/* LibTomCrypt, modular cryptographic library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ #include "tomcrypt_private.h" /** @file ltc_ecc_map.c ECC Crypto, Tom St Denis */ #ifdef LTC_MECC /** Map a projective jacbobian point back to affine space @param P [in/out] The point to map @param modulus The modulus of the field the ECC curve is in @param mp The "b" value from montgomery_setup() @return CRYPT_OK on success */ int ltc_ecc_map(ecc_point *P, const void *modulus, void *mp) { void *t1, *t2; int err; LTC_ARGCHK(P != NULL); LTC_ARGCHK(modulus != NULL); LTC_ARGCHK(mp != NULL); if (ltc_mp_iszero(P->z)) { return ltc_ecc_set_point_xyz(0, 0, 1, P); } if ((err = ltc_mp_init_multi(&t1, &t2, LTC_NULL)) != CRYPT_OK) { return err; } /* first map z back to normal */ if ((err = ltc_mp_montgomery_reduce(P->z, modulus, mp)) != CRYPT_OK) { goto done; } /* get 1/z */ if ((err = ltc_mp_invmod(P->z, modulus, t1)) != CRYPT_OK) { goto done; } /* get 1/z^2 and 1/z^3 */ if ((err = ltc_mp_sqr(t1, t2)) != CRYPT_OK) { goto done; } if ((err = ltc_mp_mod(t2, modulus, t2)) != CRYPT_OK) { goto done; } if ((err = ltc_mp_mul(t1, t2, t1)) != CRYPT_OK) { goto done; } if ((err = ltc_mp_mod(t1, modulus, t1)) != CRYPT_OK) { goto done; } /* multiply against x/y */ if ((err = ltc_mp_mul(P->x, t2, P->x)) != CRYPT_OK) { goto done; } if ((err = ltc_mp_montgomery_reduce(P->x, modulus, mp)) != CRYPT_OK) { goto done; } if ((err = ltc_mp_mul(P->y, t1, P->y)) != CRYPT_OK) { goto done; } if ((err = ltc_mp_montgomery_reduce(P->y, modulus, mp)) != CRYPT_OK) { goto done; } if ((err = ltc_mp_set(P->z, 1)) != CRYPT_OK) { goto done; } err = CRYPT_OK; done: ltc_mp_deinit_multi(t1, t2, LTC_NULL); return err; } #endif