iv, unsigned long ivlen) { /* * The Serpent key addition step. */ #define KA(zc, x0, x1, x2, x3) do { \ x0 ^= st->kc[(zc)]; \ x1 ^= st->kc[(zc) + 1]; \ x2 ^= st->kc[(zc) + 2]; \ x3 ^= st->kc[(zc) + 3]; \ } while (0) /* * One Serpent round. * zc = current subkey counter * S = S-box macro for this round * i0 to i4 = input register numbers (the fifth is a scratch register) * o0 to o3 = output register numbers */ #define FSS(zc, S, i0, i1, i2, i3, i4, o0, o1, o2, o3) do { \ KA(zc, r ## i0, r ## i1, r ## i2, r ## i3); \ S(r ## i0, r ## i1, r ## i2, r ## i3, r ## i4); \ SERPENT_LT(r ## o0, r ## o1, r ## o2, r ## o3); \ } while (0) /* * Last Serpent round. Contrary to the "true" Serpent, we keep * the linear transformation for that last round. */ #define FSF(zc, S, i0, i1, i2, i3, i4, o0, o1, o2, o3) do { \ KA(zc, r ## i0, r ## i1, r ## i2, r ## i3); \ S(r ## i0, r ## i1, r ## i2, r ## i3, r ## i4); \ SERPENT_LT(r ## o0, r ## o1, r ## o2, r ## o3); \ KA(zc + 4, r ## o0, r ## o1, r ## o2, r ## o3); \ } while (0) ulong32 r0, r1, r2, r3, r4; unsigned char ivtmp[16] = {0}; LTC_ARGCHK(st != NULL); LTC_ARGCHK(ivlen <= 16); LTC_ARGCHK(iv != NULL || ivlen == 0); if (ivlen > 0) XMEMCPY(ivtmp, iv, ivlen); /* * Decode IV into four 32-bit words (little-endian). */ LOAD32L(r0, ivtmp); LOAD32L(r1, ivtmp + 4); LOAD32L(r2, ivtmp + 8); LOAD32L(r3, ivtmp + 12); /* * Encrypt IV with Serpent24. Some values are extracted from the * output of the twelfth, eighteenth and twenty-fourth rounds. */ FSS(0, S0, 0, 1, 2, 3, 4, 1, 4, 2, 0); FSS(4, S1, 1, 4, 2, 0, 3, 2, 1, 0, 4); FSS(8, S2, 2, 1, 0, 4, 3, 0, 4, 1, 3); FSS(12, S3, 0, 4, 1, 3, 2, 4, 1, 3, 2); FSS(16, S4, 4, 1, 3, 2, 0, 1, 0, 4, 2); FSS(20, S5, 1, 0, 4, 2, 3, 0, 2, 1, 4); FSS(24, S6, 0, 2, 1, 4, 3, 0, 2, 3, 1); FSS(28, S7, 0, 2, 3, 1, 4, 4, 1, 2, 0); FSS(32, S0, 4, 1, 2, 0, 3, 1, 3, 2, 4); FSS(36, S1, 1, 3, 2, 4, 0, 2, 1, 4, 3); FSS(40, S2, 2, 1, 4, 3, 0, 4, 3, 1, 0); FSS(44, S3, 4, 3, 1, 0, 2, 3, 1, 0, 2); st->s09 = r3; st->s08 = r1; st->s07 = r0; st->s06 = r2; FSS(48, S4, 3, 1, 0, 2, 4, 1, 4, 3, 2); FSS(52, S5, 1, 4, 3, 2, 0, 4, 2, 1, 3); FSS(56, S6, 4, 2, 1, 3, 0, 4, 2, 0, 1); FSS(60, S7, 4, 2, 0, 1, 3, 3, 1, 2, 4); FSS(64, S0, 3, 1, 2, 4, 0, 1, 0, 2, 3); FSS(68, S1, 1, 0, 2, 3, 4, 2, 1, 3, 0); st->r1 = r2; st->s04 = r1; st->r2 = r3; st->s05 = r0; FSS(72, S2, 2, 1, 3, 0, 4, 3, 0, 1, 4); FSS(76, S3, 3, 0, 1, 4, 2, 0, 1, 4, 2); FSS(80, S4, 0, 1, 4, 2, 3, 1, 3, 0, 2); FSS(84, S5, 1, 3, 0, 2, 4, 3, 2, 1, 0); FSS(88, S6, 3, 2, 1, 0, 4, 3, 2, 4, 1); FSF(92, S7, 3, 2, 4, 1, 0, 0, 1, 2, 3); st->s03 = r0; st->s02 = r1; st->s01 = r2; st->s00 = r3; st->ptr = sizeof(st->buf); #undef KA #undef FSS #undef FSF return CRYPT_OK; } /* * Multiplication by alpha: alpha * x = T32(x << 8) ^ mul_a[x >> 24] */ static const ulong32 mul_a[] = { 0x00000000, 0xE19FCF13, 0x6B973726, 0x8A08F835, 0xD6876E4C, 0x3718A15F, 0xBD10596A, 0x5C8F9679, 0x05A7DC98, 0xE438138B, 0x6E30EBBE, 0x8FAF24AD, 0xD320B2D4, 0x32BF7DC7, 0xB8B785F2, 0x59284AE1, 0x0AE71199, 0xEB78DE8A, 0x617026BF, 0x80EFE9AC, 0xDC607FD5, 0x3DFFB0C6, 0xB7F748F3, 0x566887E0, 0x0F40CD01, 0xEEDF0212, 0x64D7FA27, 0x85483534, 0xD9C7A34D, 0x38586C5E, 0xB250946B, 0x53CF5B78, 0x1467229B, 0xF5F8ED88, 0x7FF015BD, 0x9E6FDAAE, 0xC2E04CD7, 0x237F83C4, 0xA9777BF1, 0x48E8B4E2, 0x11C0FE03, 0xF05F3110, 0x7A57C925, 0x9BC80636, 0xC747904F, 0x26D85F5C, 0xACD0A769, 0x4D4F687A, 0x1E803302, 0xFF1FFC11, 0x75170424, 0x9488CB37, 0xC8075D4E, 0x2998925D, 0xA3906A68, 0x420FA57B, 0x1B27EF9A, 0xFAB82089, 0x70B0D8BC, 0x912F17AF, 0xCDA081D6, 0x2C3F4EC5, 0xA637B6F0, 0x47A879E3, 0x28CE449F, 0xC9518B8C, 0x435973B9, 0xA2C6BCAA, 0xFE492AD3, 0x1FD6E5C0, 0x95DE1DF5, 0x7441D2E6, 0x2D699807, 0xCCF65714, 0x46FEAF21, 0xA7616032, 0xFBEEF64B, 0x1A713958, 0x9079C16D, 0x71E60E7E, 0x22295506, 0xC3B69A15, 0x49BE6220, 0xA821AD33, 0xF4AE3B4A, 0x1531F459, 0x9F390C6C, 0x7EA6C37F, 0x278E899E, 0xC611468D, 0x4C19BEB8, 0xAD8671AB, 0xF109E7D2, 0x109628C1, 0x9A9ED0F4, 0x7B011FE7, 0x3CA96604, 0xDD36A917, 0x573E5122, 0xB6A19E31, 0xEA2E0848, 0x0BB1C75B, 0x81B93F6E, 0x6026F07D, 0x390EBA9C, 0xD891758F, 0x52998DBA, 0xB30642A9, 0xEF89D4D0, 0x0E161BC3, 0x841EE3F6, 0x65812CE5, 0x364E779D, 0xD7D1B88E, 0x5DD940BB, 0xBC468FA8, 0xE0C919D1, 0x0156D6C2, 0x8B5E2EF7, 0x6AC1E1E4, 0x33E9AB05, 0xD2766416, 0x587E9C23, 0xB9E15330, 0xE56EC549, 0x04F10A5A, 0x8EF9F26F, 0x6F663D7C, 0x50358897, 0xB1AA4784, 0x3BA2BFB1, 0xDA3D70A2, 0x86B2E6DB, 0x672D29C8, 0xED25D1FD, 0x0CBA1EEE, 0x5592540F, 0xB40D9B1C, 0x3E056329, 0xDF9AAC3A, 0x83153A43, 0x628AF550, 0xE8820D65, 0x091DC276, 0x5AD2990E, 0xBB4D561D, 0x3145AE28, 0xD0DA613B, 0x8C55F742, 0x6DCA3851, 0xE7C2C064, 0x065D0F77, 0x5F754596, 0xBEEA8A85, 0x34E272B0, 0xD57DBDA3, 0x89F22BDA, 0x686DE4C9, 0xE2651CFC, 0x03FAD3EF, 0x4452AA0C, 0xA5CD651F, 0x2FC59D2A, 0xCE5A5239, 0x92D5C440, 0x734A0B53, 0xF942F366, 0x18DD3C75, 0x41F57694, 0xA06AB987, 0x2A6241B2, 0xCBFD8EA1, 0x977218D8, 0x76EDD7CB, 0xFCE52FFE, 0x1D7AE0ED, 0x4EB5BB95, 0xAF2A7486, 0x25228CB3, 0xC4BD43A0, 0x9832D5D9, 0x79AD1ACA, 0xF3A5E2FF, 0x123A2DEC, 0x4B12670D, 0xAA8DA81E, 0x2085502B, 0xC11A9F38, 0x9D950941, 0x7C0AC652, 0xF6023E67, 0x179DF174, 0x78FBCC08, 0x9964031B, 0x136CFB2E, 0xF2F3343D, 0xAE7CA244, 0x4FE36D57, 0xC5EB9562, 0x24745A71, 0x7D5C1090, 0x9CC3DF83, 0x16CB27B6, 0xF754E8A5, 0xABDB7EDC, 0x4A44B1CF, 0xC04C49FA, 0x21D386E9, 0x721CDD91, 0x93831282, 0x198BEAB7, 0xF81425A4, 0xA49BB3DD, 0x45047CCE, 0xCF0C84FB, 0x2E934BE8, 0x77BB0109, 0x9624CE1A, 0x1C2C362F, 0xFDB3F93C, 0xA13C6F45, 0x40A3A056, 0xCAAB5863, 0x2B349770, 0x6C9CEE93, 0x8D032180, 0x070BD9B5, 0xE69416A6, 0xBA1B80DF, 0x5B844FCC, 0xD18CB7F9, 0x301378EA, 0x693B320B, 0x88A4FD18, 0x02AC052D, 0xE333CA3E, 0xBFBC5C47, 0x5E239354, 0xD42B6B61, 0x35B4A472, 0x667BFF0A, 0x87E43019, 0x0DECC82C, 0xEC73073F, 0xB0FC9146, 0x51635E55, 0xDB6BA660, 0x3AF46973, 0x63DC2392, 0x8243EC81, 0x084B14B4, 0xE9D4DBA7, 0xB55B4DDE, 0x54C482CD, 0xDECC7AF8, 0x3F53B5EB }; /* * Multiplication by 1/alpha: 1/alpha * x = (x >> 8) ^ mul_ia[x & 0xFF] */ static const ulong32 mul_ia[] = { 0x00000000, 0x180F40CD, 0x301E8033, 0x2811C0FE, 0x603CA966, 0x7833E9AB, 0x50222955, 0x482D6998, 0xC078FBCC, 0xD877BB01, 0xF0667BFF, 0xE8693B32, 0xA04452AA, 0xB84B1267, 0x905AD299, 0x88559254, 0x29F05F31, 0x31FF1FFC, 0x19EEDF02, 0x01E19FCF, 0x49CCF657, 0x51C3B69A, 0x79D27664, 0x61DD36A9, 0xE988A4FD, 0xF187E430, 0xD99624CE, 0xC1996403, 0x89B40D9B, 0x91BB4D56, 0xB9AA8DA8, 0xA1A5CD65, 0x5249BE62, 0x4A46FEAF, 0x62573E51, 0x7A587E9C, 0x32751704, 0x2A7A57C9, 0x026B9737, 0x1A64D7FA, 0x923145AE, 0x8A3E0563, 0xA22FC59D, 0xBA208550, 0xF20DECC8, 0xEA02AC05, 0xC2136CFB, 0xDA1C2C36, 0x7BB9E153, 0x63B6A19E, 0x4BA76160, 0x53A821AD, 0x1B854835, 0x038A08F8, 0x2B9BC806, 0x339488CB, 0xBBC11A9F, 0xA3CE5A52, 0x8BDF9AAC, 0x93D0DA61, 0xDBFDB3F9, 0xC3F2F334, 0xEBE333CA, 0xF3EC7307, 0xA492D5C4, 0xBC9D9509, 0x948C55F7, 0x8C83153A, 0xC4AE7CA2, 0xDCA13C6F, 0xF4B0FC91, 0xECBFBC5C, 0x64EA2E08, 0x7CE56EC5, 0x54F4AE3B, 0x4CFBEEF6, 0x04D6876E, 0x1CD9C7A3, 0x34C8075D, 0x2CC74790, 0x8D628AF5, 0x956DCA38, 0xBD7C0AC6, 0xA5734A0B, 0xED5E2393, 0xF551635E, 0xDD40A3A0, 0xC54FE36D, 0x4D1A7139, 0x551531F4, 0x7D04F10A, 0x650BB1C7, 0x2D26D85F, 0x35299892, 0x1D38586C, 0x053718A1, 0xF6DB6BA6, 0xEED42B6B, 0xC6C5EB95, 0xDECAAB58, 0x96E7C2C0, 0x8EE8820D, 0xA6F942F3, 0xBEF6023E, 0x36A3906A, 0x2EACD0A7, 0x06BD1059, 0x1EB25094, 0x569F390C, 0x4E9079C1, 0x6681B93F, 0x7E8EF9F2, 0xDF2B3497, 0xC724745A, 0xEF35B4A4, 0xF73AF469, 0xBF179DF1, 0xA718DD3C, 0x8F091DC2, 0x97065D0F, 0x1F53CF5B, 0x075C8F96, 0x2F4D4F68, 0x37420FA5, 0x7F6F663D, 0x676026F0, 0x4F71E60E, 0x577EA6C3, 0xE18D0321, 0xF98243EC, 0xD1938312, 0xC99CC3DF, 0x81B1AA47, 0x99BEEA8A, 0xB1AF2A74, 0xA9A06AB9, 0x21F5F8ED, 0x39FAB820, 0x11EB78DE, 0x09E43813, 0x41C9518B, 0x59C61146, 0x71D7D1B8, 0x69D89175, 0xC87D5C10, 0xD0721CDD, 0xF863DC23, 0xE06C9CEE, 0xA841F576, 0xB04EB5BB, 0x985F7545, 0x80503588, 0x0805A7DC, 0x100AE711, 0x381B27EF, 0x20146722, 0x68390EBA, 0x70364E77, 0x58278E89, 0x4028CE44, 0xB3C4BD43, 0xABCBFD8E, 0x83DA3D70, 0x9BD57DBD, 0xD3F81425, 0xCBF754E8, 0xE3E69416, 0xFBE9D4DB, 0x73BC468F, 0x6BB30642, 0x43A2C6BC, 0x5BAD8671, 0x1380EFE9, 0x0B8FAF24, 0x239E6FDA, 0x3B912F17, 0x9A34E272, 0x823BA2BF, 0xAA2A6241, 0xB225228C, 0xFA084B14, 0xE2070BD9, 0xCA16CB27, 0xD2198BEA, 0x5A4C19BE, 0x42435973, 0x6A52998D, 0x725DD940, 0x3A70B0D8, 0x227FF015, 0x0A6E30EB, 0x12617026, 0x451FD6E5, 0x5D109628, 0x750156D6, 0x6D0E161B, 0x25237F83, 0x3D2C3F4E, 0x153DFFB0, 0x0D32BF7D, 0x85672D29, 0x9D686DE4, 0xB579AD1A, 0xAD76EDD7, 0xE55B844F, 0xFD54C482, 0xD545047C, 0xCD4A44B1, 0x6CEF89D4, 0x74E0C919, 0x5CF109E7, 0x44FE492A, 0x0CD320B2, 0x14DC607F, 0x3CCDA081, 0x24C2E04C, 0xAC977218, 0xB49832D5, 0x9C89F22B, 0x8486B2E6, 0xCCABDB7E, 0xD4A49BB3, 0xFCB55B4D, 0xE4BA1B80, 0x17566887, 0x0F59284A, 0x2748E8B4, 0x3F47A879, 0x776AC1E1, 0x6F65812C, 0x477441D2, 0x5F7B011F, 0xD72E934B, 0xCF21D386, 0xE7301378, 0xFF3F53B5, 0xB7123A2D, 0xAF1D7AE0, 0x870CBA1E, 0x9F03FAD3, 0x3EA637B6, 0x26A9777B, 0x0EB8B785, 0x16B7F748, 0x5E9A9ED0, 0x4695DE1D, 0x6E841EE3, 0x768B5E2E, 0xFEDECC7A, 0xE6D18CB7, 0xCEC04C49, 0xD6CF0C84, 0x9EE2651C, 0x86ED25D1, 0xAEFCE52F, 0xB6F3A5E2 }; /* * Compute the next block of bits of output stream. This is equivalent * to one full rotation of the shift register. */ static LTC_INLINE void s_sosemanuk_internal(sosemanuk_state *st) { /* * MUL_A(x) computes alpha * x (in F_{2^32}). * MUL_G(x) computes 1/alpha * x (in F_{2^32}). */ #define MUL_A(x) (T32((x) << 8) ^ mul_a[(x) >> 24]) #define MUL_G(x) (((x) >> 8) ^ mul_ia[(x) & 0xFF]) /* * This macro computes the special multiplexer, which chooses * between "x" and "x xor y", depending on the least significant * bit of the control word. We use the C "?:" selection operator * (which most compilers know how to optimise) except for Alpha, * where the manual sign extension seems to perform equally well * with DEC/Compaq/HP compiler, and much better with gcc. */ #ifdef __alpha #define XMUX(c, x, y) ((((signed int)((c) << 31) >> 31) & (y)) ^ (x)) #else #define XMUX(c, x, y) (((c) & 0x1) ? ((x) ^ (y)) : (x)) #endif /* * FSM() updates the finite state machine. */ #define FSM(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) do { \ ulong32 tt, or1; \ tt = XMUX(r1, s ## x1, s ## x8); \ or1 = r1; \ r1 = T32(r2 + tt); \ tt = T32(or1 * 0x54655307); \ r2 = ROLc(tt, 7); \ } while (0) /* * LRU updates the shift register; the dropped value is stored * in variable "dd". */ #define LRU(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, dd) do { \ dd = s ## x0; \ s ## x0 = MUL_A(s ## x0) ^ MUL_G(s ## x3) ^ s ## x9; \ } while (0) /* * CC1 stores into variable "ee" the next intermediate word * (combination of the new states of the LFSR and the FSM). */ #define CC1(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, ee) do { \ ee = T32(s ## x9 + r1) ^ r2; \ } while (0) /* * STEP computes one internal round. "dd" receives the "s_t" * value (dropped from the LFSR) and "ee" gets the value computed * from the LFSR and FSM. */ #define STEP(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, dd, ee) do { \ FSM(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9); \ LRU(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, dd); \ CC1(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, ee); \ } while (0) /* * Apply one Serpent round (with the provided S-box macro), XOR * the result with the "v" values, and encode the result into * the destination buffer, at the provided offset. The "x*" * arguments encode the output permutation of the "S" macro. */ #define SRD(S, x0, x1, x2, x3, ooff) do { \ S(u0, u1, u2, u3, u4); \ STORE32L(u ## x0 ^ v0, st->buf + ooff); \ STORE32L(u ## x1 ^ v1, st->buf + ooff + 4); \ STORE32L(u ## x2 ^ v2, st->buf + ooff + 8); \ STORE32L(u ## x3 ^ v3, st->buf + ooff + 12); \ } while (0) ulong32 s00 = st->s00; ulong32 s01 = st->s01; ulong32 s02 = st->s02; ulong32 s03 = st->s03; ulong32 s04 = st->s04; ulong32 s05 = st->s05; ulong32 s06 = st->s06; ulong32 s07 = st->s07; ulong32 s08 = st->s08; ulong32 s09 = st->s09; ulong32 r1 = st->r1; ulong32 r2 = st->r2; ulong32 u0, u1, u2, u3, u4; ulong32 v0, v1, v2, v3; STEP(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, v0, u0); STEP(01, 02, 03, 04, 05, 06, 07, 08, 09, 00, v1, u1); STEP(02, 03, 04, 05, 06, 07, 08, 09, 00, 01, v2, u2); STEP(03, 04, 05, 06, 07, 08, 09, 00, 01, 02, v3, u3); SRD(S2, 2, 3, 1, 4, 0); STEP(04, 05, 06, 07, 08, 09, 00, 01, 02, 03, v0, u0); STEP(05, 06, 07, 08, 09, 00, 01, 02, 03, 04, v1, u1); STEP(06, 07, 08, 09, 00, 01, 02, 03, 04, 05, v2, u2); STEP(07, 08, 09, 00, 01, 02, 03, 04, 05, 06, v3, u3); SRD(S2, 2, 3, 1, 4, 16); STEP(08, 09, 00, 01, 02, 03, 04, 05, 06, 07, v0, u0); STEP(09, 00, 01, 02, 03, 04, 05, 06, 07, 08, v1, u1); STEP(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, v2, u2); STEP(01, 02, 03, 04, 05, 06, 07, 08, 09, 00, v3, u3); SRD(S2, 2, 3, 1, 4, 32); STEP(02, 03, 04, 05, 06, 07, 08, 09, 00, 01, v0, u0); STEP(03, 04, 05, 06, 07, 08, 09, 00, 01, 02, v1, u1); STEP(04, 05, 06, 07, 08, 09, 00, 01, 02, 03, v2, u2); STEP(05, 06, 07, 08, 09, 00, 01, 02, 03, 04, v3, u3); SRD(S2, 2, 3, 1, 4, 48); STEP(06, 07, 08, 09, 00, 01, 02, 03, 04, 05, v0, u0); STEP(07, 08, 09, 00, 01, 02, 03, 04, 05, 06, v1, u1); STEP(08, 09, 00, 01, 02, 03, 04, 05, 06, 07, v2, u2); STEP(09, 00, 01, 02, 03, 04, 05, 06, 07, 08, v3, u3); SRD(S2, 2, 3, 1, 4, 64); st->s00 = s00; st->s01 = s01; st->s02 = s02; st->s03 = s03; st->s04 = s04; st->s05 = s05; st->s06 = s06; st->s07 = s07; st->s08 = s08; st->s09 = s09; st->r1 = r1; st->r2 = r2; } /* * Combine buffers in1[] and in2[] by XOR, result in out[]. The length * is "datalen" (in bytes). Partial overlap of out[] with either in1[] * or in2[] is not allowed. Total overlap (out == in1 and/or out == in2) * is allowed. */ static LTC_INLINE void s_xorbuf(const unsigned char *in1, const unsigned char *in2, unsigned char *out, unsigned long datalen) { while (datalen -- > 0) { *out ++ = *in1 ++ ^ *in2 ++; } } /* * Cipher operation, as a stream cipher: data is read from the "in" * buffer, combined by XOR with the stream, and the result is written * in the "out" buffer. "in" and "out" must be either equal, or * reference distinct buffers (no partial overlap is allowed). * @param st The Sosemanuk state * @param in Data in * @param inlen Length of data in bytes * @param out Data out * @return CRYPT_OK on success */ int sosemanuk_crypt(sosemanuk_state *st, const unsigned char *in, unsigned long inlen, unsigned char *out) { LTC_ARGCHK(st != NULL); LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); if (st->ptr < (sizeof(st->buf))) { unsigned long rlen = (sizeof(st->buf)) - st->ptr; if (rlen > inlen) { rlen = inlen; } s_xorbuf(st->buf + st->ptr, in, out, rlen); in += rlen; out += rlen; inlen -= rlen; st->ptr += rlen; } while (inlen > 0) { s_sosemanuk_internal(st); if (inlen >= sizeof(st->buf)) { s_xorbuf(st->buf, in, out, sizeof(st->buf)); in += sizeof(st->buf); out += sizeof(st->buf); inlen -= sizeof(st->buf); } else { s_xorbuf(st->buf, in, out, inlen); st->ptr = inlen; inlen = 0; } } return CRYPT_OK; } /* * Cipher operation, as a PRNG: the provided output buffer is filled with * pseudo-random bytes as output from the stream cipher. * @param st The Sosemanuk state * @param out Data out * @param outlen Length of output in bytes * @return CRYPT_OK on success */ int sosemanuk_keystream(sosemanuk_state *st, unsigned char *out, unsigned long outlen) { if (outlen == 0) return CRYPT_OK; /* nothing to do */ LTC_ARGCHK(out != NULL); XMEMSET(out, 0, outlen); return sosemanuk_crypt(st, out, outlen, out); } /* * Terminate and clear Sosemanuk key context * @param st The Sosemanuk state * @return CRYPT_OK on success */ int sosemanuk_done(sosemanuk_state *st) { LTC_ARGCHK(st != NULL); zeromem(st, sizeof(sosemanuk_state)); return CRYPT_OK; } #endif #pragma clang diagnostic pop